Ultrasound-Assisted Extraction of Phenolic Compounds from Tricosanthes cucumerina Leaves: Microencapsulation and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Leaves
2.2. Ultrasound-Assisted Extraction
2.3. Characterization of the Extract
2.3.1. Total Phenolic Compounds
2.3.2. Determination of Bioactive Compounds by Electrospray Ionization (ESI-MS)
2.4. Microencapsulation
2.5. Microcapsule Characterization
Encapsulation Efficiency, Size, and Hygroscopicity
2.6. Scanning Electron Microscopy (SEM)
2.7. Fourier-Transform Infrared Spectroscopy (FTIR)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Contour Surface Experimental Design for Ultrasound-Assisted Extraction
3.2. Encapsulation Efficiency, Size, and Hygroscopicity
3.3. Fourier-Transform Infrared Spectroscopy (FTIR)
3.4. Thermogravimetric Analysis (TGA-DTA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, L.; Zhang, H.; Zhang, X.; Cheung, W.W.; Hu, Y.; Hong, A.; Guo, J.; Xu, Y.; He, J.; Lu, J.; et al. Untargeted Screening and Differential Analysis of Bioactive Compounds in Male and Female Silkworm (Bombyx mori) Pupae Through Orbitrap Exploris Mass Spectrometry. Food Chem. 2025, 469, 142584. [Google Scholar] [CrossRef] [PubMed]
- Klaric, S.V.; Maciel, A.G.; Arend, G.D.; Tres, M.V.; de Lima, M.; Soares, L.S. Application of Plant Extracts Rich in Anthocyanins in the Development of Intelligent Biodegradable Packaging: An Overview. Processes 2025, 13, 191. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Singha, S.; Kar, A.; Chanda, J.; Banerjee, S.; Dasgupta, B.; Haldar, P.K.; Sharma, N. Therapeutic Importance of Cucurbitaceae: A Medicinally Important Family. J. Ethnopharmacol. 2022, 282, 114599. [Google Scholar] [CrossRef] [PubMed]
- Dabesor, P.A.; Sanni, D.M.; Kolawole, A.O.; Enujiugha, V.N.; Lawal, O.T.; Edeh, A.T. Changes in Physicochemical Properties and Enzymes Associated with Ripening of Snake Tomato (Trichosanthes cucumerina L.) Fruit. Biocatal. Agric. Biotechnol. 2022, 40, 102313. [Google Scholar] [CrossRef]
- Adebooye, O.C. Phyto-Constituents and Anti-Oxidant Activity of the Pulp of Snake Tomato (Trichosanthes cucumerina L.). Afr. J. Trad. 2008, 5, 173–179. [Google Scholar] [CrossRef]
- Zampar, G.G.; Carolina Zampar, I.C.; de Souza, S.B.S.; da Silva, C.; Barros, B.C.C. Effect of Solvent Mixtures on the Ultrasound-assisted Extraction of Compounds from Pineapple By-product. Food Biosci. 2022, 50, 102098. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Romanini, E.B.; Silva, E.; Pilau, E.J.; da Costa, S.C.; Madrona, G.S. Uvaia (Eugenia pyriformis Cambess) Residue as a Source of Antioxidants: An Approach to Ecofriendly Extraction. LWT -Food Sci.Technol. 2021, 138, 110785. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Zhang, X.; Zhang, T.; Zhang, J.; Chen, X. Optimization of Ultrasound-assisted Extraction of Flavonoids from Portulaca oleracea L., the Extraction Kinetics and Bioactivity of the Extract. J. Appl. Res. Med. Aromat. Plants. 2023, 37, 100512. [Google Scholar] [CrossRef]
- Qiu, W.Y.; Cai, W.D.; Wang, M.; Yan, J.K. Effect of Ultrasonic Intensity on The Conformational Changes in Citrus Pectin Under Ultrasonic Processing. Food Chem. 2019, 297, 125021. [Google Scholar] [CrossRef]
- Cui, Q.; Wang, L.; Wang, G.; Zhang, A.; Wang, X.; Jiang, L. Ultrasonication Effects on Physicochemical and Emulsifying Properties of Cyperus esculentus Seed (Tiger Nut) Proteins. LWT-Food Sci. Technol. 2021, 142, 110979. [Google Scholar] [CrossRef]
- Cunha, L.C.M.; Monteiro, M.L.G.; da Costa-Lima, B.R.C.; Guedes-Oliveira, J.M.; Rodrigues, B.L.; Fortunato, A.R.; Baltar, J.D.; Tonon, R.V.; Koutchma, T.; Conte-Junior, C.A. Effect of Microencapsulated Extract of Pitaya (Hylocereus costaricensis) Peel on Oxidative Quality Parameters of Refrigerated Ground Pork Patties Subjected to UV-C Radiation. J. Food Process. Preserv. 2021, 45, e15272. [Google Scholar] [CrossRef]
- Budin, A.C.; Takano, L.V.; Alvim, I.D.; de Moura, S.C.S.R. Stability of Yerba Mate Extract, Evaluation of its Microencapsulation by Ionic Gelation and Fluidized Bed Drying. Heliyon 2023, 9, e16611. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, G.M.; Campos, R.; Costa, C.K.; Dias, J.F.G.; Miguel, O.G.; Ganguly, M.A.; Alexeenko, A.A.; Schultz, S.G.; Kim, S.G. Freeze-Drying Simulation Framework Coupling Product Attributes and Equipment Capability: Toward Accelerating Process by Equipment Modifications. Eur. J. Pharm. Biopharm. 2013, 85, 2. [Google Scholar]
- Ozkan, G.; Franco, P.; de Marco, I.; Xiao, J.; Capanoglu, E. A Review of Microencapsulation Methods for Food Antioxidants: Principles, Advantages, Drawbacks and Applications. Food Chem. 2019, 272, 494–506. [Google Scholar] [CrossRef]
- Liyanage, R.; Nadeeshani, H.; Jayathilake, C.; Visvanathan, R.; Wimalasiri, S. Comparative Analysis of Nutritional and Bioactive Properties of Aerial Parts of Snake Gourd (Trichosanthes cucumerina Linn). Int. J. Food Sci. 2016, 2016, 8501637. [Google Scholar]
- Yasir, M.; Sultana, B.; Nigam, P.S.; Owusu-Apenten, R. Antioxidant and Genoprotective Activity of Selected Cucurbitaceae Seed Extracts and LC–ESIMS/MS Identification of Phenolic Components. Food Chem. 2016, 199, 307–313. [Google Scholar] [CrossRef]
- Feihrmann, A.C.; Natallya Marques da Silva, N.M.; de Marins, A.R.; Matiucci, M.A.; Nunes, K.C.; Nakamura, R.G.; de Souza, M.L.R.; de Oliveira, O.; Gomes, R.G. Ultrasound-assisted Extraction and Encapsulation by Spray Drying of Bioactive Compounds from Tradescantia zebrina leaves. Food Chem. Adv. 2024, 4, 100621. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A.J.R. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- dos Santos, S.S.; Paraíso, C.M.; Romanini, E.B.; Correa, V.G.; Peralta, R.M.; da Costa, S.C.; Junior, O.D.; Visentainer, J.V.; Reis, M.H.; Madrona, G.S. Bioavailability of Blackberry Pomace Microcapsules by Using Different Techniques: An Approach for Yogurt Application. Inno. Food Sci. Emerg. Technol. 2022, 81, 103111. [Google Scholar] [CrossRef]
- Saénz, C.; Tapia, S.; Chávez, J.; Robert, P. Microencapsulation by Spray Drying of Bioactive Compounds from Cactus Pear (Opuntia ficus-indica). Food Chem. 2009, 11, 616–622. [Google Scholar] [CrossRef]
- Fritzen-Freire, C.B.; Prudêncio, E.S.; Amboni, R.D.; Pinto, S.S.; Negrão-Murakami, A.N.; Murakami, F.S. Microencapsulation of Bifidobacteria by Spray Drying in the Presence of Prebiotics. Int. Food Res. 2012, 45, 306–312. [Google Scholar] [CrossRef]
- Raspe, D.T.; Ciotta, S.R.; Zorzenon, M.R.T.; Dacome, A.S.; da Silva, C.; Milani, P.G.; da Costa, S.C. Ultrasound-assisted Extraction of Compounds from Stevia leaf Pretreated with Ethanol. Ind. Crops Prod. 2021, 172, 114035. [Google Scholar] [CrossRef]
- Choudhary, S.; Tanwer, B.S.; Vijayvergia, R. Evaluated the Phenolic Compounds Present in the Leaves of Trichosanthes cucumerena Linn. Drug Inv. Today 2012, 4, 68–370. [Google Scholar]
- Romanini, E.B.; Rodrigues, L.M.; Finger, A.; Chierrito, T.P.C.; Scapim, M.R.S.; Madrona, G.S. Ultrasound Assisted Extraction of Bioactive Compounds from BRS Violet Grape Pomace Followed by Alginate-Ca2+ Encapsulation. Food Chem. 2021, 338, 128101. [Google Scholar] [CrossRef]
- Cardoso, E.O.; Conti, B.J.; Santiago, K.B.; Conte, F.L.; Oliveira, L.P.G.; Hernandes, R.T.; Golim, M.A.; Sforcin, J.M. Phenolic Compounds Alone or in Combination May be Involved in Propolis Effects on Human Monocytes. J. Pharm. Pharmacol. 2017, 69, 99–108. [Google Scholar] [CrossRef]
- Paiva, L.B.; Goldbeck, R.; Santos, W.D.; Squina, F.M. Ferulic acid and derivatives: Molecules with potential application in the pharmaceutical field. Braz. J. Pharm. Sci. 2017, 49, 395–411. [Google Scholar] [CrossRef]
- Llive, L.M.; Perullini, M.; Santagapita, P.R.; Schneider-Teixeira, A.; Deladino, L. Controlled Release of Fertilizers from Ca (II)-alginate Matrix Modified by yerba mate (Ilex paraguariensis) Waste. Eur. Pol. J. 2020, 138, 109955. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Influence of Process Conditions on the Physicochemical Properties of Açai (Euterpe oleraceae Mart.) Powder Produced by Spray Drying. J. Food Eng. 2008, 88, 411–418. [Google Scholar] [CrossRef]
- de Souza, V.B.; Thomazini, M.; Balieiro, J.C.C.; Fávaro-Trindade, C.S. Effect of Spray Drying on the Physicochemical Properties and Color Stability of the Powdered Pigment Obtained from Vinification Byproducts of the Bordo grape (Vitis labrusca). Food Bio. Process. 2015, 93, 39–50. [Google Scholar] [CrossRef]
- Radünz, M.; Hackbart, H.C.S.; Bona, N.P.; Pedra, N.S.; Hoffmann, J.F.; Moro, F.M.; Zavareze, E.R. Glucosinolates and Phenolic Compounds Rich Broccoli Extract: Encapsulation by Electrospraying and Antitumor Activity Against Glial Tumor Cells. Col. Sur. B: Biointerfaces 2020, 192, 111020. [Google Scholar] [CrossRef]
- Nunes, G.L.; Boaventura, B.C.B.; Pinto, S.S.; Verruck, S.; Murakami, F.S.; Prudêncio, E.S.; Amboni, R.D.M.C. Microencapsulation of Freeze Concentrated Ilex paraguariensis Extract by Spray Drying. J. Food Eng. 2015, 151, 60–68. [Google Scholar] [CrossRef]
- López-Córdoba, A.; Deladino, L.; Martino, M. Corn Starch-calcium Alginate Matrices for the Simultaneous Carrying of Zinc and Yerba Mate Antioxidants. LWT-Food Sci. Technol. 2014, 59, 641–648. [Google Scholar] [CrossRef]
- Mendes, D.C.S.; Asquieri, E.R.; Batista, R.D.; de Morais, C.C.; Ramirez Ascheri, D.P.; de Macêdo, I.Y.L.; de Souza Gil, E. Microencapsulation of Jabuticaba Extracts (Myrciaria cauliflora): Evaluation of Their Bioactive and Thermal Properties in Cassava Starch Biscuits. LWT-Food Sci. Technol. 2021, 137, 110460. [Google Scholar] [CrossRef]
- Gunarathne, R.; Marikkar, N.; Yalegama, C.; Mendis, E. FTIR Spectral Analysis Combined with Chemometrics in Evaluation of Composite Mixtures of Coconut Testa Flour and Wheat Flour. J. Food Meas. Charact. 2022, 16, 1796–1806. [Google Scholar] [CrossRef]
- Chinnaiah, K.; Theivashanthi, T.; Kannan, K.; Revathy, M.S.; Maik, V.; Parangusan, H.; Jeyaseelan, S.C.; Gurushankar, K. Electrical and Electrochemical Characteristics of Withania Somnifera Leaf Extract Incorporation Sodium Alginate Polymer Film for Energy Storage Applications. J. Inorg. Organomet. Polym. Mater. 2022, 32, 583–595. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, H.; Yang, S.; Zeng, J.; Wu, Z. Sodium Alginate-Based Green Packaging Films Functionalized by Guava Leaf Extracts and Their Bioactivities. Materials 2019, 12, 2923. [Google Scholar] [CrossRef]
- Castro, J.I.; Valencia-Llano, C.H.; Valencia Zapata, M.E.; Restrepo, Y.J.; Mina Hernandez, J.H.; Navia-Porras, D.P.; Valencia, Y.; Valencia, C.; Grande-Tovar, C.D. Chitosan/Polyvinyl Alcohol/Tea Tree Essential Oil Composite Films for Biomedical Applications. Polymers 2021, 13, 3753. [Google Scholar] [CrossRef]
- Laureanti, E.J.G.; Paiva, T.S.; de Matos Jorge, L.M.; Jorge, R.M.M. Microencapsulation of Bioactive Compound Extract Using Maltodextrin and Gum Arabic by Spray and Freeze-Drying Techniques. Int. J. Biol. Macromol. 2023, 253, 126969. [Google Scholar] [CrossRef]
- Lopes, S.; Bueno, L.; Aguiar Júnior, F.; Finkler, C. Preparation and Characterization of Alginate and Gelatin Microcapsules Containing Lactobacillus Rhamnosus. An. Acad. Bras. Cienc. 2017, 89, 1601–1613. [Google Scholar] [CrossRef]
- Paswan, M.; Singh Chandel, A.K.; Malek, N.I.; Dholakiya, B.Z. Preparation of Sodium Alginate/Cur-PLA Hydrogel Beads for Curcumin Encapsulation. Int. J. Biol. Macromol. 2024, 254, 128005. [Google Scholar] [CrossRef]
- Bruni, A.; Augusto, G.; Jesus, M.d.; Alves, S.; Camila, J.; Ricardo, P.; Oliveira, O.D.; Junior, S.; Guntendorfer, E. Characterization and Application of Active Films Based on Commercial Polysaccharides Incorporating ZnONPs. Int. J. Biol. Macromol. 2023, 224, 1322–1336. [Google Scholar] [CrossRef] [PubMed]
- Vinceković, M.; Jurić, S.; Šegota, S.; Šijaković Vujičić, N.; Španić, N.; Mutaliyeva, B.; Prosyanik, A.V.; Marijan, M. Morphological, Rheological and Thermal Characteristics of Biopolymeric Microcapsules Loaded with Plant Stimulants. J. Polym. Res. 2022, 29, 204. [Google Scholar] [CrossRef]
- Ozcan, B.E.; Saroglu, O.; Karakas, C.Y.; Karadag, A. Encapsulation of Purple Basil Leaf Extract by Electrospraying in Double Emulsion (W/O/W) Filled Alginate-Carrageenan Beads to Improve the Bioaccessibility of Anthocyanins. Int. J. Biol. Macromol. 2023, 250, 126207. [Google Scholar] [CrossRef]
Independent Variables | Levels | |||
---|---|---|---|---|
Runs | Time (min) | Temperature (°C) | Amplitude (%) | TPC * (mg of GAE/g) |
1 | 2.5 (−1) | 40 (−1) | 20 (−1) | 234.85 |
2 | 10 (+1) | 40 (−1) | 20 (−1) | 238.41 |
3 | 2.5 (−1) | 40 (−1) | 40 (+1) | 235.36 |
4 | 10 (+1) | 40 (−1) | 40 (+1) | 262.54 |
5 | 2.5 (−1) | 60 (+1) | 20 (−1) | 218.86 |
6 | 10 (+1) | 60 (+1) | 20 (−1) | 226.38 |
7 | 2.5 (−1) | 60 (+1) | 40 (+1) | 226.10 |
8 | 10 (+1) | 60 (+1) | 40 (+1) | 232.06 |
9 | 6.25 (0) | 50 (0) | 30 (0) | 237.06 |
10 | 6.25 (0) | 50 (0) | 30 (0) | 231.52 |
11 | 6.25 (0) | 50 (0) | 30 (0) | 248.86 |
Ion Precursor (m/z) | Ion Quantity (m/z) | RT * (min) | C (mg 100 g−1) | U (mg 100 g−1) | |
---|---|---|---|---|---|
p-cumaric acid | 163.00 | 119.00 | 5.2 | 10.55 ± 0.02 b | 11.12 ± 0.03 a |
Ferulic acid | 193.10 | 134.02 | 5.27 | 1.66 ± 0.04 b | 2.08 ± 0.03 a |
Caffeic acid | 179.00 | 134.96 | 4.58 | 0.65 ± 0.01 b | 0.92 ± 0.01 a |
Hydroxybenzoic acid | 137.00 | 92.95 | 6.05 | 0.24 ± 0.01 a | 0.26 ± 0.00 a |
Salicylic acid | 138.00 | 92.90 | 6.1 | 0.10 ± 0.00 b | 0.18 ± 0.00 a |
Protocatechuic acid | 152.80 | 108.82 | 3.27 | 0.06 ± 0.00 a | 0.07 ± 0.01 a |
Vanillic acid | 167.00 | 152.00 | 4.58 | 0.03 ± 0.00 a | 0.03 ± 0.00 a |
Chlorogenic acid | 353.10 | 191.10 | 4.31 | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vendramini, C.F.; de Campos, T.A.F.; da Silva, N.M.; Matiucci, M.A.; Alves, E.S.; dos Santos, P.D.S.; Barão, C.E.; de Oliveira, O.; Cardozo-Filho, L.; Feihrmann, A.C. Ultrasound-Assisted Extraction of Phenolic Compounds from Tricosanthes cucumerina Leaves: Microencapsulation and Characterization. Processes 2025, 13, 397. https://doi.org/10.3390/pr13020397
Vendramini CF, de Campos TAF, da Silva NM, Matiucci MA, Alves ES, dos Santos PDS, Barão CE, de Oliveira O, Cardozo-Filho L, Feihrmann AC. Ultrasound-Assisted Extraction of Phenolic Compounds from Tricosanthes cucumerina Leaves: Microencapsulation and Characterization. Processes. 2025; 13(2):397. https://doi.org/10.3390/pr13020397
Chicago/Turabian StyleVendramini, Carlos Felipe, Talita A. F. de Campos, Natallya M. da Silva, Marcos Antonio Matiucci, Eloize S. Alves, Patrícia D. S. dos Santos, Carlos Eduardo Barão, Oscar de Oliveira, Lucio Cardozo-Filho, and Andresa Carla Feihrmann. 2025. "Ultrasound-Assisted Extraction of Phenolic Compounds from Tricosanthes cucumerina Leaves: Microencapsulation and Characterization" Processes 13, no. 2: 397. https://doi.org/10.3390/pr13020397
APA StyleVendramini, C. F., de Campos, T. A. F., da Silva, N. M., Matiucci, M. A., Alves, E. S., dos Santos, P. D. S., Barão, C. E., de Oliveira, O., Cardozo-Filho, L., & Feihrmann, A. C. (2025). Ultrasound-Assisted Extraction of Phenolic Compounds from Tricosanthes cucumerina Leaves: Microencapsulation and Characterization. Processes, 13(2), 397. https://doi.org/10.3390/pr13020397