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Abstract: Simultaneous localization and mapping (SLAM) is crucial for autonomous driv-
ing, drone navigation, and robot localization, relying on efficient point cloud registration
and loop closure detection. Traditional Normal Distributions Transform (NDT) odom-
etry frameworks provide robust solutions but struggle with real-time performance due
to the high computational complexity of processing large-scale point clouds. This paper
introduces an improved NDT-based LiDAR odometry framework to address these chal-
lenges. The proposed method enhances computational efficiency and registration accuracy
by introducing a unified feature point cloud framework that integrates planar and edge
features, enabling more accurate and efficient inter-frame matching. To further improve
loop closure detection, a parallel hybrid approach combining Radius Search and Scan
Context is developed, which significantly enhances robustness and accuracy. Additionally,
feature-based point cloud registration is seamlessly integrated with full cloud mapping in
global optimization, ensuring high-precision pose estimation and detailed environmental
reconstruction. Experiments on both public datasets and real-world environments validate
the effectiveness of the proposed framework. Compared with traditional NDT, our method
achieves trajectory estimation accuracy increases of 35.59% and over 35%, respectively, with
and without loop detection. The average registration time is reduced by 66.7%, memory
usage is decreased by 23.16%, and CPU usage drops by 19.25%. These results surpass
those of existing SLAM systems, such as LOAM. The proposed method demonstrates
superior robustness, enabling reliable pose estimation and map construction in dynamic,
complex settings.

Keywords: LiDAR odometry; simultaneous localization and mapping (SLAM); normal
distributions transform (NDT); feature extraction; loop closure detection

1. Introduction
In contemporary domains such as autonomous driving, drone navigation, and mo-

bile robot localization, Light Detection and Ranging (LiDAR) has become an indispens-
able sensor. Its popularity stems from its high precision, robustness to environmental
variations, and ability to generate dense point cloud data, making it indispensable in
complex and dynamic scenarios while facilitating real-time simultaneous localization and
mapping (SLAM).

The central objective of SLAM is to continuously process sensor data in real-time to
construct a reliable map of the environment while simultaneously estimating the robot’s
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pose [1]. This dual capability enables precise navigation and localization, which are es-
sential for autonomous operation across various applications. However, achieving high
accuracy and efficiency in SLAM systems is far from trivial and is primarily influenced by
two key components: point cloud registration and loop closure detection. These compo-
nents not only determine the fidelity of the constructed map but also impact the computa-
tional performance and overall robustness of the SLAM pipeline [2,3].

Point cloud registration aims to align multiple point clouds to reconstruct the envi-
ronment within a unified coordinate system. Given that real-world environments often
feature dynamic objects and noise, registration algorithms must achieve both high ro-
bustness and accuracy [4,5]. The Iterative Closest Point (ICP) algorithm, one of the most
widely used methods for point cloud registration, operates by iteratively minimizing the
distance between the closest points of two point clouds. However, ICP faces significant
challenges, including slow convergence, a tendency to settle in local optima, and a strong
dependency on the initial pose, making it less suitable for high-efficiency, high-precision
applications [6,7]. An alternative approach, the Normal Distributions Transform (NDT)
method, models point clouds using Gaussian distributions, and demonstrates greater ro-
bustness in noisy environments [8,9]. Nevertheless, the computational complexity of NDT
is substantial, as it requires modeling the entire point cloud, which proves inefficient in
real-time applications with limited computational resources, such as autonomous ground
vehicles and drones [10,11].

To alleviate the computational burden, many researchers have proposed feature
extraction-based strategies, simplifying the point cloud registration process by focusing
on local features of the environment. Algorithms such as LOAM and LeGO-LOAM have
successfully applied this approach, reducing computational redundancy while maintaining
performance [12,13]. However, these feature extraction methods still face limitations in
terms of both accuracy and efficiency, particularly when handling large-scale and complex
environments, such as expansive outdoor settings [14,15].

Regarding loop closure detection, traditional SLAM systems typically rely on odom-
etry information, using the Euclidean distance between odometry estimates to detect
potential loop closures. However, as odometry errors accumulate over time, they can
introduce drift, which degrades the accuracy of loop closure detection [16]. To mitigate this
drift, geometric-based loop closure detection methods—such as Scan Context—have been
incorporated into SLAM systems, improving detection accuracy, particularly in large-scale
mapping scenarios [17,18].

To address the aforementioned challenges and improve the efficiency of NDT in large-
scale point cloud registration, as well as to enhance the accuracy of loop closure detection,
this paper presents an enhanced NDT odometry framework. The key contributions of this
work are as follows:

• We propose a point cloud preprocessing and feature-based matching method that
unifies extracted planar features and edge features into a single cohesive feature
point cloud. This integrated approach streamlines the matching process, significantly
reduces computational complexity, and enhances both efficiency and alignment preci-
sion, surpassing traditional methods that process features separately.

• We introduce an innovative enhancement to the loop closure detection module by
replacing the traditional Radius Search (RS) method with a novel parallel approach
that integrates Radius Search and Scan Context (SC). This dual-loop closure detection
strategy not only improves the robustness of loop closure identification but also
significantly boosts efficiency and accuracy, addressing limitations of conventional
single-method approaches.
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• We adopt a novel approach that integrates feature-based point cloud registration with
full cloud mapping during global optimization, ensuring that the final map not only
achieves high precision but also retains comprehensive and detailed environmental
information, surpassing the capabilities of conventional methods.

Finally, extensive experimental validation is conducted to evaluate the proposed
method. The results show that, compared to leading SLAM frameworks such as LOAM,
the proposed method demonstrates superior performance in terms of registration efficiency,
loop closure detection accuracy, and real-time capability. In particular, the proposed
approach outperforms traditional methods in specific challenging scenarios.

2. Related Works
In simultaneous localization and mapping (SLAM) technology, point cloud registration

and loop closure detection are pivotal factors that influence the overall performance of the
system. To enhance the efficiency and accuracy of SLAM systems, researchers have made
significant contributions in areas such as point cloud registration algorithms, computational
efficiency optimization, and loop closure detection accuracy.

2.1. Advancements in Point Cloud Registration Algorithms

Point cloud registration is a fundamental and critical component of LiDAR-based
SLAM. The inherent complexity of real-world environments, coupled with the physical
limitations of LiDAR sensors, makes it impossible to capture a complete scene in a single
scan. As a result, aligning point cloud data collected at different time intervals is essential
for constructing an accurate environmental model. Traditional approaches to point cloud
registration include the Iterative Closest Point (ICP) algorithm, Normal Distributions
Transform (NDT), and modern deep learning-based techniques.

The Iterative Closest Point (ICP) algorithm aligns two point clouds by iteratively
minimizing the distance between corresponding points. It adjusts their transformation
until the error reaches a predefined threshold or the maximum number of iterations is
achieved [19]. This method efficiently handles small, well-structured scenes, as it does not
require point cloud segmentation. However, ICP encounters significant challenges related
to computational complexity and susceptibility to local minima, particularly when the
initial pose estimate is insufficiently accurate [6].

An alternative approach, the Normal Distributions Transform (NDT) algorithm, em-
ploys probabilistic techniques by discretizing the point cloud into a grid and modeling its
distribution as a Gaussian. Based on this representation, NDT calculates the transformation
between the target and incoming point clouds. Compared to the Iterative Closest Point
(ICP) algorithm, NDT delivers enhanced computational efficiency. However, its perfor-
mance is still limited when handling large-scale, dense point clouds, especially in real-time
applications such as autonomous vehicles or drones, where computational resources are
constrained [10,11].

Recently, deep learning-based point cloud registration methods have garnered sig-
nificant attention, with notable approaches including PointNetLK [20], Deep ICP [21],
and PRNet [22]. These methods utilize deep learning models to extract features from point
clouds, enabling faster computations and improved matching accuracy. However, they
remain in the early stages of development and continue to face challenges concerning
precision and robustness [16].

2.2. Optimization of Feature Extraction Methods

To accelerate point cloud registration and reduce computational complexity, feature-
based registration methods have been developed. These methods extract key geometric
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features from the environment, minimizing redundant calculations and mitigating inter-
ference from irrelevant points. A classic example is the LOAM (LiDAR Odometry and
Mapping) algorithm, which segments the point cloud into planar and edge features based
on point curvature, subsequently using these features for coordinate transformation [12].

Several LOAM variants have been introduced, such as LeGO-LOAM and Loam Livox.
LeGO-LOAM optimizes ground point separation to cater to environments with limited com-
putational capabilities, such as those involving Automated Guided Vehicles (AGVs) [13].
In contrast, Loam Livox is tailored specifically for solid-state LiDAR, refining point cloud
filtering strategies to accommodate the unique scanning patterns of these devices [23].

These feature extraction approaches significantly enhance the registration efficiency
and reduce computational resource demands. However, a critical challenge persists: how
to further improve computational efficiency without compromising accuracy, particularly
in complex and dynamic environments.

2.3. Enhancements in Loop Closure Detection Techniques

Loop closure detection is a critical component of SLAM systems, aimed at identifying
loops in the robot’s trajectory and correcting accumulated errors. Common loop closure
detection methods are generally categorized into descriptor-based and deep learning-
based approaches.

A widely adopted descriptor-based approach is the Scan Context method, introduced
by KAIST in 2018 [17]. This method is computationally efficient and achieves high accuracy
in loop closure detection with relatively low overhead, making it particularly suitable for
resource-constrained environments. Scan Context divides the point cloud into azimuthal
and radial bins, computing the maximum Z value in each bin to create a descriptor. This
reduces computational complexity while improving detection accuracy. Various SLAM
frameworks, such as SC-LeGO-LOAM [18] and SC-LIO-SAM, have integrated Scan Context.
However, the method is susceptible to false loop closures under certain conditions [24].

Deep learning-based methods, such as OverlapNet [25] and OverlapTransformer [26],
have also gained traction. These techniques generally offer higher accuracy and better adapt-
ability to diverse environments. However, they come with high training costs and limited
generalization, requiring fine-tuning for different LiDAR models and sensor configurations.

In addition to these advanced methods, traditional Euclidean distance-based loop
closure detection approaches remain widely used. While effective in simpler environments,
these methods are highly dependent on odometry accuracy and are vulnerable to failure
due to accumulated errors, especially during extended operations [27].

3. Methodology
The overview of our proposed method is illustrated in Figure 1 . The overall framework

consists of four main components: point cloud preprocessing, LiDAR odometry, loop
closure detection, and global optimization.

Preprocessing Lidar Odometry

Loop Closure Detection

Global Optimization

Raw Point Cloud

Segmented Cloud Feature Cloud

Key Frame

Lidar Odometry

History Key Frame 
and Current Key Frame

Map Optimization

NDT  Registration Transformation 
Matrix

Loop Detection 
Result

Pose Correction

Radius Search 
& Scan Context

Figure 1. The system structure.
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3.1. Point Cloud Preprocessing

Point cloud preprocessing focuses on minimizing redundancy in raw laser scan data
and alleviating the computational burden during point cloud registration. By doing so, it
enhances both the precision and robustness of the registration process. The preprocessing
methodology proposed in this section is inspired by the approach outlined in [13], which
optimizes point cloud segmentation and feature extraction to preserve the essential features
crucial for accurate matching and transformation calculations in subsequent stages.

The segmentation step removes environmental noise and preserves key information,
while the feature extraction process reduces the number of points representing the environ-
ment, thus lowering computational complexity. This results in improved system stability
and overall performance by ensuring that only the most relevant data are used in the later
stages of the system. Let the point cloud captured by the laser at time t be represented as
Pt = {pi|pi ∈ R3, i = 1, 2, . . . , M}, where pi is the i-th point in Pt, and M is the total number
of points in the frame at time t. The point cloud is segmented into N scan lines based on
the vertical angles.

Prior to segmentation, the ground points are extracted and labeled as Pground, and these
points are excluded from the subsequent segmentation process. The remaining non-ground
points, Pnon−ground, are used for object segmentation, where the points are clustered, each
assigned a specific category. Furthermore, outliers and small point clouds are filtered out,
ensuring that only the point clouds corresponding to larger objects are retained.

Next, feature extraction is performed on the non-ground points. Let S be the set of
neighboring points of pi within the same row. The smoothness ci of point pi is calculated
via Equation (1):

ci =
1

|S| · ∥ri∥

∥∥∥ ∑
j∈S,j ̸=i

(rj − ri)
∥∥∥ (1)

where ri is the position vector of pi, and rj is the position vector of a neighboring point in S.
And the points pi in Pt with smoothness ci greater than a given threshold c are categorized
as edge points, while those with smoothness ci smaller than c are classified as planar points.
After sorting the smoothness values, the planar and edge features are combined with the
ground points to form the required feature point cloud as shown in Figure 2.

(a) (b)

Figure 2. Combined feature point cloud. (a) is the raw point cloud acquired by LiDAR, and (b) is the
feature point cloud. The feature point cloud is composed of planar points, edge points, and ground
points; the outlier points and small-scale points in the environment are removed; and only large-scale
point clouds are retained. Compared to the original point cloud, the feature point cloud significantly
reduces the number of points while effectively preserving environmental features.

Unlike traditional downsampling methods that indiscriminately reduce the number of
points in the cloud, this feature extraction approach retains the most critical features while
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reducing the point count, leading to lower computational cost and more robust matching
during the registration process. This is achieved by first categorizing points based on their
smoothness values. The resulting feature point cloud ensures both efficiency and accuracy.

3.2. LiDAR Odometry

After preprocessing the point cloud, the feature point cloud of the environment is
utilized to compute the robot’s relative motion and position within the environment.
This process is performed using the Normal Distributions Transform (NDT). NDT is a
probabilistic method, initially introduced for 2D scan matching in [8] and later extended
to 3D point cloud data by Magnusson et al. [28]. The core principle of NDT involves
discretizing the point cloud into a grid and modeling the distribution of points within each
cell as a Gaussian distribution. This approach reformulates point cloud registration as a
statistical optimization problem.

During this process, the environmental feature point cloud is divided into multiple
grid cells, with each cell containing a set of points. The points within each cell are modeled
using a Gaussian distribution, providing a localized probabilistic representation. This
approach aims to capture the statistical characteristics of the point cloud distribution within
each grid cell. By employing this modeling method, point cloud registration is transformed
from a point-to-point matching problem into a distribution-based matching problem.

The Gaussian distribution for points within each grid cell is expressed by the following
probability density function:

f (x) =
1

(2π)D/2
√
|Σ|

exp
(
−1

2
(x − µ)TΣ−1(x − µ)

)
(2)

where, x represents a specific point within the point cloud that is being evaluated to
determine its probability of occurrence in a grid cell, based on the Gaussian distribution. D
denotes the dimensionality of the point cloud (e.g., D = 3 for 3D data). Formula (2) reflects
the probability that the point x occurs within a particular grid cell. Σ is the covariance
matrix, and |Σ| is its determinant. µ is the mean (center) of the points in the grid cell.
By leveraging this probability distribution, the point cloud in each grid cell is transformed
into a continuous mathematical representation.

In the point cloud registration process, the NDT method seeks to determine the
transformation T that aligns the source point cloud. This is achieved by maximizing the
likelihood that the points in the transformed source point cloud match the distribution of
the target point cloud. The transformation is defined as

F(ξ) =
n

∑
i=1

f (T(ξ, pi)) (3)

where ξ =
[
tx, ty, tz, φx, φy, φz

]
represents the transformation parameters (both translation

and rotation). n is the number of points in the source point cloud. pi is the i-th point in
the source point cloud, T(ξ, pi) represents the position of pi after being transformed by
the rigid body transformation parameters ξ, and f (T(ξ, pi)) is the probability value of pi

under the probability distribution of the target point cloud. The transformation expression
of T(ξ, pi) is

T(ξ, pi) = Rt pi + t (4)

where Rt is the rotation matrix derived from the rotation components [φx, φy, φz], and t is
the translation vector between the target point and source point.

After completing the point cloud registration, the core task of the LiDAR odometry is
to generate the pose trajectory of the robot in three-dimensional space by calculating the
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pose changes between consecutive frames. Using the registration results obtained by NDT,
the objective function F(ξ) is maximized.

For each frame f , the transformation matrix Tf is computed, which includes the
rotation matrix Rt f and the translation vector t f between two consecutive point clouds:

Tf =

[
Rt f t f

0 1

]
(5)

The global pose trajectory is generated by iteratively updating the global pose of the
robot. Assuming the global pose of the previous frame is Tglobal

f−1 , the global pose of the

current frame Tglobal
f is calculated as

Tglobal
f = Tglobal

f−1 · Tf (6)

This iterative update of the global pose matrix accumulates the transformations of
the robot’s position and orientation from the initial frame to the current frame, effectively
generating the robot’s trajectory in real time.

3.3. Loop Closure Detection

Loop closure detection is a crucial component of SLAM systems, designed to identify
revisited locations in the robot’s trajectory and mitigate cumulative errors caused by
odometry drift. Traditional methods for loop closure detection often rely on either global
feature matching or local geometric alignment, each with its inherent limitations. Global
matching methods may lack precision in densely environments, while local methods often
fail to detect loops when significant odometric drift occurs.

To address these challenges, this approach combines Radius Search and Scan Context,
leveraging their complementary strengths to achieve a balance between computational
efficiency and accuracy. Radius Search uses the KD-tree [29] to search for historical key
frames near the current key frame according to the specified radius threshold and serves
as the target point cloud for ICP registration. Scan Context converts the current frame
point cloud information to polar coordinates for calculation and obtains the ring value [17].
Search under KD-tree by descriptor to complete the loop detection.

In this process, we use CRS and CSC to represent the loop closure detection results of
Radius Search and Scan Context, respectively. Here, CRS ∈ {0, 1} is the confidence score of
Radius Search, indicating the reliability of the geometrically closest match. CSC ∈ {0, 1} is
the confidence score of Scan Context, representing the global descriptor similarity. If Radius
Search successfully detects a loop closure, i.e., CRS = 1 , the transformation matrix TRS

k,i
obtained from Radius Search is used to update the pose. Conversely, if Radius Search
fails to detect a loop closure, i.e., CRS = 0, but Scan Context detects one (CCS = 1),
the transformation matrix TSC

k,i derived from Scan Context is applied to correct the pose.
The updated pose Tnew

k of the current frame k is a weighted combination of the
transformations provided by the two methods:

Tnew
k = Tk · (CRS · TRS

k,i + (1 − CRS) · CSC · TSC
k,i ) (7)

where Tk is the pose of the current frame before the transformation, and TRS
k,i and TSC

k,i are
the pose correction relations obtained by the two methods, respectively. The confidence
weighting mechanism ensures that the final pose correction prioritizes the method with
higher reliability for the given scenario.

Although Scan Context excels in global matching, its performance can degrade in
complex or highly dynamic environments, where the global descriptors may be ambiguous
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or not distinct enough. Similarly, Radius Search is effective for local refinement but relies on
spatial proximity, which can fail when the robot’s trajectory has experienced significant drift.
To address these limitations, the system combines the global perspective of Scan Context
with the local precision of Radius Search, ensuring that the loop closure detection is both
robust and accurate in environments with complex geometries or substantial odometric
drift. First, the Radius Search method is used to loopback the current location to find the
closest historical key frame, and ICP is used for point cloud registration. If the registration
is successful and the registration quality meets the conditions, the corrected pose is added
to the graph optimization. If Radius Search fails to match the loop, it indicates that the
odometer has shifted significantly, causing the Radius Search to fail. Then, we use the Scan
Context method to search globally until potential loop keyframes are found, and ICP is
used for registration.

This integrated approach significantly outperforms traditional methods by address-
ing the limitations of both global and local matching techniques. It ensures reliable and
accurate loop closure detection, particularly in environments with complex geometries or
significant odometric drift, thereby improving the overall robustness and performance of
the SLAM system.

3.4. Global Optimization

To ensure the global consistency of the point cloud map and enhance the accuracy of
trajectory estimation, this project performs systematic map and pose optimization after
completing point cloud registration and loop closure detection. The optimization process
involves two key steps: the incorporation of loop closure constraints, and backend graph
optimization. These steps collectively update the map and correct the trajectory, resulting
in a globally consistent representation.

During the loop closure detection phase, when a loop is successfully detected, the rela-
tive pose between the current frame and a historical frame is computed using the registra-
tion algorithm. This relative pose is then introduced as a new constraint into the backend
optimization process. These constraints effectively compensate for the impact of accumu-
lated errors on the consistency of the trajectory and map, significantly improving the global
accuracy of the system, especially during long-duration operations.

In backend optimization, the map and trajectory are modeled as a factor graph, where
the poses of point cloud frames act as vertices, and the relative transformations between
frames, along with the constraints generated by loop closure detection, serve as edges.
During the point cloud mapping process, feature point clouds (including edge and plane
points) are used for inter-frame registration. Compared to using the full point cloud directly,
the sparsity of feature point clouds significantly reduces the computational complexity
of the registration process while maintaining high matching accuracy. Once the inter-
frame registration is completed, the full point cloud is projected into the global coordinate
system using the pose transformation matrix derived from the registration. This approach
effectively combines the computational efficiency of feature point clouds with the rich
detail provided by the full point cloud, resulting in a map that is both accurate and
visually detailed.

The full point cloud map Pmap, is generated by applying the pose transformation
matrices Tf for each frame f as follows:

Pmap = {Tf Pf | f = 1, 2, . . . , N} (8)

where Pf represents the point cloud of frame f .
The core objective of the optimization is to generate a globally consistent map and tra-

jectory by minimizing the weighted squared error of all pose constraints. Upon completion
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of the optimization, the system reprojects all point cloud data based on the optimized poses,
generating a globally consistent point cloud map. Furthermore, the optimized poses are
used to adjust the original trajectory estimates, yielding a globally coherent representation
of the robot’s motion path.

4. Experiments
To comprehensively validate the performance of the framework proposed in this

paper, a series of experiments is conducted, including tests on public datasets and trials in
real-world environments. The evaluation metrics include trajectory accuracy, map quality,
time efficiency, and resource usage. The experimental results aim to verify the advantages
of the improved algorithm in terms of accuracy, efficiency, and robustness.

4.1. Public Dataset Validation

The experiments presented in this section utilize the publicly available KITTI
dataset [30], a widely recognized benchmark for evaluating autonomous driving systems.
Specifically, data from Sequences 00-10 were employed, encompassing a diverse range of
challenging environments such as residential neighborhoods, urban streets, and highways.
Jointly developed and released by the Karlsruhe Institute of Technology (KIT) and Toyota
Technical Research Institute (TRI), the dataset is designed to facilitate the evaluation of com-
puter vision algorithms in autonomous driving scenarios. Data collection was performed on
an eight-core Intel i7 computer running Ubuntu Linux, with a real-time database. Figure 3
illustrates the sensor installation locations and the experimental platform configuration.

(a) (b)

Figure 3. (a) KITTI data acquisition platform, equipped with an inertial navigation system (GPS/IMU)
OXTS RT 3003, a Velodyne HDL-64E LiDAR, two 1.4 MP grayscale cameras, two 1.4 MP color cameras,
and four zoom lenses. (b) Sensor installation positions on the platform.

To comprehensively evaluate the effectiveness of the improved algorithm proposed
in this paper, several comparative analyses were conducted, including trajectory accuracy,
mapping quality, and computational costs. The experimental results compare the perfor-
mance of the proposed framework with several mainstream open-source algorithms, such
as LOAM [12], LeGO-LOAM [13], and DLO [31]. Additionally, the performance differ-
ences between the original NDT method and our improvement NDT method were ana-
lyzed. All experiments were conducted on a computer equipped with an Intel i5-8500 CPU,
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8 GB of RAM, running Ubuntu 18.04 and ROS Melodic [32] to ensure consistency in the
experimental results.

Figure 4 provides a visual comparison of the trajectories estimated by different al-
gorithms across various environmental datasets. As shown in Figure 4, our improved
method estimates trajectories that closely match the ground truth in most scenes. In the
highway scene of Sequence 01, high vehicle speed and sparse feature points lead to frame
matching failures and frame shrinkage. As a result, the performance in this scenario is
poorer. The experimental results show that none of the selected methods fully reconstruct
the trajectory and map for this dataset. Notably, in more complex environments (e.g., loop
closure scenarios), our improved method more accurately constructs the corresponding
maps and trajectories compared to LeGO-LOAM and DLO. Especially in loop closure de-
tection, the improved algorithm that combines Radius Search and Scan Context strategies
shows higher accuracy, which is particularly evident in Sequence 09. Figure 5 illustrates
the loop closure detection results for this scenario.
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Figure 4. Comparison of trajectories across different algorithm frameworks for Sequence 00-10.
The trajectories generated during mapping for LOAM, LeGO-LOAM, DLO, the original NDT, and our
method are compared.
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Figure 5. Loop closure detection results for various methods on Sequence 09. It can be seen that our
improved method effectively identifies the loop closure. The parallel strategy using two loop closure
detection methods greatly improves detection accuracy.

Furthermore, Figure 4 highlights the accuracy limitations of the pre-improved NDT
method. Its inter-frame registration relies on the full point cloud, resulting in longer
computation times and potential frame skipping at high frequencies, which in turn reduces
odometry accuracy. When large odometry drift occurs, loop closure cannot be detected in
time, which affects the overall mapping performance. To improve computational efficiency,
the original NDT method requires point cloud downsampling, but this process loses
important features during significant downsampling, negatively impacting the accuracy of
the final map and trajectory.

In addition to visualizing and comparing the trajectories, we also computed the
Absolute Pose Error (APE) and Relative Pose Error (RPE) for each method across various
environmental datasets. APE measures the absolute position and orientation error between
the estimated trajectory and the ground truth trajectory, while RPE calculates the relative
position and orientation error between consecutive frames, and they are defined as

APE(t) = ∥Test(t)− Tgt(t)∥ (9)

RPE(t1, t2) =
∥∥∥(Test(t2) · Test(t1)

−1)− (Tgt(t2) · Tgt(t1)
−1)

∥∥∥ (10)

where Test(t) is the estimated pose, and Tgt(t) is the ground truth pose at time t. Test(t1)

and Tgt(t1) represent the estimated and ground truth poses at time t1, and RPE measures
the relative error between these two time points.

The experimental results are presented in Tables 1 and 2. In the experiment, we eval-
uated our method under two configurations: with and without loop detection, referred
to as “ours-looped” and “ours-no loop”, respectively, for comparison with other methods.
For configurations other than “ours-looped”, results marked with “-” indicate failure in the
experiment, where data could not be obtained. Our method demonstrates strong perfor-
mance in terms of APE, with significant accuracy improvements in environments featuring
loop closures. In loop-free environments, our method achieves a 35.59% improvement over
the original NDT method. In environments with loop closures, the accuracy improvement
rises significantly to 86.95% , highlighting a clear advantage. It is worth noting that the
improvement in RPE is not as pronounced as in APE. This is because RPE primarily reflects
the relative motion between consecutive frames, where error accumulation is less significant
over shorter time scales, placing greater emphasis on local motion accuracy.
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Table 1. Comparisons on APE.

LOAM LeGO-LOAM DLO NDT Ours-No Loop Ours-Looped

Sequence 00 59.509626 3.198303 5.188796 18.686969 2.105438 0.860064
Sequence 01 - 209.764716 165.749755 - 110.493611 -
Sequence 02 241.090825 8.906158 6.97824 148.489258 11.670094 8.902045
Sequence 03 25.825729 0.726263 0.783867 5.12398 0.564025 -
Sequence 04 - 0.378594 0.518841 0.805754 0.283403 -
Sequence 05 24.834642 2.295983 3.78769 4.766309 2.622927 1.100858
Sequence 06 184.256251 2.155455 2.543412 0.702749 1.277034 0.662273
Sequence 07 11.086145 1.219031 1.033187 1.074191 0.858492 0.587579
Sequence 08 32.752558 12.314772 8.574063 24.35511 9.634456 8.787474
Sequence 09 163.527914 3.93364 7.159924 10.382833 10.319081 6.294579
Sequence 10 58.84271 1.552112 2.423999 2.155243 3.585033 -

Average 89.08071111 22.40409336 20.3708587 21.6542396 13.94669036 3.884981714

Table 2. Comparisons on RPE.

LOAM LeGO-LOAM DLO NDT Ours-No Loop Ours-Looped

Sequence 00 2.226906 4.465059 0.975846 1.003241 1.079489 1.357211
Sequence 01 - 11.09831 3.370803 - 3.459235 -
Sequence 02 5.831719 6.252685 1.146399 1.194927 1.145108 1.547784
Sequence 03 16.843572 16.817886 3.944846 3.209778 3.549879 -
Sequence 04 - 8.375045 0.060854 0.111419 0.052909 -
Sequence 05 2.203399 4.515387 0.885576 0.881588 1.477781 1.881688
Sequence 06 7.107527 6.308099 0.889477 0.904039 0.912664 1.622717
Sequence 07 1.725298 3.451616 0.756097 0.765544 0.788823 1.039604
Sequence 08 2.323839 4.669723 0.944999 0.960861 0.949687 1.165852
Sequence 09 6.100783 6.275799 1.351646 1.346625 1.415438 1.517305
Sequence 10 4.66399 4.687313 1.077134 1.025371 1.023478 -

Additionally, we evaluated the improvement in system performance due to the feature-
based inter-frame registration. Using the KITTI Sequence 07 dataset as an example, we
recorded and assessed the entire mapping process before and after the improvement in terms
of registration time, memory usage, and CPU usage. The results are shown in Figure 6a–c. It
can be observed that the feature-based inter-frame registration greatly enhances registration
efficiency. The average registration time was reduced by 66.7%, from 0.45 s to 0.15 s, memory
usage decreased by 23.16%, from 608,663.7 KB to 467,672.8 KB, and CPU usage dropped by
19.25%, from 12.82% to 10.35%.
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Figure 6. (a–c) Inter-frame registration time, memory usage, and CPU usage before and after the
improvement. Our improved method effectively reduces matching time and computational load.
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These results clearly demonstrate that the proposed improvements offer significant
enhancements in accuracy, efficiency, and resource usage compared to traditional methods,
providing a precise and efficient SLAM solution. In most scenarios, our method performs
at or even exceeds the capabilities of existing mainstream methods.

4.2. Real-World Experiments

This section evaluates the performance of the improved NDT framework in real-world
mapping and trajectory estimation. The experimental setup involved a differential-drive
mobile robot equipped with a laptop featuring an Intel i7-10750H processor and 16 GB
RAM, running the Ubuntu 18.04 operating system with the ROS Melodic framework.
A Hesai Pandar XT-16 mechanical 16-line LiDAR was used for environmental scanning.
The robot platform and sensor configurations are shown in Figure 7. All experiments were
conducted with consistent parameter settings to ensure fairness.

Figure 7. Mobile robot platform.

To evaluate the algorithm’s adaptability and robustness, we selected the following typ-
ical scenarios for testing. These scenarios encompass different environmental characteristics
to assess the improved NDT framework’s performance under diverse conditions:

• Indoor Environments: This includes one-way corridors, round-trip corridors, loop
corridors, and a long corridor with minimal features. Corridor scenarios feature
relatively simple structures with regular walls and doorways and minimal dynamic
interference, making them ideal for evaluating mapping accuracy and efficiency in
static, regular environments. The long corridor scenario, with sparse features and a
high degree of similarity, tests the algorithm’s ability to handle environments with
highly similar features.

• Outdoor Environments: The testing was conducted on a university campus, cov-
ering complex open spaces and building perimeters with dynamic objects such as
pedestrians and vegetation. These environments enabled the assessment of the algo-
rithm’s robustness in dynamic and uncertain conditions, with a focus on loop closure
detection, feature extraction, and map optimization strategies.

4.2.1. Indoor Environments

In the indoor scenarios, the robot platform was remotely controlled to move through
the four environments mentioned above, recording data for analysis. Maps generated
using the improved NDT framework are shown in Figure 8. The results demonstrate that
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the proposed method performs excellently, accurately capturing details such as walls and
doorways to create clear, complete maps. In round-trip and loop corridors, the improved
algorithm effectively detected loops and performed precise registration and optimization
without any artifacts or alignment errors.

(a) (b)

(c) (d)

Figure 8. Maps generated using the improved method. (a–d) The one-way corridor, round-trip
corridor, loop corridor, and long, feature-sparse corridor, respectively.

In contrast, maps generated using the original NDT framework under the same
conditions are shown in Figure 9. While the original method could generally complete
mapping in simple scenarios like one-way corridors, it failed in larger-scale environments
like loop corridors, where loop closure detection errors and redundant mapping caused
significant drift. This issue primarily stems from the original method’s reliance on complete
point clouds for registration, leading to slow computation that cannot keep up with high-
frequency point cloud inputs, resulting in frame drops and registration errors. Although the
original NDT method completed mapping in the one-way corridor, it lost details and failed
to accurately reflect the environment as illustrated in Figure 10.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. (a–d) Maps generated by the original method. Significant mapping errors occurred in larger
environments, such as (c,d).

(a) (b)

Figure 10. Detailed comparison between the improved and original methods. (a,b) The improved and
original methods, respectively. The improved method balances detail preservation and computation
speed, while the original sacrifices some environmental accuracy for mapping results.

4.2.2. Outdoor Environments

The outdoor experiments consisted of two scenarios:

• Scenario 1: A building perimeter primarily featuring straight paths with sharp or
large-angle turns. Shown in Figure 11a.

• Scenario 2: A circular building with a loop path requiring continuous angular adjust-
ments by the robot platform. Shown in Figure 12.

Both scenarios included dynamic features like vegetation and grass, adding challenges
to the map construction.

(a) (b) (c) (d)

Figure 11. Map comparison. (a) The Google Earth image. (b) LeGO-LOAM failed to close the loop
due to the lack of IMU data, leading to Z-axis drift. (c) The original NDT framework experienced
significant drift in large-scale complex environments. (d) The improved method produced maps
closely matching the real environment.
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图11
Figure 12. Detail of Scenario 2. The improved method preserved environmental details without
artifacts or mismatches.

In Scenario 1, the instability of vegetation points posed higher demands on the al-
gorithms’ feature-handling capabilities. LeGO-LOAM performed relatively well in this
environment, generating consistent maps with its lightweight design. However, due to
the absence of IMU data in this experiment, LeGO-LOAM exhibited drift along the Z-axis
during mapping and failed to close the loop during loop closure detection (Figure 11b).
Meanwhile, the original NDT framework retained many unstable points during mapping,
causing map drift (Figure 11c). In contrast, the improved NDT framework demonstrated
significant advantages, removing dynamic interference points through a point cloud pre-
processing module. With enhanced registration strategies and optimized loop closure
detection, it generated a clear and accurate map closely resembling the real environment
(Figure 11d), highlighting its adaptability to complex settings.

In Scenario 2, the circular building presented challenges for rotational computations in
NDT-based algorithms. The original method, constrained by computation speed, required
point cloud downsampling to perform basic mapping. However, this downsampling
strategy resulted in maps lacking environmental detail and failing to accurately reflect
the actual structure. The improved method, on the other hand, successfully completed
mapping, as shown in Figure 12, retaining intricate structural details. Figure 13 further
contrasts the maps generated by the original and improved methods, demonstrating the
significant advantages of the improved method in terms of accuracy and detail retention.

(a) (b) (c)

Figure 13. (a–c) Scenario 2 map comparison. (b) The map generated by the original NDT method
lacked details. (c) The improved method effectively preserved details.
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5. Discussion
This paper presents an enhanced NDT framework aimed at improving the accu-

racy, efficiency, and robustness of LiDAR-based SLAM systems in complex environments.
By integrating feature-based point cloud registration, loop closure detection, and global op-
timization, the proposed framework significantly improves the handling of high-frequency
point clouds and challenging scenarios. This paper proposes an enhanced NDT framework
that integrates feature-based point cloud registration, loop closure detection, and global
optimization to address key challenges in LiDAR-based SLAM systems. The framework
demonstrates superior performance in handling high-frequency point clouds and complex
environments. Compared to traditional methods, it achieves significant improvements in
accuracy, efficiency, and robustness, as evidenced by the experimental results.

To overcome the real-time mapping limitations of traditional NDT frameworks caused
by high computational demands, we introduced a preprocessing step that removes outliers,
separates the ground, and extracts key features from LiDAR point clouds. This approach
effectively reduces computational load and enhances real-time performance. However,
in environments with degraded features, such as those with sparse or noisy data, the feature
extraction process becomes less effective, potentially leading to mapping inaccuracies.
Future research could address this limitation by integrating adaptive feature extraction
techniques or leveraging machine learning-based methods for more robust preprocessing.

To improve the accuracy and robustness of loop closure detection, we developed a
hybrid approach that combines Radius Search and Scan Context methods. This integration
leverages the complementary strengths of both methods and merges their confidence scores
to enhance reliability in diverse and challenging environments. Compared to existing
single-method approaches, our hybrid model significantly reduces false positive rates
while maintaining high detection accuracy. This improvement is particularly important for
ensuring the consistency of long-term mapping in dynamic or large-scale scenarios.

To address the issue of insufficient map precision in feature-based point cloud regis-
tration, we integrated feature-based registration with full cloud mapping during global
optimization. This hybrid approach ensures that the final map retains both high accuracy
and rich environmental details. The experimental results validate that this integration
effectively balances computational efficiency with mapping precision, setting it apart from
traditional feature-based or dense-mapping-only frameworks. Future studies could ex-
plore further improvements by incorporating real-time global optimization techniques or
distributed computing strategies to handle even larger datasets.

While the proposed framework demonstrates strong performance across various sce-
narios, certain limitations remain. For example, the preprocessing step, though effective,
may introduce biases in environments with non-standard features. Additionally, the robust-
ness of the hybrid loop closure detection approach depends on the quality and distribution
of the input point clouds, which could affect results in highly dynamic environments.
Addressing these limitations will be a key focus of future research.

In conclusion, the enhanced NDT framework represents a significant advancement
in LiDAR-based SLAM systems by addressing critical limitations of traditional methods.
The integration of advanced preprocessing, hybrid loop closure detection, and global
optimization improves the robustness and accuracy of SLAM in complex environments.
These findings provide a solid foundation for further exploration and development of
high-performance mapping and localization systems, especially in real-time applications.

6. Conclusions
This study introduced an enhanced NDT-based framework for LiDAR SLAM systems,

focusing on improving computational efficiency, trajectory accuracy, and robustness in
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complex environments. Experimental results demonstrate that the proposed method
significantly outperforms traditional approaches in both computational speed and trajectory
accuracy. Specifically, the average registration time was reduced by 66.7%, memory usage
decreased by 23.16%, and CPU usage dropped by 19.25%. Furthermore, the accuracy of
trajectory estimation improved by more than 35%, both in scenarios with and without
loop closures. These improvements highlight the potential of the proposed framework in
real-time and resource-constrained SLAM applications.

Despite its strong performance across various test environments, there is room for
further optimization in key areas:

• Feature Extraction and Matching: Point cloud sparsity or occlusion can still affect
local precision during feature extraction and matching. Future work could explore
more efficient feature extraction algorithms and integrate multi-modal sensors (e.g.,
IMU and cameras) to enhance registration accuracy and robustness, especially in
dynamic or cluttered environments.

• Computational Efficiency in Large-Scale Environments: While the framework per-
forms well in typical scenarios, its computational efficiency in large-scale environments
remains an area for improvement. Developing strategies to balance accuracy and
processing speed is crucial for applications requiring high real-time performance, such
as autonomous driving or large-scale mapping.

These directions represent promising avenues for advancing the capabilities of the
proposed framework. By addressing these challenges, the framework can better meet the
demands of increasingly complex and dynamic SLAM scenarios, providing a foundation
for more robust and scalable localization and mapping systems in the future.
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