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Abstract: Post-processing contamination of Listeria monocytogenes has remained a major concern for
the safety of ready-to-eat (RTE) meat products that are not reheated before consumption. Mathemat-
ical models are rapid and cost-effective tools to predict pathogen behavior, product shelf life, and
safety. The objective of this study was to develop and validate a comprehensive model to predict the
Listeria growth rate in RTE meat products as a function of temperature, pH, water activity, nitrite,
acetic, lactic, and propionic acids. The Listeria growth data in RTE food matrices, including RTE
beef, pork, and poultry products (731 data sets), were collected from the literature and databases like
ComBase. The growth parameters were estimated using the logistic-with-delay primary model. The
good-quality growth rate data (n = 596, R2 > 0.9) were randomly divided into 80% training (n = 480)
and 20% testing (n = 116) datasets. The training growth rates were used to develop a secondary
gamma model, followed by validation in testing data. The growth model’s performance was evalu-
ated by comparing the predicted and observed growth rates. The goodness-of-fit parameter of the
secondary model includes R2 of 0.86 and RMSE of 0.06 (µmax) during the development stage. During
validation, the gamma model with interaction included an RMSE of 0.074 (µmax), bias, and accuracy
factor of 0.95 and 1.50, respectively. Overall, about 81.03% of the relative errors (RE) of the model’s
predictions were within the acceptable simulation zone (RE ± 0.5 log CFU/h). In lag time model
validation, predictions were 7% fail-dangerously biased, and the accuracy factor of 2.23 indicated
that the lag time prediction is challenging. The model may be used to quantify the Listeria growth in
naturally contaminated RTE meats. This model may be helpful in formulations, shelf-life assessment,
and decision-making for the safety of RTE meat products.

Keywords: gamma model; RTE meat; lag phase duration; clean label; organic acids

1. Introduction

Listeria monocytogenes is a gram-positive, facultative pathogen that can cause severe
foodborne illness in humans. It has been a significant threat to the safety of ready-to-
eat (RTE) meats that are frequently implicated in listeriosis outbreaks [1,2]. Listeria is
ubiquitous and can grow in a range of temperature (−1.5 to 45 ◦C), pH (4.3 to 9.4), aw
(>0.92), and NaCl concentration up to 13%. Prevention of post-processing contamination in
RTE food during handling, processing, and packaging facilities has remained a challenge
over the years [3,4]. Ready-to-eat meals (31%), cooked meat and seafood (16.80%), dairy
& poultry products (14.47%), and fruits and vegetables (2.2–15.6%) are the leading food
vehicles for Listeria contamination [5–7]. According to the EU 2022 report, the occurrence
of Listeria in RTE food products (3.5–5.4%) includes pork meat products (2.7%), sausages
(2.5–3.1%), poultry meat products (broilers and turkeys—1.3%), bovine meat products
(3.9%), fish and fishery products (3.5–5.4%), soft and hard cheeses (0.69%), milk (0.3%), and

Foods 2024, 13, 3948. https://doi.org/10.3390/foods13233948 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods13233948
https://doi.org/10.3390/foods13233948
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-8512-0735
https://doi.org/10.3390/foods13233948
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods13233948?type=check_update&version=1


Foods 2024, 13, 3948 2 of 25

fruits, vegetables, and juices (3.0%) [8]. The USDA-FSIS initiated a “zero tolerance” policy
(≤1 CFU in 25 g sample) for RTE food products [9]. In contrast, contamination <100 CFU/g
at the time of consumption was imposed by EU Regulation (EC) 2073/2005 [10]. Listeria
tolerance as per EC regulation is also followed by [11], Australia, and New Zealand [12].
These stringent food safety policies have increased pressure on food industries to control
post-process contamination in RTE meat, seafood, and poultry products. In addition, the
economic impact of Listeria on food industries is devastating due to the costs associated
with recalls and loss of productivity. Listeriosis economic burden in the United States alone
was estimated to be between 2.3 to 22 billion USD per year, while the global burden has
never been accurately estimated [13].

RTE products consumed without reheating, such as deli meat and frankfurters, are
considered high-risk products [14,15]. Listeria can be resistant to preservation methods
and can grow even under refrigerated temperatures, which is a major concern for the
food industry to ensure microbial safety. Therefore, post-processing hurdle techniques
are required to inactivate or inhibit the growth of Listeria in RTE meats throughout the
storage period. Post-packaging treatments such as irradiation and high-pressure processing
approaches suffer from limitations related to low consumer acceptability, throughput, and
high capital costs [16]. Therefore, the use of organic acids as antimicrobials is one of the
most effective methods to inhibit Listeria growth and enhance the shelf life of RTE meats.
In addition, approval of organic acids as food preservatives [17] and their recognition as a
“generally recognized as safe” (GRAS) compound by FDA-21.CFR [18] has increased their
usage of RTE meats. Acetates, lactates, and nitrites are the most preferred antimicrobial
compounds in meat, poultry, and seafood [19,20].

The challenge studies to assess the effect of antimicrobials on microbial kinetics and
product shelf life are expensive, impractical to perform during frequent changes in product
recipes, and not ideal for large-scale sampling [21]. In this context, predictive modeling is a
rapid solution to simulate the effect of change in product formulation on product safety and
shelf life of products. The models could be built with minimal microbial studies and used
to predict Listeria behavior. This can reduce a significant amount of challenging studies,
saving time and resources through quick simulation. In addition, mathematical models
can also quantify microbial behavior as a function of various environmental and inhibiting
substances. The use of gamma concept modeling has gained significant interest. These
models can simulate the combined effects of multiple factors on pathogen behavior and
help in risk assessment [22,23]. The European Regulation [10] also suggested food business
operators may use predictive models as a tool for evaluating compliance to microbiological
criteria throughout the shelf-life of RTE foods. The existing broth models in the literature
are often developed on liquid media, which offer highly conservative predictions due to the
high mobility of nutrients and favorable growth conditions. These models fail to account
for the complex interactions within real meat matrices. Additionally, the predictions may
not represent real-world conditions resulting in over processing of foods. Therefore, the
development and validation of an improved model considering the synergistic effect of
environmental and antimicrobial factors in real meat matrices instead of conventional
liquid growth media is crucial. Considering the combined effects of clean label solutions
and environmental factors provides a more practical and reliable predictive tool to enhance
food safety and precisely optimize preservative usage in RTE meat products.

Over the last decade, several secondary models for Listeria growth prediction as
a function of several factors have been developed [23–32]. Most of these models were
developed with lab culture media and validated either in liquid media alone and/or
a combination of food matrices and culture media [33,34]. The broth models can only
provide useful insights into microbial growth behavior and aid in predicting growth in
food matrices [35]. Broth models are often considered to overestimate the growth rate
due to the high mobility of nutrients in culture media and contain a range of compounds
that favor rapid microbial growth [21,36]. This may result in over-prediction of growth
rates when applied to food, which may not be acceptable for food quality [37,38]. These
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models often predict the worst-case scenario and are still models of real food. It is more
effective to develop the model on real food matrices and optimize the use of preservatives.
This is particularly important to reduce the overuse of organic acids as antimicrobials, as
they can affect the sensory properties of RTE meat. In contrast, the food matrix is more
complex due to pH, aw, low mobility of nutrients, chemical composition, and background
microflora characteristics [36,39]. As a result, lab broth models are inappropriate and may
not accurately predict the Listeria behavior in the food matrix [40,41]. A literature survey
suggests that very limited Listeria models have been developed and validated in real food
matrices [26,42,43]. Predictive models are yet to be developed in RTE meat foods and
validated in RTE meat foods matrices to describe the combined effect of sodium nitrite and
organic acids with other factors such as temperature, pH, and aw/NaCl, etc. The literature
search revealed that only one study [43] reported a gamma-type model that was developed
and validated in combined broth and RTE meat data as a function of acetic and propionic
acids. Therefore, the objective of this study was to develop and validate a comprehensive
Listeria growth model using exclusively RTE food matrices data to describe the individual
and synergistic effects of various factors.

2. Materials and Methods
2.1. Data Collection and Growth Rate Estimation

Listeria growth curves (n = 731) in different RTE food matrices (beef, pork, poultry)
were collected (shown in Tables 1–3) from previous publications, ComBase, and data di-
rectly contributed by authors through personal communication. Raw data were always
extracted, when raw data were not available the published graphs were scanned and indi-
vidual points were digitalized using plot digitizer 2.6.11 (https://sourceforge.net/projects/
plotdigitizer/files/) software (accessed on 8 October 2022), following the method [44].
The logistic-with-delay primary model (Equation (1)) was fitted to growth curves to de-
termine the exponential growth rate (µmax) and lag time (tlag) [45]. The non-linear fitting
was performed (lsqcurvefit function, Optimization Toolbox) using MATLAB R2022b (The
MathWorks, Natick, MA, USA).

log(Nt) = log(N0) t < tlag

log(Nt) = log

(
Nmax

1+
(

Nmax
N0

−1
)
∗ exp

−µmax(t−tlag)

)
t ≥ tlag

(1)

where t is time (h), Nt is cell concentration (CFU/g) at time t, N0 is the initial cell concen-
tration (CFU/g), Nmax is maximum population density (CFU/g), µmax is the maximum
exponential growth rate (h−1), and tlag is the lag time (h).

Table 1. Criteria used to filter and select growth rate data for modeling.

Factors Criteria to Exclude

Growth curves Curves having less than three points in the
exponential phase

Treatments Irradiation and high-pressure processed samples
Growth rate The estimated growth rate (µmax) equal to zero

Antimicrobials
Products with surface treatment (only products
with antimicrobials incorporated into the food

formulation were considered)
Poor data Curves with poor model fitting (R2 < 0.9)

Storage atmosphere Modified Atmospheric Package or CO2.

https://sourceforge.net/projects/plotdigitizer/files/
https://sourceforge.net/projects/plotdigitizer/files/
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Table 2. pKa values and initial guess values of MICs for undissociated organic acid and nitrite.

Acetic Lactic Propionic Nitrite References

pKa 4.76 3.8 4.87 3.37
[46,47]MICU (mM) 20.3 8.0 8.8 25

MICU is the minimum inhibition concentration of undissociated organic acids and nitrite (mM).

Table 3. Estimated model parameters in this study with their 95% confidence intervals.

Parameters Estimated
Value

95% CI Values Literature
Range References

LCI UCI

µopt (h−1) 1.126 0.65 1.66 0.85 to 1.33 [27,43]
Topt (◦C) 37.0 34.83 39.38 35.9 to 39.7 [23,43]
Tmin (◦C) −1.57 −2.14 −1.0 −4.5 to 1.16 [43,47]

pHmin 4.19 3.56 4.79 4.03 to 4.57 [29]
awmin 0.932 0.904 0.938 0.92 to 0.93 [43]
awopt 0.998 0.995 1.00 0.997 to 1.0 [25]

MICU NIT 22.12 2.36 41.8 11.4 to 25

[27,43,47,48]
MICU AA 18.33 0.98 37.6 17.8 to 22.8
MICU LA 6.88 4.04 9.73 1.7 to 9.8
MICU PA 9.88 −9.0 28.8 7.6 to 9.9

Note: pHopt and pHmax values were fixed at 7.0 and 9.6, respectively. NIT is nitrite, AA is acetic acid, LA is lactic
acid, and PA is propionic acid in undissociated form. Literature range refers to the lowest and highest values
reported in literature.

If the maximum exponential growth rates were directly taken from publications with
different primary models, such data were transformed. The growth rates were transformed
from the Gompertz, Logistic, and Baranyi models to the logistic-with-delay model using
conversion factors of 0.84, 0.86, and 0.97, respectively. Similarly, lag times were transformed
from Gompertz, Baranyi, and Logistic by using 0.82, 0.97, and 0.95, respectively [46].
The environmental factors considered in the study were temperature, pH, water activity,
sodium nitrite, acetic acid, lactic acid, and propionic acid. The collected data included
Listeria growth in RTE beef, pork, and poultry meat products.

2.2. Data Selection Criteria and Assumptions

The maximum exponential growth rates obtained from 731 curves were filtered based
on quality criteria (reported in Table 1) to select good-quality data for the model devel-
opment. After filtering, a total of 596 datasets were selected for model development and
validation. The selected data included variables such as temperature (−1.5 to 37 ◦C), pH
(4.8 to 6.8), water activity (0.9 to 0.997), nitrites (0 to 8.48 mM), acetic acid (0 to 8.95 mM),
lactic acid (0 to 3.30 mM), and propionic acid (0 to 2.12 mM). The selected dataset was
randomly divided into a model development dataset (n = 480) and a validation dataset
(n = 116). The selected Listeria data includes 20 beef products, 30 pork products, and
22 poultry products from about 76 different publications (Tables 1–3).

When no information was available in the publications, pH was assumed based on
similar types of meat products reported in other studies. If the formulation included
nitrite but no concentration was reported, an average nitrite of 98.5 ppm for all other
meat products was assumed as suggested by [49]. The water activity (aw) values were
recalculated from NaCl concentration using the formula [50] shown in Equations (2) and
(3). The missing concentration of NaCl (%) was calculated from the molar equivalent
of sodium in the products obtained from the food databank of DTU Food databank [51]
or the USDA food composition table [52], as suggested earlier [53]. The undissociated
organic acid concentrations (mM) in water phase salts were calculated (Equation (4)), as
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only undissociated acids exhibit antimicrobial activity, followed by anions activity to a
lesser extent [54].

aw = 1 − 0.0052471 ∗ %WPS − 0.00012206 ∗ %WPS2 (2)

where, WPS refers to water phase salts, which can be calculated by the following:

WPS =
(%NaCl or acid ∗ 100)

(100 − %dry matter + %NaCl or acid)
(3)

Undissociated acid, OA (mM) =
Total acid (mM)

1 + 10pH−pka (4)

where,

Total acid (mM) =

(
% WPS

Molar mass of organic acid salt ( g
mol )

)
(

Mass of water + organic acid salt (g)
Mass of water in which organic acid salt was dissolved (g)

) ∗ 1000 (5)

The pka is the disassociation constant determining an acid’s strength, and the values
of pka for different organic acids reported in Table 2 were used.

2.3. Development of Secondary Growth Rate Model

The gamma concept model was used to describe the influence of the environment
and inhibiting conditions on microbial growth. The square root transformation for µmax
values was applied to homogenize the variance as suggested earlier [28,30,55]. Modeling
of maximum exponential growth rates (µmax, h−1) as a function of temperature, pH, water
activity, nitrite, and organic acids was performed using Equation (6).

√
µmax =

√
µopt·γ(T)·γ(pH)·γ(aw)·γ(NIT)·γ(OA)·ξ(T, pH, aw, NIT, OA) (6)

Here, µmax is the maximum exponential growth rate (log CFU/g/h), and the gamma
terms γ(T), γ(pH), γ(aw), γ(NIT), and γ([OA]) refer to the effects of temperature, pH,
water activity, nitrite, and organic acids, respectively. Xi (ξ) is the quantitative effect of
interactions between the parameters. The gamma model was used to describe the effect
of temperature (Equation (7)), pH (Equation (8)), and water activity (Equation (9)) on the
growth rate [22,25].

γ(T) =


0 , T ≤ Tmin(

(T−Tmin)

(Topt−Tmin)

)2
, Tmin < T < Topt

0 , T ≥ Topt

(7)

γ(pH) =


0 , pH ≤ pHmin

(pH−pHmin)∗(pHmax−pH)(
pHopt−pHmin

)(
pHmax−pHopt

) , pHmin < pH < pHmax

0 , pH ≥ pHmax

(8)

γ(aw) =

 0, , aw < awmin(
(a w−awmin)

(awopt−awmin)

)
, aw > awmin < awopt

(9)

where Topt, pHopt, Tmin, pHmin, awmin, and pHmax are theoretical minimal, optimal, and
maximal values of temperature, pH, and water activity, respectively, for Listeria growth.
The inhibitory effects of undissociated nitrite (Equation (10)), undissociated lactate (Equa-
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tion (11)), undissociated acetate (Equation (12)) and propionate (Equation (12)), were
modeled [47] as follows:

γ(Nit) =

{
1 − NIT

MICNit
Nit < MICNit

0 Nit ≥ MICNit
(10)

γ([OA1]) =

{
1 − [OA1]

MICu
[OA1] < MICu

0 [OA1] ≥ MICu
(11)

γ( [OA 2 or 3]) =

{
1 −

√
[OA2 or 3]

MICU
[OA2 or 3] < MICU

0 [OA2 or 3] ≥ MICU
(12)

where MICNit and MICU are the minimal inhibitory concentrations of nitrite and organic
acids, respectively; Nit and [OA] are undissociated nitrite (mM) and respective organic acid
(mM) concentrations calculated using Equation (4), respectively. The initial guess values
for MICs of nitrite and organic acids as shown in Table 2 were used.

An approach by [47] was used to model the interaction effect (Xi) between gamma
factors using Equations (13)–(19).

ξ =


1, ψ ≤ 0.5
2(1 −ψ)
0, ψ ≥ 1

, 0.5 < ψ < 1 (13)

ψ = ∑i
ϕi

2 ∏
j ̸=1

(
1 −ϕj

) (14)

ϕ(T) =
(

1 −
√

γ(T)
)3

(15)

ϕ(pH) =

(
1 −

√
γ(pH)

)3
(16)

ϕ(aw) =

(
1 −

√
γ(aw)

)2
(17)

ϕ(NIT) = (1 − γ(Nit))2 (18)

ϕ([OA]) = (1 − ([OA1])·( [OA 2])·([OA 3]))
2 (19)

where [OA1], [OA2], and [OA3] are the undissociated lactic, acetic, and propionic acids,
respectively. The Xi (ξ) value indicates the growth or no growth boundary, and the value
varies between 0 and 1. The Xi is calculated from Psi (ψ); Psi < 0.5 indicates no interaction
(ξ = 1); if Psi is >1, no growth occurs (ξ = 0), and if Psi is <1 and >0.5, µmax (h−1) is reduced
depending on Psi values.

2.4. Secondary Modeling Approach

The development of the secondary model involves the estimation of gamma param-
eter values using the model development dataset (n = 480) in initial fitting procedures.
Two studies [28,43] have demonstrated that both “sequential” and “simultaneous” model-
ing approaches can be used to determine the gamma parameters. The variables estimated
by “simultaneous” modeling had no strong correlation in the matrix of correlation analysis,
and these parameters were used to develop the final model [43]. The sequential model-
ing approach involves the estimation of temperature parameters first using temperature
variable data only, followed by pH parameters using pH variable data, and so on. In
contrast, the simultaneous approach involves the estimation of all parameters at once using
a complete dataset. In the current study, due to limited food matrices datasets, only a
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“simultaneous” modeling approach was employed to build the secondary model. This
method generally offers better fit and better parameter estimates in limited and disparate
datasets and offers a time advantage [43]. The Mathworks (MATLAB, R2022b Update2)
with Optimization toolbox was used for the secondary modeling component of the study.
The “lsqcurvefit” function was used to compute the minimum sum of squares of the resid-
ual errors by the non-linear fitting module. The “nlparci” function was used to estimate the
confidence intervals of the parameters by linear approximation [29].

2.5. Secondary Growth Rate Model Validation

The developed model was validated using the validation dataset (n = 116). The pre-
dicted zero growth rates were replaced by a small value of 0.0003 h−1 to estimate numerical
values for bias and accuracy validation criteria, as suggested earlier [56]. During model
development, the goodness of fit was evaluated using the coefficient of determination
(R2) and root mean square error (RMSE). Followed by the validation of the developed
model using RMSE, bias factor (Bf), accuracy factor (Af), percent bias (% B), and percent
discrepancy (% D) using Equations (20)–(24), respectively. The proportion of relative errors
(RE) falling within the acceptable simulation zone (ASZ) with an acceptable boundary of
± 0.5 RE was also used to evaluate the model performance during validation [34,57]. It
is suggested that a model describing the growth kinetics of Listeria is considered as good
if the Bf is between 0.9 and 1.05, acceptable if it ranges from 0.7 to 0.9 or 1.06 to 1.15, and
unacceptable if it is less than 0.7 or greater than 1.15 [58]. An accuracy factor between 1
and 1.5 is deemed acceptable, while an accuracy factor greater than 1.5 is unacceptable.

R2 = 1 −
Σi(yi − ŷi)2

Σi(yi − y)2 (20)

Bf = 10
√

(∑ log(µmaxpredicted/µmaxobserved)/n) (21)

Af = 10
√

(∑ |log(µmaxpredicted/µmaxobserved)|/n) (22)

%D = (Af − 1) × 100% (23)

%B = sgn (ln Bf) ∗ (exp (abs ((ln Bf)−1)) × 100% (24)

2.6. Development of Lag Time Model and Its Validation

The lag time was modeled by following the relative lag time concept (RLT) by estimat-
ing the parameter K [25]. This parameter explains the physiological state of cells, a constant
value for cells with similar pre-inoculation history. When these cells are exposed to the
same favorable growth conditions, the amount of work to be done by bacteria will remain
constant to adapt to the newly growing environment. Therefore, the ratio of ln(l/Tg) will
produce a constant value, and the linear regression analysis (Figure 1) between ln(l) and
ln(Tg) should produce a slope value close to 1. The median value for ln(l/Tg) ratios was
estimated, and the exp(median) is the parameter K. Finally, the lag time was calculated
using Equation (25). The validation of lag time prediction was done by estimating the bias
and accuracy factors between observed and predicted ln(l) using Equations (21) and (22).
The mean prediction error (MPE) for lag time was calculated using Equation (26).

λ = K ∗ Tg = K ∗
(

ln(2)
µmax

)
(25)

MPE(%) =
∑ |(obs.λ) − (pred.λ)|

(obs.λ)

n
∗ 100 (26)
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3. Results
3.1. Development of a Secondary Model for Listeria Growth Prediction

The logistic-with-delay primary model was fitted to estimate the maximum expo-
nential growth rates (µmax, log CFU/h) and used for secondary modeling. The logistic-
with-delay model was used due to widespread usage and recognition in the literature as
one of the most accurate models to describe the sigmoidal growth curve of Listeria. This
model also accounts for the lag phase accurately, which enhances its reliability and usage.
Similarly, the gamma secondary equation was employed in the current study due to its
simplicity, robustness, and ability to quantify the effect of multiple factors on the growth of
Listeria using the gamma function. Additionally, the gamma equations also describe the
growth and no-growth boundaries through a graphical representation. In this context, a
secondary model was developed by fitting Equation (6) to growth rates as a function of
seven environmental factors. To be consistent with the literature, optimum growth rate
(µopt) is reported as h−1, while the actual unit of µopt is log CFU/h. During the initial
fitting of gamma equations to the raining dataset, due to the limited growth rate, the pHopt
and pHmax values were not estimated. Instead, these values were selected [25,59] and
fixed at 7 (pHopt), and 9.6 (pHmax), respectively, in the simultaneous fitting procedure.
Except for fixed parameters, the remaining parameters were simultaneously estimated by
following the earlier procedures [28,32]. The optimal growth rate (µopt) of the secondary
model (Equation (6)) estimated by the model in the present study was 1.126 h−1 across
all meats, which was within the range of literature values for processed meat (Table 3).
The confidence interval for optimal growth rate (µopt) was slightly high (0.65 to 1.66 h−1)
due to the variability in growth rates across the meat products and strain differences. The
large variability causes difficulties in defining the growth trends (using µopt) in a mixture
of food products. Similarly, a study [29] reported a high variability of µopt between 0.18
and 2.02 h−1 with a mean value of 0.49 ± 0.32 h−1, which includes meat (0.63 ± 0.73 h−1),
seafood (3.61 ± 5.71 h−1), beef (0.18 ± 0.14 h−1), and poultry (0.765 ± 0.83 h−1) products.
Figure 2a represents the correlation between the observed and predicted growth rates in
meat products by the secondary model. Figure 2b shows the histogram plot of residual
error, which is an indicator of over- and under-predictions of growth rates by the model.
The negative values refer to over-predictions, the positive values refer to under-predictions,
and values closer to the zero-region column refer to accurate predictions. The histogram
plot with a symmetrical distribution of residual error around zero demonstrates the great
robustness and accuracy of the model. In the development stage, the secondary model had
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a coefficient of determination R2 of 0.86 and RMSE of 0.06 µmax, demonstrating the overall
quality of fit across the seven environmental conditions. On the other hand, the gamma
model developed for Listeria growth prediction in meat products had an RMSE of 0.081
and R2 of 0.63 [22]. In another study, RMSE ranged between 0.919 and 1.148 and R2 adj
from 0.81 to 0.88 for Ratkowsky square root model fitting in Listeria growth rate data in
high-pressure processed cooked ham [31].
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3.1.1. Estimation of Gamma Model Parameters

The effect of minimum and maximum temperature on the growth rate of Listeria
was estimated and summarized in Table 3. The sequential fitting of gamma equations to
individual datasets could not be performed due to the limited data available for each factor.
Therefore, the model parameters were simultaneously estimated at once using the whole
data, following the method reported earlier [28,43]. The temperature parameters, including
Topt of 37.0 ◦C and Tmin of −1.57 ◦C, were estimated in this study. The estimated Tmin and
Topt values for Listeria were within the range of values reported for other gamma models in
the literature (Table 3). It is reported that Listeria has a typical Tmin value between 0 and
−5 ◦C in meat products [31,49]. A Tmin value ranging from 0 to −2.83 ◦C is considered a
realistic estimate; while Tmin of −5.8 ◦C or below could result in an overestimation of the
growth rate, particularly at temperatures between 2 and 5 ◦C [44]. The estimated Topt of
37.0 ◦C in the present study is consistent with the typical optimum temperature of 37 ◦C
for Listeria growth in meat and poultry products as reported in previous studies [25,47].
The confidence interval for Topt was slightly larger because of the lack of growth data
above the temperature optimum region. The estimated pHmin of 4.19, awmin of 0.932,
and awopt of 0.998 were consistent with the literature ranges as summarized in Table 3.
The slight difference in estimated pHmin, awopt, and awmin values compared to previous
studies (literature) was mainly due to strain differences. The large confidence intervals
obtained for pHmin were due to the insufficient growth rate data near the pHmin region.
The simultaneous modeling technique has no role in yielding a large confidence interval, as
reported earlier [28]. In this study, the predicted Listeria growth rate was largely dependent
on Tmin and pHmin, which are independent of other growth conditions. This is evident
when the growth rate contour plot (Figure 3) was built with temperature and pH as
independent variables using Equation (6), for which a no-growth region is highlighted with
dark shades. The growth and no growth interface are consistent with previous studies [24].



Foods 2024, 13, 3948 10 of 25Foods 2024, 13, x FOR PEER REVIEW 10 of 28 
 

 

 
Figure 3. Growth/no growth contour plot of µmax as a function of pH and temperature. The contour 
lines represent µmax predicted using Equation (6) with the model parameters reported in Table 3. 

3.1.2. Estimation of MICs of Inhibitory Compounds 
The inhibitory effect of organic acids is associated with their ability to reduce the 

water activity of the food matrix and intracellular pH within the bacterial cells. The or-
ganic acid existing in the water phase in its undissociated form is most likely to inhibit 
Listeria growth in the food matrices. This is because the undissociated acid penetrates the 
cell membrane effectively, reduces the intracellular pH, and disrupts microbial cellular 
metabolism functions [60]. Therefore, the water phase undissociated concentrations (mM) 
of the acids were calculated and used for modeling. The estimated MICs (mM) of undis-
sociated nitrite, undissociated water phase organic acids, and their confidence intervals 
are summarized in Table 3. The estimated MICU of nitrite was 24.82 mM and was close to 
the value (25 mM) reported earlier [46]. The MICU values for organic acids are typically 
strain-specific, varying with growth medium and conditions. In this study, the estimated 
MICU was 18.3 mM for acetic acid, 6.8 mM for lactic acid, and 9.8 mM for propionic acid. 
In this study, the growth rates under acetic and propionic acid conditions varied linearly 
with the square root of undissociated acid concentrations, whereas for lactic acid, the 
growth rates varied linearly. A similar relation between growth rates (µmax) and organic 
acids was reported earlier [47]. The MICs of organic acids are within the range reported 
in the literature value shown in Table 3. In another study [42], the MIC varies between 6.2 
to 18.9 mM (acetic), 3.6 to 5.7 mM (lactic), and 4 to 8 mM (propionic acid) for nine different 
Listeria strains, indicating variable sensitivity of strains to organic acids. Similarly, the es-
timated MICs ranged between 17.8 and 22.8 mM for acetic acid, 6.9 and 9.1 mM for lactic 
acid, and 7.6 and 9.9 mM for propionic acid in another study [47]. Therefore, the MIC 
variation in the current study was mostly attributed to strain differences and RTE food 
matrices to an extent. The large confidence interval for organic acids was attributed to 
inadequate data in RTE meat products under these acids’ conditions. This was also evi-
dent in another study reporting large confidence intervals ranging between 2.46 and 30.2 
mM for a MIC value of 16.3 mM (for lactic acid), due to the inadequate growth data under 
lactate conditions [28]. 

3.2. Validation of the Secondary Growth Model 
Several Listeria models in the literature have been developed in culture media, and 

limited models have been developed and validated in the RTE meat matrix. It was well 
established that the growth medium can significantly influence Listeria behavior, particu-
larly the complexity of the food matrix [27]. The porosity in food imbalances microbial 
stability, while starch ingredients can immobilize the cells of bacteria, resulting in 

Figure 3. Growth/no growth contour plot of µmax as a function of pH and temperature. The contour
lines represent µmax predicted using Equation (6) with the model parameters reported in Table 3.

3.1.2. Estimation of MICs of Inhibitory Compounds

The inhibitory effect of organic acids is associated with their ability to reduce the
water activity of the food matrix and intracellular pH within the bacterial cells. The organic
acid existing in the water phase in its undissociated form is most likely to inhibit Listeria
growth in the food matrices. This is because the undissociated acid penetrates the cell mem-
brane effectively, reduces the intracellular pH, and disrupts microbial cellular metabolism
functions [60]. Therefore, the water phase undissociated concentrations (mM) of the acids
were calculated and used for modeling. The estimated MICs (mM) of undissociated nitrite,
undissociated water phase organic acids, and their confidence intervals are summarized in
Table 3. The estimated MICU of nitrite was 24.82 mM and was close to the value (25 mM)
reported earlier [46]. The MICU values for organic acids are typically strain-specific, vary-
ing with growth medium and conditions. In this study, the estimated MICU was 18.3 mM
for acetic acid, 6.8 mM for lactic acid, and 9.8 mM for propionic acid. In this study, the
growth rates under acetic and propionic acid conditions varied linearly with the square
root of undissociated acid concentrations, whereas for lactic acid, the growth rates varied
linearly. A similar relation between growth rates (µmax) and organic acids was reported
earlier [47]. The MICs of organic acids are within the range reported in the literature value
shown in Table 3. In another study [42], the MIC varies between 6.2 to 18.9 mM (acetic),
3.6 to 5.7 mM (lactic), and 4 to 8 mM (propionic acid) for nine different Listeria strains,
indicating variable sensitivity of strains to organic acids. Similarly, the estimated MICs
ranged between 17.8 and 22.8 mM for acetic acid, 6.9 and 9.1 mM for lactic acid, and 7.6 and
9.9 mM for propionic acid in another study [47]. Therefore, the MIC variation in the current
study was mostly attributed to strain differences and RTE food matrices to an extent. The
large confidence interval for organic acids was attributed to inadequate data in RTE meat
products under these acids’ conditions. This was also evident in another study reporting
large confidence intervals ranging between 2.46 and 30.2 mM for a MIC value of 16.3 mM
(for lactic acid), due to the inadequate growth data under lactate conditions [28].

3.2. Validation of the Secondary Growth Model

Several Listeria models in the literature have been developed in culture media, and
limited models have been developed and validated in the RTE meat matrix. It was well es-
tablished that the growth medium can significantly influence Listeria behavior, particularly
the complexity of the food matrix [27]. The porosity in food imbalances microbial stability,
while starch ingredients can immobilize the cells of bacteria, resulting in retarded growth of
cells in food compared to culture media [38,61]. Therefore, the secondary model developed
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in this study was validated using exclusive RTE meat matrices data collected from the
literature (refer to Tables 1–3). The estimated gamma model’s parameters corresponding
to L. monocytogenes (shown in Table 3) using Equations (6)–(12) were reused. The model’s
prediction was evaluated by comparing the relative errors between observed and predicted
growth rates using the acceptable simulation zone (ASZ, ±0.5 log CFU/g/h) approach. The
correlation between the square root of observed and predicted growth rates is presented
in Figure 4a; the root mean square error (RMSE) criteria was also computed to assess the
average prediction error by the model. In the validation step, the model includes an RMSE
of 0.076 µmax and a coefficient of determination (R2) = 0.87. For the model predictions,
about 81.03% of relative errors were within the acceptable simulation zone (ASZ), which
is above the minimum acceptable value of 70% (Figure 4b). The validation of the new
secondary model in the present study provided an acceptable Listeria growth prediction.
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The model’s performance was also compared with and without an interaction effect.
Excluding the interaction, the model overestimated the growth rate by 12% (Bf = 1.12)
compared to the model with interaction (Bf = 0.96). The accuracy factor was 1.50 for the
model with interaction compared to 1.48 for the model without interaction term, indicating
no significant variation in prediction accuracy between the two models. However, the
interaction effect is important for the robustness of the model as per previous studies.
The Bf (0.96) and Af (1.5) recorded in this study were good and within the acceptable
range as reported earlier [58]. For the Listeria growth model, a Bf of 0.97 for the model
with interaction and 1.31 for the model without interaction was reported earlier [43].
This study also reported that inaccurate predictions always include both fail-safe and
fail-dangerous predictions. However, when an equal proportion of over- and under-
estimated growth rates tend to “cancel out”, results in an acceptable bias factor close to
one. The Af and Bf values were estimated by replacing the zero-growth predicted (n = 2 at
4 ◦C) values by 0.0003 h−1, which demonstrated a significant effect on validation criteria
(Af value). For example, excluding zero predicted µmax, the estimated Af and Bf values
were 1.39 and 1.03, respectively. This demonstrates that these factors are extremely sensitive
to small deviations in a few predicted growth rate values, resulting in poor validation
criteria, though overall model predictions were good. It is not recommended to exclude
fail-dangerous predictions by the model; therefore, the current study replaced the zero
predicted values with a small growth rate of 0.0003 h−1 considering an average shelf life of
4.5 months. The percent bias (%B) of 12.7% for the model without interaction was reduced
after including the interaction effect (−4.0%). However, the percentage discrepancy (%D)
for both models ranged between 48.1 and 50.4% and did not vary significantly (Table 4).
A percent discrepancy of 24.54% for sequential modeling and 29.03% for simultaneous
modeling methods reported earlier [28] is close to the range observed in the present study.
Similarly, the percentage discrepancy ranging from 48 to 72% was reported for predictions
with and without acids and interaction effects [43]. The AIC values for the model with
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interaction were slightly smaller than the model without interaction, suggesting that the
model predictions with interaction are better than the latter (Table 4). Similarly, it was
evident from previous studies that considering the interaction effect between the factors
improves the quality of fit and prediction accuracy. In addition, it is noted that with the
exclusion of the interaction term, the ASZ score was reduced by 4.3%. The model with
interaction produced an ASZ-score of 81.0%, and the incorrect predictions were fail-safe
(8.6%) and fail-dangerous (10.3%) predictions. Typically, a model performance is accepted if
at least 70% of its predictions fall within the acceptable simulation zone (ASZ). A study [25]
first reported a no-interaction model, which had less prediction accuracy; later, the revised
with-interaction model significantly reduced the fail-safe (13.5 to 12.1%) and fail-dangerous
(16.1 to 7.1%) predictions [24]. Similarly, the inclusion of the interaction effect to model
the correct predictions increased from 69 to 89% [62], and 62–81 to 85–87% [29]. Another
gamma model without the interaction term overestimated the growth rate by 31–33% [43].
These studies indicate better prediction accuracy for models with interaction terms. In the
present study, both the models with and without interaction effect offered an acceptable
bias factor (1.12 and 0.96, respectively) and ASZ score (76.7 to 81%, respectively). In a study,
the [62] model produced an overall prediction of 65% (ASZ) in broth data and 89% in meat,
seafood, poultry, and dairy products [30].

Table 4. Comparison of the model performance with and without interaction.

Model Bf Af ASZ (%) %B %D FS (%) FD (%) AIC

Without
interaction 1.12 1.48 76.7 12.7 48.1 15.5 7.7 −228.7

With
interaction 0.96 1.50 81.0 −4.0 50.4 8.6 10.3 −230.7

3.3. Validation of Predicted Lag Time in RTE Meats

A total of 596 growth and no growth data were collected in this study, out of which
only 480 growth rate (µmax) data and their corresponding lag time (including lag = 0)
qualified the first filter criteria (Table 5) to develop a secondary growth rate model. The
second filter criteria were applied to exclude zero lag time and select good quality data
for lag time modeling. Out of 480 training data, about 310 lag time values were used to
estimate the parameter K. Similarly, out of 116 validation lag time values, about 80 lag
time values (excluding R2 ≤ 0.9, Obs. lag < 1 h, Pred. µmax < 0.0001/h (n = 2)) were used
to validate the lag time model. The logarithmic ratio of lag and generation time resulted
in a median value of 1.31, and the exponential of the median value was estimated to be
3.72 (parameter K). During validation, the lag time was estimated using Equation (25)
with the value of growth rate from the growth rate model with interaction and with the
previously estimated physiological state of cells (K = 3.72). In a similar study, a median
value = 1.128 and K = 3.09 were estimated (n = 1176) for Listeria, including culture broth,
dairy, meats, eggs, and seafood as growth mediums [25]. The K value in the current study
for RTE meat products is slightly higher (3.72) than the previous study (3.09), and it may be
attributed to K estimated from a mixture of culture broth (shorter lag phase), dairy, and
seafood. In this study, the estimated Bf was 1.07 for the lag time model, indicating that
the predicted lag time was fail-dangerous by 7% for the validation dataset (Figure 5). The
mean prediction error (MPE) for the lag time model estimated using Equation (26) was
137.3% for the training dataset, which was slightly less (128.8%) for the validation dataset.
The RMSE value for the predicted lag time was 0.98 ln(h), and the correlation coefficient (r)
was 0.71. The lower correlation coefficient indicates that the lag time model is less accurate
than the growth rate model.
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Table 5. Listeria growth data in beef products, product characteristics, and storage conditions.

Products No. of
Strains n T (◦C) pH NaCl aw

Acetate
(%)

Lactate
(%)

Propionate
(%)

Nitrite
(ppm)

Data
Source Reference

Comminuted beef
emulsion 1 11 5–10 6.30 2.00 0.986 0.1–0.2 1.8–2.5 Cb [63]

Beef Bologna 5 8 5–10 5.9–6.3 2.50 0.973 2.50 Cb [64]
Roasted beef 4 18 4–12 5.80 0.30 0.998 0–0.1 0.2–0.4 98.5 Pub [21]
Roasted beef 8 3 4 5.6–6.19 1.15 0.990 0.12 Pub [65]
Frankfurters 6 21 4–10 6.15–6.4 1.80 0.983 0.25–0.8 0.14–0.25 112.5 Pub [16]
Comminuted meat 3 25 5–35 6.27 2.00 0.985 0–4 140 Pub [66]
Frankfurter sausage 1 2 4 6.1–6.3 2.04–2.11 0.981 0.12–0.18 0.66–2.26 11–19 Pub [67]

Frankfurter 5 10 4–10 5.68–6.18 1.73–2 0.980–
0.983 0–3 4.1–4.8 Pub [68]

Frankfurter 1 3 4 6.20 1.80 0.982 0–2 98.5 Pub [69]
Beef gravy 2 4 5–10 6.00 1.00 0.994 Pub [70]
Luncheon meat 1 2 7 6–6.3 1.10 0.992 Pub [71]
Frankfurter 4 5 15–40 6.30 1.80 0.982 Pub [72]
Corned beef 1 5 0–15 6.20 3.25 0.973 5.00 Cb [73]
Cooked beef 2 4 5–10 5.80 1.00 0.996 Cb [74]
Sliced roast meat 2 4 −1.5–3 6.10 1.15 0.990 Cb [75]
Beef sirloin 1 5 0–15 6.00 1.80 0.982 Cb [76]
Frankfurter 1 3 4–18 6.20 1.80 0.982 98.50 Pub [77]
Ready-to-eat braised
beef 4 24 4–40 6.20 1.00 0.990 PC [78]

Ham and roasted
meat 5 4 4.4 5.4–6.4 0.6–3 0.976–

0.992 28–42 Pub [79]

Ham 1 12 4–7 6.67 1.9 0.986 85 Pub [80]

Search criteria in ComBase: Listeria, a static condition in beef, poultry, turkey, chicken, pork, or RTE meat products,
except seafood. n is the number of growth curves; Bold type: assumed values. The assumed nitrite value is
the average nitrite concentration reported in other products. Data source: Pub—publications, Cb—ComBase,
PC—personal communication.
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4. Discussion

In the current study, we demonstrated a method to develop and validate an improved
secondary model using limited and disparate RTE meat matrix data from the literature.
The model may be used to predict the growth of L. monocytogenes in ready-to-eat and
processed meat and poultry products. To date, several models have been developed using
culture media data; very few models are validated in the food matrices, and limited models
have been developed and validated in exclusive food matrix data. In this context, this
study demonstrated that the “simultaneous” modeling approach is an effective method to
develop and validate new models for different pathogens using limited literature data in
food matrices. In the validation step, the developed model prediction was evaluated across
the different meat products. The validation data included 29 growth rates in beef products,
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56 growth rates in pork products, and 31 growth rates in chicken products. The developed
model growth rate predictions were fail-dangerous by 9% and 6% in beef and chicken,
respectively, and fail-safe by 3% in pork products (Figure 7a–g). The under-prediction in
beef meat was associated with the presence of multiple organic acids and nitrite in the
product formulation, and most of these data were within the temperature range of 4 to 10 ◦C.
The overestimation of the synergistic effect between multiple factors (low temperature and
antimicrobials) resulted in the fail-dangerous predictions by the model. In contrast, the
failure-dangerous prediction in chicken products was because the model underpredicted
the growth rates at low pH (<5.6) conditions. The RMSE for beef products was found to be
the highest (0.091, µmax) compared to beef (0.079, µmax) and pork (0.059, µmax) products.
The interaction effect between environmental factors, as described by Psi (ψ) values, is
shown in Figure 6. About 9.2% of Psi (ψ) values ranged between 0.5 and 1, indicating the
interaction effect between the factors. The interaction effect was almost zero when the
temperature was close to optimum, whereas it exponentially increased with a decrease
in temperature. These observations indicate that the interaction between temperature
and organic acids was significant. Particularly, the highest interaction effect was recorded
under low-temperature conditions including a combination of multiple microbial inhibitors.
The effect of antimicrobials and their synergistic effects may slightly subside when the
temperature of growing conditions increases close to optimum value. However, the effect
of temperature on the inhibitory potential of antimicrobials and the interaction between
these factors could not be comprehensively assessed in high-temperature regions (20 to
37 ◦C) due to the lack of antimicrobial data at higher temperature conditions.

During modeling, where there is limited data to estimate certain parameters, it is
recommended to fix these cardinal parameters without estimating them. This approach
can reduce variation, as suggested by [28]. In many studies, the Topt value was fixed at
37 ◦C during the fitting procedure, when the available growth data are limited above the
temperature optimum. However, this is inappropriate when adequate data exists because
it may result in over- or under-estimation of the growth rate. This is because a fixed Topt
value may impact the smoothness of fit (skewed fit), leading to inaccurate growth rate
prediction, as evident in this study. However, when modeling a single strain, the strain-
specific parameters (Topt) may be fixed, as demonstrated by [32]. For example, in their
study, Topt was fixed at 38.9 ◦C for L. monocytogenes ADQP105, and other parameters were
estimated. Due to the lack of sufficient data for temperatures above the optimum range, the
model’s applicability in some storage and processing scenarios is limited. Nevertheless, the
cardinal parameters estimated in the present study are consistent with the literature values.
In this study, the model slightly underestimated the growth rate at temperatures between
30 ◦C and 37 ◦C (n = 3) and −1.5 ◦C (n = 1). Conversely, at 4 ◦C, the model predicted zero
growth in two conditions, including multiple antimicrobials (2.2 to 4.9 mM nitrite, 2.69 to
5.58 mM acetate, 0.88 to 1.88 mM lactate, and 0.39 to 0.42 mM propionate) in RTE ham [81].
This was because of the overestimation of interaction effects between factors by the model.
In contrast, the model predictions were fail-safe, particularly at the lower temperature
range between 4 and 6 ◦C due to the synergistic effect of multiple organic acids under these
conditions (Figure 7a).

The MICs of undissociated nitrite and organic acids estimated in this study slightly
varied from literature values (Table 3), and this could be due to variability in strains, food
matrices, endogenous inhibitors (e.g., natural lactic acid), and their interactions with added
acids, acid calculation method, modeling techniques, and experimental methods used [27].
For example, the MICs of lactic acid ranged from 3.6 to 5.7 mM across nine strains, MICs
of acetic acid ranged from 6.2 to 18.9 mM across four strains, and MICs of propionic acid
ranged from 4 to 8 mM across three strains [42]. Previous studies have reported a significant
difference in growth parameters between strains of L. monocytogenes [43,82]. It is important
to mention that the MIC estimated in culture media would be different from the MIC
estimated in the meat matrix, including background microflora and growth inhibitors.
A study by [83] recorded that the Listeria growth rate was different under different food
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matrices, and the exponential growth rate varied significantly among twenty Listeria strains.
Therefore, establishing a universal MIC value for organic acids is challenging due to intra-
species variation. Another study [48] reported the dependency of MICs of undissociated
acids on pH and a significant variation in MICs of organic acids between the Listeria strains.
This study also indicated that strain variation significantly influences the concentration of
acids required to inhibit growth. For instance, in their study, the MICs for different strains
for the pH range studied varied between 12.2 and 30.2 mM for acetic acid and 4.7 and
25.1 mM for propionic acid. The optimized MICs in the current study could be a universal
MIC value for all inhibitory compounds in different meat products, including added acids
and endogenous lactic acid. In addition, the wide confidence intervals for the MICs of
inhibitory compounds could be either due to Listeria strain differences or limited data points
in particular regions [42,48,84]. In the current study, the large confidence intervals of MIC
of antimicrobials and curing agents were attributed to a lack of growth data, which is one
of the limitations of this study. In addition, another study [48] reported that limited (2 to
46 data points per acid) MICs of undissociated acids for L. monocytogenes are available in the
literature; such large intervals of undissociated acid values may result in the approximate
estimation of the minimal acid concentration that prevents Listeria growth. Therefore,
for accurate estimation of the MICs of antimicrobials, it is important to have adequate
datasets with closer intervals of undissociated acids. In addition, the undissociated acid
concentrations were calculated in this study based on the total volume of food (meat), while
acid dissociates in the water phase of unknown volume. The concentration of acids in
the water phase is more than the concentration in total meat, which certainly explains the
differences in MICs estimated in different studies [27]. Another reason for MIC variations
is the differences in the growth substrate, as most literature MICs were estimated in culture
media, while the present study estimated MIC in meat matrix.
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In this study, the model prediction was impacted by the presence of additional an-
timicrobial or additive compounds in meat formulations that were not considered in the



Foods 2024, 13, 3948 17 of 25

modeling. For instance, in a few studies, the product formulation included one or more
compounds such as sodium erythrobate, phosphate, sodium bicarbonate, sodium triphos-
phate, sodium ascorbate, and other seasoning blends [67,85–89]. Similarly, RTE products
such as ham, frankfurters, smoked meat, and sausages included phenols generated from
smoke components. These additives may have an indirect inhibitory effect; a study [49]
demonstrated the effect of phenols (>10 ppm) in smoked meats on Listeria growth and on
Af and Bf values. Similarly, in the present study, the model overpredicted growth rates in a
few products containing the above additives. Therefore, to improve the accuracy of the
model’s predictions, it is crucial to consider all the factors that have the potential to inhibit
the growth of Listeria. At present, there is no single model that considers all factors that
may be relevant to all types of food. Therefore, it is important to clearly state the limitations
of predictive models to users, including the range of conditions, interpolation region, and
the variables considered.

The validation of models in food matrices is important in predictive microbiology as
it builds confidence for acceptance. Undoubtedly, listeria growth in culture media differs
from food matrix as growth is slower in the latter. Model validation in culture media
often overestimates the growth in the food matrix due to the complexity of food structure
affecting the spatial distribution of bacteria [37]. In the present study, the model was
validated in food matrices (n = 116) which include ready-to-eat products of beef, pork,
and poultry (Tables 5–7). The developed secondary model can quantify Listeria growth as
observed in naturally contaminated RTE food as a function of seven factors studied. The
model is useful to simulate the inhibitory effect of antimicrobials and predict the growth
of Listeria in the presence of nitrite, organic acids, or a combination of nitrite and organic
acids in ready-to-eat meat products. The current study presents an improved model that is
considered to predict the listeria growth that is observed in naturally contaminated food
products. A model developed and validated in RTE meats may offer better prediction than
the broth and generalized foods model. In comparison to the broth model, the meat matrix
models may assist in avoiding overprocessing of food, significantly reducing the ingoing
and cost of antimicrobials and reducing potential health risks of antimicrobials. The model
may be helpful to food manufacturers to reduce the number of challenge studies, formulate
or reformulate, and assess the microbial safety of food.

Based on the correlation coefficient, the developed lag time model was less accurate
than the growth rate model in this study. To measure the accuracy of the lag time model,
the mean and median errors were estimated following the method reported earlier [25].
The % mean error of the lag time model was found to be 128.8% and was slightly less
than the 133% reported earlier [25]. If the observed lag phase was close to zero while the
predicted lag was a small lag phase, the % mean error was extremely high, even though
the actual error was relatively small. If the predicted lag phase is large, then the % mean
error would be immensely high. Due to this reason, the median error was calculated,
which would be a better representation. The % median error for the lag time was also
still higher, 61.1% (validation dataset), indicating that the prediction of lag time is a big
challenge. The estimated mean and median error in this study was close to 133% and
62% reported earlier [25] for lag prediction in a mixture of culture broth and RTE foods
(eggs, dairy, seafood, and meat products). The Bf of 1.07 indicated that the predicted lag
time was 7% biased in the current study compared to the 3% bias reported in the above
study. The experimental variability and the unpredictable Listeria behavior result in lag
phase variability, which is higher than that for the growth rate. The lag phase occurs
at the extreme end of the microbial growth curves and therefore is highly susceptible to
experimental error. In addition, large growth rate data are used to develop a valid model,
while a limited number of lag data are generally available for lag time modeling. The
longer lag phases are observed under extreme stress conditions such as low temperature
and high concentration of antimicrobials, where the bacterial cells experience maximum
stress, resulting in high variability. For example, a study reported a 0 h lag time at 5 ◦C,
while at 8 ◦C a higher lag time of 231 h was recorded in comminuted beef [63]. Similarly,
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another study on cooked pork ham reported a lag time of 0 h at 4 ◦C and 94 h at 10 ◦C [90].
Due to this reason, the accuracy of the lag time model for Listeria will be poor. For example,
an Af of 2.23 was recorded in the current study for the lag time prediction in validation
data. The high variability of lag resulted in a large spread in the scatter plot (Figure 5)
between ln(l) vs. ln(Tg.) and a large distribution of the ratio ln(l/Tg). This suggests
that the initial assumption of negligible effect of stress conditions on the ratio for cells
having similar preincubation history, may not be accurate. This is because there is sufficient
evidence in the literature that the ratio ln(l/Tg.) decreases as temperature, pH, and aw
approach the optimum values, indicating that the amount of work to be done may be
reduced as growth conditions approach optimal [25,91]. The lag time estimated by the
model under extreme stress conditions was less accurate compared to mild stress under
optimal conditions. Similarly, pre-incubation temperature is also crucial, because a lower
pre-incubation temperature could shorten the lag phase duration at low temperatures, while
a higher pre-incubation temperature could extend the lag phase duration [92]. Furthermore,
the initial inoculum levels, although they do not affect significantly on growth rate, affect the
lag phase durations. The low inoculum levels would produce longer lag phases compared
to shorter lag phases under high inoculum levels [93,94]. Another reason for the variability
in lag time may be because of the strain difference that contributed to the variation in the
ratio of lag and generation time [95]. Therefore, it is observed that accurate prediction of
the lag phase is more challenging than growth rates. Due to this reason, there are limited
studies published on the lag time model in the literature. Therefore, a combination of
large datasets (lag time) along with advanced predictive modeling approaches, such as AI
models that account for environment and physiological variability, seems to be promising
for achieving better accuracy in lag time modeling.

Table 6. Listeria growth data in pork products, product characteristics, and storage conditions.

Products No. of
Strains n T (◦C) pH NaCl aw

Acetate
(%) Lactate (%) Propionate

(%)
Nitrite
(ppm)

Data
Source Reference

Wiener pork and
Bratwurst 5 4 3–7 5.9–6.3 1.5–2 0.97–0.98 1–6 156 Pub [14]

Ground cooked ham 5 36 4–10 5.7–6.1 2.4 0.986 1–2 1 Cb [90]
Cooked Pork liver
sausage 1 24 5–20 6.01–6.12 2–4 0.97–0.98 0–4 98.5 Pub [96]

Sliced cooked ham 6 9 7 6.22 3 0.978 0–3 Cb [97]
RTE Products 5 4 4 6.13–6.2 2 0.983–0.99 0–2.5 97 Pub [87]
Cooked Cured sliced
ham 3 18 4–12 6.2 2.8 0.979 0–2 190 Pub [86]

Ham 8 3 4 6.27–6.42 2.2 0.984 0.108–0.12 Pub [65]
Pork-beef
frankfurter 3 18 4–12 6.02–6.17 2.2 0.979 0.2 156 Pub [98]

Pork-beef bologna 5 1 4 6.07–6.14 2.13–2.16 0.979–0.98 0–0.05 156 Pub [88]
Cooked ham and
Mortadella 1 12 4–12 6.1–6.3 2.5–2.8 0.976–0.979 0.43–0.7 102 Pub [31]

Pork Bologna 10 4 4–10 6.3–6.5 2 0.98 0–1.8 156 Pub [99]
Servelat sausage and
cooked ham 3 4 4–9 6–6.3 2–2.5 0.98 0–2.5 Pub [100]

Sliced Cooked Ham 5 5 4 6.39 2.59 0.967 1.6 156 Pub [101]
RTE ham model 5 90 4 5.5–6.6 0.5–2.5 0.98–0.99 0–0.74 0–3.06 0.05–0.3 0–200 Pub [81]
Sliced cooked Cured
ham 3 8 5–10 6.2 2 0.985 0-0.2 98.5 Pub [102]

Cooked sliced ham 3 5 8 6.2 3 0.978 Cb [103]
Pack Slice Cook Pork 1 2 4 5.99–6.05 2 0.985 Cb [104]
Ham 1 14 0–15 6.1–6.4 2.2–2.4 0.982–0.984 84–110 Cb [105]
Pork ham 1 8 0–15 6.6 2.7–4 0.97–0.98 11–170 Cb [73]
Ham 1 10 47.2 6.4 2 0.985 Cb [106]
Mortadella (bologna
ham) 2 10 8 6.19 2 0.981 60 Cb [107]

Cooked cured pork
shoulder 1 12 0–16 6.26 2 0.985 150 Cb [108]

RTE ham and
sausages 3 8 4–35 6.2 1.8–2.2 0.984–0.986 Pub [109]

Cooked Cured Pork
Sausage 5 30 7 6.59 1.84 0.985 50–300 Pub [110]

Cooked ham 1 2 7 6.1–6.2 2.2 0.984 Cb [71]
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Table 6. Cont.

Products No. of
Strains n T (◦C) pH NaCl aw

Acetate
(%)

Lactate
(%)

Propionate
(%)

Nitrite
(ppm)

Data
Source Reference

Pork Live pate 5 16 4–10 6–6.15 1–3 0973–0.991 0–200 Pub [111]
Sliced Cooked ham 1 5 2–15 6.07 2.72 0.98 100 Pub [85]
Processed meats-
bologna 5 7 4.4 4.8–6.3 2.3–3 0.95–0.97 0–48 Pub [79]

Pork Chorizo 1 13 5–30 4.79–6.5 1.84 0.984 Pub [112]
Meatballs and
Sundae 7 10 5–37 5.6–6.9 0.5–2.1 0.997–0.989 Pub [113]

Search criteria in ComBase: beef, poultry, turkey, chicken, pork, RTE meat products, except seafood, Listeria,
static condition. n is the number of growth curves. Bold type: assumed values. The assumed nitrite value is
the average nitrite concentration reported in other products. Data source: Pub—publications, Cb—ComBase,
PC—personal communication.

Table 7. Listeria growth data in poultry products, product characteristics, and storage conditions.

Products No. of
Strains n T (◦C) pH NaCl

(%) aw
Acetate

(%)
Lactate

(%)
Propionate

(%)
Nitrite
(ppm)

Data
Source Reference

Turkey slurry 4 6 4–25 5.2–6.2 1.3–2.1 0.98–0.99 0–2.5 200 Pub [114]
RTE sliced turkey
breast 3 18 4–12 6.2 2.2 0.98 0–2 Pub [86]

Uncured Turkey 8 7 4 6.1–6.4 2 0.98 98.5 Pub [65]
Uncured turkey 5 1 4 6.19 2 0.98 0.05 Pub [101]
Comminuted
Chicken 3 9 5–35 6.5 2 0.98 0–4 Pub [66]

Chicken salad 5 5 4–12.8 5.6–6 0.61 0.99 0.045–
0.051 Cb [115]

Sliced cooked Turkey
bologna 7 3 4 6.5–6.7 2 0.98 0–0.5 0–2 156 Pub [116]

Sliced Cooked Ham 5 5 4 6.42 1.7 0.972 3.2 0.05–0.3 Pub [88]
Cured Deli Style
Turkey 5 8 4–7 6.1–6.4 1.7–1.8 0.97 1.8 0.2–0.5 Pub [89]

Turkey bologna 5 2 4–7 6.17 2.2 0.973 1.6 60 Pub [117]
RTE turkey meat 1 2 10 6.2 2.5 0.98 Pub [118]
Sliced roasted turkey 3 3 5–10 6.2 2.5 0.98 Pub [102]
Chicken liver pate or
minced chicken
breast

1 2 6.8–30.4 5.6 0.8 0.99 Cb [119]

Precooked chicken
nuggets 1 3 3–11 6.5 1.5 0.98 Pub [120]

Chicken breast 2 30 0–15 5.6 2–4 0.97–0.98 Cb [76]
Dark-meat chicken
nuggets 1 3 3–11 6.5 1.5 0.98 Cb [121]

Sliced Chicken
Breast 1 2 7 6.2 2.8 0.97 Cb [71]

RTE chicken salad 3 9 4–16 5.93 1.3 0.99 Pub [122]
Chicken nuggets 6 5 4–16 6.21 1.5 0.98 Pub [123]
Chicken salad 3 9 5–25 5.9 0.612 0.99 Pub [124]
Processed meats-
Sliced chicken 5 3 4.4 6.3–6.5 1.7–2.7 0.97–0.98 Pub [79]

Cooked deli turkey
breast 5 31 5 6.1–6.83 0.6–2.5 0.996–0.982 0–1.35 Pub/PC [125]

Search criteria in ComBase: beef, poultry, turkey, chicken, pork, RTE meat products, except seafood, Listeria,
static condition. n is the number of growth curves. Bold type: assumed values. The assumed nitrite value is
the average nitrite concentration reported in other products. Data source: Pub—publications, Cb—ComBase,
PC—personal communication.

5. Conclusions

The current study was conducted to develop and validate an improved prediction
model to describe the effects of pH, temperature, aw, nitrite, and organic acids on the
growth rate of Listeria in RTE meat matrices. The gamma model was used to quantify
the behavior of listeria in ready-to-eat products. It was evident from the present study
that better modeling and parameter estimation can be achieved through a simultaneous
modeling approach. This approach would enable modelers to develop more robust models
on limited and disparate data sets. The current study presents an improved Listeria growth
prediction model developed and validated in food matrices data. The model performance
included Bf = 0.96, Af = 1.5, and RMSE = 0.06 µmax, indicating the robustness of the model’s
prediction. The developed model could offer predictions close to natural growth in meat
products. The lag time model compared to the growth rate model is less accurate for lag
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time prediction. The growth rate model may find its application for microbiological food
safety assessment and may be incorporated into a predictive toolbox for research and
development purposes. One of the advantages of gamma models is that the impact of a
change in the level of a single variable can be calculated without having to reassess the
entire equation. This ability to determine the relative effects of different changes could be
valuable in risk assessment, particularly when conducting sensitivity analyses aimed at
assessing potential strategies for risk analysis.
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