Impact of Roasting on Functional Properties of Hard-to-Cook Beans Under Adverse Storage Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Storage Conditions
2.2. General Ingredients of Beans
2.3. Measurement of Moisture Content
2.4. Roasting Conditions
2.5. Measurement of Color
2.6. Measurement of Antioxidant Activity
2.7. Measurement of Total Phenolic Content
2.8. Measurement of Reducing Sugar Content
2.9. Measurement of Resistant Starch Content
2.10. Statistical Analyses
3. Results and Discussion
3.1. Nutritional Composition and Storage Safety of Legumes
3.2. Changes in the Appearance and Color of Beans
3.3. Changes in the Antioxidant Activity and TPC of Beans
3.4. Changes in the Reducing Sugar Content of Beans
3.5. Changes in the Resistant Starch Content of Beans
3.6. Potential and Synergistic Effects of HTC Storage and Roasting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wainaina, I.; Wafula, E.; Sila, D.; Kyomugasho, C.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Thermal treatment of common beans (Phaseolus vulgaris L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3690–3718. [Google Scholar] [CrossRef] [PubMed]
- Shiga, T.M.; Lajolo, F.M.; Filisetti, T.M. Changes in the cell wall polysaccharides during storage and hardening of beans. Food Chem. 2004, 84, 53–64. [Google Scholar] [CrossRef]
- Liu, K. Food use of whole soybeans. In Soybeans-Chemistry, Production, Processing, and Utilization; Johnson, L.A., White, P.J., Galloway, R., Eds.; Am Oil Chem Soc Press: Urbana, IL, USA, 2008; pp. 441–481. [Google Scholar] [CrossRef]
- Koriyama, T.; Sato, Y.; Iijima, K.; Kasai, M. Influences of soaking temperature and storage conditions on hardening of soybeans (Glycine max) and red kidney beans (Phaseolus vulgaris). J. Food Sci. 2017, 82, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- Uebersax, M.A.; Siddiq, M.; Borbi, M. Chapter 5. In Hard-to-Cook and Other Storage-Induced Quality Defects in Dry Beans; Siddiq, M., Uebersax, M.A., Eds.; John Wiley & Sons: Chichester, UK, 2022; pp. 105–127. [Google Scholar] [CrossRef]
- Kim, H.G.; Kim, G.W.; Oh, H.; Yoo, S.Y.; Kim, Y.O.; Oh, M.S. Influence of roasting on the antioxidant activity of small black soybean (Glycine max L. Merrill). LWT Food Sci. Technol. 2011, 44, 992–998. [Google Scholar] [CrossRef]
- Jeong, S.M.; Kim, S.Y.; Kim, D.R.; Nam, K.C.; Ahn, D.U.; Lee, S.C. Effect of seed roasting conditions on the antioxidant activity of defatted sesame meal extracts. J. Food Sci. 2004, 69, C377–C381. [Google Scholar] [CrossRef]
- Açar, Ö.Ç.; Gökmen, V.; Pellegrini, N.; Fogliano, V. Direct evaluation of the total antioxidant capacity of raw and roasted pulses, nuts and seeds. Eur. Food Res. Technol. 2009, 229, 961–969. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef]
- Koriyama, T.; Kasai, M. Effect of pre-soaking treatment on softening and hardening during cooking of storage beans. Food Sci. Technol. Res. 2019, 25, 425–434. [Google Scholar] [CrossRef]
- Hoxha, I.; Xhabiri, G.; Deliu, R. The impact of flour from white bean (Phaseolus vulgaris) on rheological, qualitative and nutritional properties of the bread. OALib. 2020, 7, e6059. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, Y.; Liu, X.; Guan, X.; Huang, K.; Li, S. Effect of extruded mung bean flour on dough rheology and quality of Chinese noodles. Cereal Chem. 2019, 96, 836–846. [Google Scholar] [CrossRef]
- Reyes-Moreno, C.; Rouzaud-Sandez, O.; Milán-Carrillo, J.; Garzón-Tiznado, J.A.; Camacho-Hernández, L. Hard-to-cook tendency of chickpea (Cicer arietinum L.) varieties. J. Sci. Food Agric. 2001, 81, 1008–1012. [Google Scholar] [CrossRef]
- Yousif, A.M.; Deeth, H.C.; Caffin, N.A.; Lisle, A.T. Effect of storage time and conditions on the hardness and cooking quality of adzuki (Vigna angularis). LWT Food Sci. Technol. 2002, 35, 338–343. [Google Scholar] [CrossRef]
- Friend, S.A.; Quandt, D.; Tallury, S.P.; Stalker, H.T.; Hilu, K.W. Species, genomes, and section relationships in the genus Arachis (Fabaceae): A molecular phylogeny. Plant Systemat. Evol. 2010, 290, 185–199. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 20th ed.; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Koriyama, T.; Teranaka, K.; Tsuchida, M.; Kasai, M. Effects of storage and roasting condition on the antioxidant activity of soybeans with different colors of seed coat. Foods. 2022, 12, 92. [Google Scholar] [CrossRef]
- Konishi, F.; Tateoka, Y.; Murakami, T.; Kasai, M. Antioxidative activity of roasted Adzuki bean flour and its application as teaching material to home economics classes of elementary schools. J. Home Econ. 2012, 63, 301–307. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Folin, O.; Denis, W. A colorimetric method for the determination of phenol (and derivatives) in urine. J. Biol. Chem. 1915, 22, 305–308. [Google Scholar] [CrossRef]
- Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Smogyi, M. Notes on sugar determination. J. Biol. Chem. 1952, 195, 19–23. [Google Scholar] [CrossRef] [PubMed]
- McCleary, B.V.; Monaghan, D.A. Measurement of resistant starch. J. AOAC Int. 2002, 85, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Jogihalli, P.; Singh, L.; Sharanagat, V.S. Effect of microwave roasting parameters on functional and antioxidant properties of chickpea (Cicer arietinum). LWT Food Sci. Technol. 2017, 79, 223–233. [Google Scholar] [CrossRef]
- Žilić, S.; Mogol, B.A.; Akıllıoğlu, G.; Serpen, A.; Delić, N.; Gökmen, V. Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean. J. Sci. Food Agric. 2014, 94, 45–51. [Google Scholar] [CrossRef]
- Yoshida, K.; Nagai, N.; Ichikawa, Y.; Goto, M.; Kazuma, K.; Oyama, K.I.; Koga, K.; Hashimoto, M.; Iuchi, S.; Takaya, Y.; et al. Structure of two purple pigments, catechiopyranocyanidins A and B from the seed-coat of the small red bean, Vigna angularis. Sci. Rep. 2019, 9, 1484. [Google Scholar] [CrossRef]
- Pratt, D.E.; Miller, E.E. A flavonoid antioxidant in Spanish peanuts (Arachia hypogoea). J. Am. Oil Chem. Soc. 1984, 61, 1064–1067. [Google Scholar] [CrossRef]
- Jiratanan, T.; Liu, R.H. Antioxidant activity of processed table beets (Beta vulgaris var, conditiva) and green beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2004, 52, 2659–2670. [Google Scholar] [CrossRef]
- Machado, C.M.; Ferruzzi, M.G.; Nielsen, S.S. Impact of the hard-to-cook phenomenon on phenolic antioxidants in dry beans (Phaseolus vulgaris). J. Agric. Food Chem. 2008, 56, 3102–3110. [Google Scholar] [CrossRef] [PubMed]
- Jogihalli, P.; Singh, L.; Kumar, K.; Sharanagat, V.S. Physico-functional and antioxidant properties of sand-roasted chickpea (Cicer arietinum). Food Chem. 2017, 237, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Yen, G.C.; Chang, L.W.; Yen, W.J.; Duh, P.D. Identification of an antioxidant, ethyl protocatechuate, in peanut seed testa. J. Agric. Food Chem. 2003, 51, 2380–2383. [Google Scholar] [CrossRef] [PubMed]
- Talcott, S.T.; Duncan, C.E.; Pozo-Insfran, D.D.; Gorbet, D.W. Polyphenolic and antioxidant changes during storage of normal, mid, and high oleic acid peanuts. Food Chem. 2005, 89, 77–84. [Google Scholar] [CrossRef]
- Tan, X.; Li, C.; Bai, Y.; Gilbert, R.G. The role of storage protein fractions in slowing starch digestion in chickpea seed. Food Hydrocoll. 2022, 129, 107617. [Google Scholar] [CrossRef]
- Tayade, R.; Kulkarni, K.P.; Jo, H.; Song, J.T.; Lee, J.D. Insight into the prospects for the improvement of seed starch in legume-a review. Front. Plant Sci. 2019, 10, 1213. [Google Scholar] [CrossRef] [PubMed]
- Raatz, S.K.; Idso, L.; Johnson, L.K.; Jackson, M.I.; Combs, G.F. Resistant starch analysis of commonly consumed potatoes: Content varies by cooking method and service temperature but not by variety. Food Chem. 2016, 208, 297–300. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Costa, G.E.; da Silva Queiroz-Monici, K.; Pissini Machado Reis, S.M.; de Oliveira, A.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Tovar, J.; Melito, C. Steam-cooking and dry heating produce resistant starch in legumes. J. Agric. Food Chem. 1996, 44, 2642–2645. [Google Scholar] [CrossRef]
- Jeong, D.; Han, J.-A.; Liu, Q.; Chung, H.J. Effect of processing, storage, and modification on in vitro starch digestion characteristics of food legumes: A review. Food Hydrocoll. 2019, 90, 367–376. [Google Scholar] [CrossRef]
Energy | Moisture | Protein | Lipid | Carbohydrate | Na | |
---|---|---|---|---|---|---|
kcal/100 g | g/100 g | g/100 g | g/100 g | g/100 g | mg/100 g | |
Chickpeas | 366 ± 5.4 | 10.8 ± 0.02 | 19.2 ± 0.22 | 5.1 ± 0.14 | 62.3 ± 0.53 | 0 |
Red kidney beans | 333 ± 6.1 | 14.8 ± 0.03 | 22.6 ± 0.14 | 1.5 ± 0.05 | 58.5 ± 0.16 | 0 |
Adzuki beans | 344 ± 3.2 | 14.0 ± 0.07 | 20.9 ± 0.08 | 1.9 ± 0.12 | 60.1 ± 0.29 | 0 |
Peanuts | 545 ± 12.7 | 6.1 ± 0.01 | 24.2 ± 0.09 | 47.3 ± 0.71 | 18.9 ± 0.36 | 0 |
Bean Type | Storage | Roasting Status | L* | a* | b* | ΔE |
---|---|---|---|---|---|---|
Chickpeas | Control | Unroasted | 85.6 ± 3.4 | 0.3 ± 1.0 | 26.4 ± 3.4 | |
Roasted | 81.3 ± 1.1 | 3.3 ± 0.2 * | 29.9 ± 1.0 | 7.4 ± 0.8 | ||
HTC | Unroasted | 75.8 ± 17.8 | 5.1 ± 7.8 | 28.6 ± 4.2 | 5.0 ± 0.8 | |
Roasted | 65.1 ± 3.0 * | 9.4 ± 2.4 * | 29.8 ± 2.8 | 22.9 ± 6.4 | ||
Red kidney beans | Control | Unroasted | 82.3 ± 1.7 | 1.5 ± 0.8 | 11.2 ± 1.0 | |
Roasted | 73.2 ± 4.5 * | 4.6 ± 1.3 * | 23.7 ± 1.5 *** | 16.1 ± 3.7 | ||
HTC | Unroasted | 80.9 ± 2.5 | 2.8 ± 1.1 | 15.0 ± 1.0 ** | 5.4 ± 1.0 | |
Roasted | 67.7 ± 4.0 ** | 7.7 ± 2.5 * | 27.6 ± 1.9 *** | 22.9 ± 3.8 | ||
Adzuki | Control | Unroasted | 80.6 ± 2.6 | 1.2 ± 0.2 | 10.8 ± 1.3 | |
Roasted | 65.3 ± 0.7 ** | 7.2 ± 0.3 *** | 29.0 ± 0.2 * | 24.7 ± 0.8 | ||
HTC | Unroasted | 75.6 ± 2.5 * | 4.0 ± 1.6 * | 14.0 ± 2.1 | 6.5 ± 2.5 | |
Roasted | 65.4 ± 4.4 * | 9.2 ± 0.8 *** | 26.6 ± 1.6 ** | 23.5 ± 2.3 | ||
Peanut | Control | Unroasted | 67.2 ± 0.0 | 6.7 ± 1.2 | 18.4 ± 1.5 | |
Roasted | 37.6 ± 6.9 ** | 11.3 ± 4.5 | 16.2 ± 9.7 | 27.8 ± 4.6 | ||
HTC | Unroasted | 63.8 ± 2.5 | 8.8 ± 2.0 | 22.2 ± 6.2 | 12.3 ± 0.6 | |
Roasted | 39.7 ± 13.0 * | 15.1 ± 0.8 ** | 24.6 ± 2.4 ** | 18.0 ± 11.0 |
DPPH | ORAC | Total Polyphenol Content | Reducing Sugar | Resistant Starch | L* | ΔE | |||
---|---|---|---|---|---|---|---|---|---|
Chickpeas | Control | Unroasted | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
Roasted | 2.5 | 1.0 | 0.8 | 0.6 | 0.8 | 1.0 | 7.4 | ||
HTC | Unroasted | 4.0 | 1.1 | 1.0 | 2.8 | 2.7 | 0.9 | 5.0 | |
Roasted | 13.8 | 1.2 | 1.4 | 0.8 | 4.1 | 0.8 | 22.9 | ||
Red kidney beans | Control | Unroasted | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
Roasted | 0.9 | 0.8 | 0.9 | 0.4 | 0.9 | 0.9 | 16.1 | ||
HTC | Unroasted | 0.8 | 1.0 | 0.8 | 1.0 | 0.1 | 1.0 | 5.4 | |
Roasted | 0.8 | 0.8 | 0.9 | 0.5 | 0.1 | 0.8 | 22.9 | ||
Adzuki | Control | Unroasted | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
Roasted | 0.7 | 0.9 | 0.8 | 0.6 | 0.7 | 0.8 | 24.7 | ||
HTC | Unroasted | 0.6 | 0.7 | 0.6 | 0.9 | 0.9 | 0.9 | 6.5 | |
Roasted | 0.5 | 0.6 | 0.5 | 0.4 | 1.0 | 0.8 | 23.5 | ||
Peanut | Control | Unroasted | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | ||
Roasted | 1.3 | 0.9 | 1.3 | 0.4 | 0.6 | 27.8 | |||
HTC | Unroasted | 0.8 | 0.6 | 1.1 | 1.2 | 1.1 | 12.3 | ||
Roasted | 1.1 | 0.7 | 1.5 | 0.4 | 0.7 | 18.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koriyama, T.; Teranaka, K.; Kumagai, M. Impact of Roasting on Functional Properties of Hard-to-Cook Beans Under Adverse Storage Conditions. Foods 2025, 14, 470. https://doi.org/10.3390/foods14030470
Koriyama T, Teranaka K, Kumagai M. Impact of Roasting on Functional Properties of Hard-to-Cook Beans Under Adverse Storage Conditions. Foods. 2025; 14(3):470. https://doi.org/10.3390/foods14030470
Chicago/Turabian StyleKoriyama, Takako, Kiriko Teranaka, and Michiyo Kumagai. 2025. "Impact of Roasting on Functional Properties of Hard-to-Cook Beans Under Adverse Storage Conditions" Foods 14, no. 3: 470. https://doi.org/10.3390/foods14030470
APA StyleKoriyama, T., Teranaka, K., & Kumagai, M. (2025). Impact of Roasting on Functional Properties of Hard-to-Cook Beans Under Adverse Storage Conditions. Foods, 14(3), 470. https://doi.org/10.3390/foods14030470