Formulation and Characterization of Sodium Caseinate/Phloretin Complexes as Antioxidant Stabilizers in Oil-in-Water Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sodium Caseinate/Phloretin Complexes
2.3. Characterization of Sodium Caseinate/Phloretin Complexes
2.3.1. Particle Size Measurement
2.3.2. UV/Vis Spectroscopy
2.3.3. In Vitro Antioxidant Activity
DPPH Radical Scavenging Activity
ABTS Radical Scavenging Activity
2.4. Emulsion Preparation
2.5. Characterization of Emulsions
2.5.1. Emulsifying Properties
2.5.2. Determination of Distribution Droplet Size
2.5.3. Droplet Size Stability
2.5.4. Physical Stability (Sedimentation and Creaming Index)
2.5.5. Oxidative Stability Measurement
Determination of Hydroperoxides
Determination of Malondialdehyde
2.5.6. Apparent Viscosity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Sodium Caseinate/Phloretin Complexes
3.1.1. Particle Size Measurement
3.1.2. UV/Vis Spectroscopy
3.1.3. Antioxidant Activity
3.2. Characterization of Emulsions
3.2.1. Emulsifying Properties
3.2.2. Distribution of Droplet Size
3.2.3. Droplet Size Stability Before and After Centrifuging
3.2.4. Physical Stability (Sedimentation and Creaming Index)
3.2.5. Oxidative Stability of Emulsions
3.2.6. Apparent Viscosity of Emulsions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, X.; Chatterton, D.E. Strategies to improve the physical stability of sodium caseinate stabilized emulsions: A literature review. Food Hydrocoll. 2021, 119, 106853. [Google Scholar] [CrossRef]
- Dutta, S.K.; Knowlton, E.; Blair, D.L. Emulsions. In Fluids, Colloids and Soft Materials: An Introduction to Soft Matter Physics; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 293–306. [Google Scholar] [CrossRef]
- McClements, D.J. Protein-stabilized emulsions. Curr. Opin. Colloid Interface Sci. 2004, 9, 305–313. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, L.; Zhuang, Y.; Gu, Y.; Cheng, G.; Fan, X.; Ding, Y.; Liu, H. Protein-stabilized emulsion gels with improved emulsifying and gelling properties for the delivery of bioactive ingredients: A review. Foods 2023, 12, 2703. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Hernández, J.A.; Del-Toro-Sánchez, C.L.; Cinco-Moroyoqui, F.J.; Juárez-Onofre, J.E.; Ruiz-Cruz, S.; Carvajal-Millan, E.; López-Ahumada, G.A.; Castro-Enriquez, D.D.; Barreras-Urbina, C.G.; Rodríguez-Felix, F. Prolamins from cereal by-products: Classification, extraction, characterization and its applications in micro-and nanofabrication. Trends Food Sci. Technol. 2019, 90, 111–132. [Google Scholar] [CrossRef]
- Keramat, M.; Kheynoor, N.; Golmakani, M.T. Oxidative stability of Pickering emulsions. Food Chem. X 2022, 14, 100279. [Google Scholar] [CrossRef]
- Nourabi, A.; Tabibiazar, M.; Mashhadi, H.; Mahmoudzadeh, M. Characterization of pickering emulsion stabilized by colloidal sodium caseinate nanoparticles prepared using complexation and antisolvent method. LWT 2023, 180, 114686. [Google Scholar] [CrossRef]
- Sabouri, S.; Wright, A.J.; Corredig, M. In vitro digestion of sodium caseinate emulsions loaded with epigallocatechin gallate. Food Hydrocoll. 2017, 69, 350–358. [Google Scholar] [CrossRef]
- Yin, X.; Dong, H.; Cheng, H.; Ji, C.; Liang, L. Sodium caseinate particles with co-encapsulated resveratrol and epigallocatechin-3-gallate for inhibiting the oxidation of fish oil emulsions. Food Hydrocoll. 2022, 124, 107308. [Google Scholar] [CrossRef]
- Gong, T.; Tian, D.; Hu, C.Y.; Guo, Y.R.; Meng, Y.H. Improving antioxidant ability of functional emulsifiers by conjugating polyphenols to sodium caseinate. LWT 2022, 154, 112668. [Google Scholar] [CrossRef]
- Mariadoss, A.V.A.; Vinayagam, R.; Senthilkumar, V.; Paulpandi, M.; Murugan, K.; Xu, B.; Gothandam, K.M.; Kotakadi, V.S.; David, E. Phloretin loaded chitosan nanoparticles augments the pH-dependent mitochondrial-mediated intrinsic apoptosis in human oral cancer cells. Int. J. Biol. Macromol. 2019, 130, 997–1008. [Google Scholar] [CrossRef]
- Tuli, H.S.; Rath, P.; Chauhan, A.; Ramniwas, S.; Vashishth, K.; Varol, M.; Jaswal, V.S.; Haque, S.; Sak, K. Phloretin, as a potent anticancer compound: From chemistry to cellular interactions. Molecules 2022, 27, 8819. [Google Scholar] [CrossRef] [PubMed]
- Kharat, M.; McClements, D.J. Recent advances in colloidal delivery systems for nutraceuticals: A case study–delivery by design of curcumin. J. Colloid Interface Sci. 2019, 557, 506–518. [Google Scholar] [CrossRef] [PubMed]
- He, J.-R.; Zhu, J.-J.; Yin, S.-W.; Yang, X.-Q. Bioaccessibility and intracellular antioxidant activity of phloretin embodied by gliadin/sodium carboxymethyl cellulose nanoparticles. Food Hydrocoll. 2022, 122, 107076. [Google Scholar] [CrossRef]
- Meng, X.; Liu, H.; Dong, X.; Wang, Q.; Xia, Y.; Hu, X. A soft Pickering emulsifier made from chitosan and peptides endows stimuli-responsiveness, bioactivity and biocompatibility to emulsion. Carbohydr. Polym. 2022, 277, 118768. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, Z.; Guo, Y.; Li, B.; Yu, W.; Zhou, L.; Jiang, L.; Teng, F.; Wang, Z. Effects of high-pressure homogenization on structural and emulsifying properties of thermally soluble aggregated kidney bean (Phaseolus vulgaris L.) proteins. Food Hydrocoll. 2021, 119, 106835. [Google Scholar] [CrossRef]
- Haney, B.; Chen, D.; Cai, L.H.; Weitz, D.; Ramakrishnan, S. Millimeter-Size Pickering Emulsions Stabilized with Janus Microparticles. Langmuir 2019, 35, 4693–4701. [Google Scholar] [CrossRef]
- Restu, W.K.; Sampora, Y.; Meliana, Y.; Haryono, A. Effect of accelerated stability test on characteristics of emulsion systems with chitosan as a stabilizer. Procedia Chem. 2015, 16, 171–176. [Google Scholar] [CrossRef]
- Xu, W.; Xiong, Y.; Li, Z.; Luo, D.; Wang, Z.; Sun, Y.; Shah, B.R. Stability, microstructural and rheological properties of complex prebiotic emulsion stabilized by sodium caseinate with inulin and konjac glucomannan. Food Hydrocoll. 2020, 105, 105772. [Google Scholar] [CrossRef]
- Ju, M.; Zhu, G.; Huang, G.; Shen, X.; Zhang, Y.; Jiang, L.; Sui, X. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles. Food Hydrocoll. 2020, 99, 105329. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, C.; Yi, J.; Liu, N.; Cao, Y.; Decker, E.A.; McClements, D.J. Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers. J. Agric. Food Chem. 2018, 66, 4458–4468. [Google Scholar] [CrossRef]
- Froidmont, E.; Beckers, Y.; Thewis, A. Determination of the methionine requirement of growing double-muscled Belgian blue bulls with a three-step method. J. Anim. Sci. 2000, 78, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Yanti, S.; Wu, Z.-W.; Agrawal, D.C.; Chien, W.-J. Interaction between phloretin and insulin: A spectroscopic study. J. Anal. Sci. Technol. 2021, 12, 34. [Google Scholar] [CrossRef]
- Guo, X.; Wei, Y.; Liu, P.; Deng, X.; Zhu, X.; Wang, Z.; Zhang, J. Study of four polyphenol-Coregonus peled (C. peled) myofibrillar protein interactions on protein structure and gel properties. Food Chem. X 2024, 21, 101063. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Jin, C.; Lv, S.; Zhang, H.; Ren, F.; Wang, J. Molecular mechanisms and applications of polyphenol-protein complexes with antioxidant properties: A review. Antioxidants 2023, 12, 1577. [Google Scholar] [CrossRef]
- Thongzai, H.; Matan, N.; Ganesan, P.; Aewsiri, T. Interfacial properties and antioxidant activity of whey protein-phenolic complexes: Effect of phenolic type and concentration. Appl. Sci. 2022, 12, 2916. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Karaca, A.C.; Low, N.; Nickerson, M. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res. Int. 2011, 44, 2742–2750. [Google Scholar] [CrossRef]
- Tian, B.; Wang, Y.; Wang, T.; Mao, L.; Lu, Y.; Wang, H.; Feng, Z. Structure and Functional Properties of Antioxidant Nanoemulsions Prepared with Tea Polyphenols and Soybean Protein Isolate. J. Oleo. Sci. 2019, 68, 689–697. [Google Scholar] [CrossRef]
- Li, D.; Zhao, Y.; Wang, X.; Tang, H.; Wu, N.; Wu, F.; Yu, D.; Elfalleh, W. Effects of (+)-catechin on a rice bran protein oil-in-water emulsion: Droplet size, zeta-potential, emulsifying properties, and rheological behavior. Food Hydrocoll. 2020, 98, 105306. [Google Scholar] [CrossRef]
- Patil, U.; Gulzar, S.; Ma, L.; Zhang, B.; Benjakul, S. Pickering emulsion stabilized by fish myofibrillar proteins modified with tannic acid, as influenced by different drying methods. Foods 2023, 12, 1556. [Google Scholar] [CrossRef]
- Juttulapa, M.; Piriyaprasarth, S.; Takeuchi, H.; Sriamornsak, P. Effect of high-pressure homogenization on stability of emulsions containing zein and pectin. Asian J. Pharm. Sci. 2017, 12, 21–27. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, S.; Sun, H.; Ning, Y.; Jia, Y.; Luo, D.; Li, Y.; Shah, B.R. Rheological behavior and microstructure of Pickering emulsions based on different concentrations of gliadin/sodium caseinate nanoparticles. Eur. Food Res. Technol. 2021, 247, 2621–2633. [Google Scholar] [CrossRef]
- Masoumi, B.; Tabibiazar, M.; Fazelioskouei, T.; Mohammadifar, M.; Hamishehkar, H. Pickering emulsion stabilized by conjugated sodium caseinate-ascorbic acid nanoparticles: Synthesis and physicochemical characterization. Food Hydrocoll. 2023, 145, 109168. [Google Scholar] [CrossRef]
- Perrechil, F.; Cunha, R. Oil-in-water emulsions stabilized by sodium caseinate: Influence of pH, high-pressure homogenization and locust bean gum addition. J. Food Eng. 2010, 97, 441–448. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Gong, M.; Zhang, H.; Fan, L.; Liu, X.; Zhou, J. Development of Zein/tannic acid nanoparticles as antioxidants for oxidation inhibition of blackberry seed oil emulsions. Food Chem. 2023, 403, 134236. [Google Scholar] [CrossRef]
- Zhao, Z.; Lu, M.; Mao, Z.; Xiao, J.; Huang, Q.; Lin, X.; Cao, Y. Modulation of interfacial phenolic antioxidant distribution in Pickering emulsions via interactions between zein nanoparticles and gallic acid. Int. J. Biol. Macromol. 2020, 152, 223–233. [Google Scholar] [CrossRef]
- Xie, H.; Ouyang, K.; Shi, W.; Wang, W.; Wang, Y.; Xiong, H.; Zhao, Q. Enhancing the interfacial stability of O/W emulsion by adjusting interactions of chitosan and rice protein hydrolysate. Food Hydrocoll. 2023, 137, 108406. [Google Scholar] [CrossRef]
- Hu, C.; Xiong, H. Structure, interfacial adsorption and emulsifying properties of potato protein isolate modified by chitosan. Colloids Surf. A Physicochem. Eng. Asp. 2022, 638, 128314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kheynoor, N.; Jacquier, J.-C.; Khalesi, M.; Mortazavian, A.M.; Golmakani, M.-T. Formulation and Characterization of Sodium Caseinate/Phloretin Complexes as Antioxidant Stabilizers in Oil-in-Water Emulsions. Foods 2025, 14, 236. https://doi.org/10.3390/foods14020236
Kheynoor N, Jacquier J-C, Khalesi M, Mortazavian AM, Golmakani M-T. Formulation and Characterization of Sodium Caseinate/Phloretin Complexes as Antioxidant Stabilizers in Oil-in-Water Emulsions. Foods. 2025; 14(2):236. https://doi.org/10.3390/foods14020236
Chicago/Turabian StyleKheynoor, Najme, Jean-Christophe Jacquier, Mohammadreza Khalesi, Amir Mohammad Mortazavian, and Mohammad-Taghi Golmakani. 2025. "Formulation and Characterization of Sodium Caseinate/Phloretin Complexes as Antioxidant Stabilizers in Oil-in-Water Emulsions" Foods 14, no. 2: 236. https://doi.org/10.3390/foods14020236
APA StyleKheynoor, N., Jacquier, J.-C., Khalesi, M., Mortazavian, A. M., & Golmakani, M.-T. (2025). Formulation and Characterization of Sodium Caseinate/Phloretin Complexes as Antioxidant Stabilizers in Oil-in-Water Emulsions. Foods, 14(2), 236. https://doi.org/10.3390/foods14020236