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Abstract: To address challenges such as the frequent misdetection of targets, missed
detections of multiple targets, high computational demands, and poor real-time detection
performance in the video surveillance of external breakage obstacles on transmission lines,
we propose a lightweight target detection algorithm incorporating the ACmix mechanism.
First, the ShuffleNetv2 backbone network is used to reduce the model parameters and
improve the detection speed. Next, the ACmix attention mechanism is integrated into the
Neck layer to suppress irrelevant information, mitigate the impact of complex backgrounds
on feature extraction, and enhance the network’s ability to detect small external breakage
targets. Additionally, we introduce the PC-ELAN module to replace the ELAN-W module,
reducing redundant feature extraction in the Neck network, lowering the model parameters,
and boosting the detection efficiency. Finally, we adopt the SIoU loss function for bounding
box regression, which enhances the model stability and convergence speed due to its
smoothing characteristics. The experimental results show that the proposed algorithm
achieves an mAP of 92.7%, which is 3% higher than the baseline network. The number
of model parameters and the computational complexity are reduced by 32.3% and 44.9%,
respectively, while the detection speed is improved by 3.5%. These results demonstrate
that the proposed method significantly enhances the detection performance.

Keywords: external breakage obstacles; ACmix attention; ShuffleNetv2 network; lightweight

1. Introduction
The monitoring and maintenance of transmission lines are critical for ensuring the

stable operation of power systems and public safety [1]. However, most transmission line
wires are exposed in the field, and the environmental conditions around tower installation
sites are often complex. These lines are vulnerable to the disturbances caused by factors
such as adverse weather, natural disasters, and external damage. With the rapid pace of
urbanization, the frequency of faults caused by external damage has been increasing year by
year. When transmission lines are damaged due to external factors (e.g., fallen trees, vehicle
impacts, or construction mishaps), the success rate of circuit breaker reclosing is low, which
significantly undermines the safe and stable operation of the power grid [2]. Therefore,
quickly and accurately identifying and detecting the potential hazards to transmission lines
caused by external damage has become an urgent issue.

Currently, common external breakage obstacles to transmission lines include trees,
mechanical equipment, wild animals, and flying objects. The inspection methods can be
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broadly classified into the following two categories: line patrol and online monitoring.
The line patrol method includes manual and drone patrols [3,4]. Manual patrols require
personnel to walk or use transport to inspect the line, which involves significant resource
and manpower investment. This method is particularly inefficient in complex areas where
transport cannot be used. Drone patrols, on the other hand, utilize drones equipped with
high-definition cameras, thermal imagers, and other sensors to conduct aerial inspections.
While the cost is lower, it still relies on the manual inspection of images to detect potential
hazards, which reduces the efficiency. The online monitoring method involves installing
video surveillance equipment at key nodes for real-time monitoring, coupled with computer
vision technology to extract and analyze the data [5]. This approach is an important research
direction for preventing external damage to transmission lines [6].

Video surveillance and computer vision technologies for detecting external breakage
obstacles to transmission lines face numerous challenges. On one hand, these obstacles
are often located in complex, diverse environments, and the types of obstacles are highly
variable, and frequently small, which leads to issues such as misdetection or missed
detection. On the other hand, existing models tend to have large computational loads and
poor real-time detection performance, making them unsuitable for real-time monitoring
across a wide range of scenarios. To address these issues, this paper proposes a lightweight
external damage obstacle detection algorithm. The main contributions are as follows:

(1) The lightweight ShuffleNetv2 network is incorporated into the backbone of the
YOLOv7 model, reducing the number of model parameters and enhancing the detec-
tion speed.

(2) The ACmix attention mechanism module is embedded into the Neck layer of the
network, strengthening the model’s feature extraction and integration capabilities,
thereby improving the recognition accuracy of small external breakage targets.

(3) A PC-ELAN module is designed by replacing the standard convolution in the ELAN-
W module of the original Neck network with partial convolution (PConv). This
modification reduces the influence of irrelevant information on feature learning,
decreases the computational costs, and improves the detection efficiency.

(4) The SIoU loss function is introduced to reduce unstable gradient variations, provide a
more stable training process, and accelerate the model’s convergence.

The following sections present a detailed description of the methodology used in
this paper, including the network architecture design and experimental strategy. Section 2
provides a literature review of the relevant research and introduces the original YOLOv7
model structure. Section 3 details the improved network model and the individual modules
proposed in this study. Section 4 outlines the experimental setup, including the environ-
ment configuration, dataset, and evaluation metrics. It also presents results from various
experiments, including attention experiments, loss function experiments, ablation studies,
and comparative experiments. Finally, Section 5 summarizes the key findings, discusses
the limitations, and suggests directions for future research.

2. Related Work
2.1. Detection of External Breakage Obstacles Outside Transmission Lines

Target detection algorithms are generally classified into the following two categories
based on their design and working principles: two-stage detection networks and single-
stage detection networks. Two-stage detection networks first generate candidate regions,
followed by region classification and bounding box regression. Examples include algo-
rithms such as Faster R-CNN [7], Mask R-CNN [8], and Cascade R-CNN [9]. In contrast,
single-stage detection networks perform target detection and bounding box regression
simultaneously within a unified framework, such as the YOLO series [10–15] and SSD [16].
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In the complex environment of transmission lines, two-stage detection networks are char-
acterized by a high computational complexity and slow inference speed, making them
unsuitable for real-time applications. Additionally, these networks are prone to errors in
candidate region detection, especially in complex backgrounds, leading to false or missed
detections. On the other hand, while single-stage detection networks are faster, they often
struggle with detecting small target obstacles caused by external damage. These networks
are also more susceptible to interference from complex backgrounds and may have limited
performance when handling multiple targets simultaneously. Thus, improving the detec-
tion accuracy for small and multiple targets in the challenging environment of transmission
lines, while balancing computational complexity and real-time performance, remains a
critical area of research.

Deep learning algorithms, particularly those based on convolutional neural networks
(CNNs), have demonstrated a strong potential for detecting external breakage obstacles
in transmission lines [17,18]. Zhang Ji et al. [19] applied the Faster R-CNN algorithm to
target the identification of transmission line external breach hazards, showing that image
recognition technology can effectively detect breach risks. Wei Xianzhe et al. [20] utilized
an improved Mask-RCNN network for transmission line external breakage detection, mi-
grating detection branch features to the mask branch, which offered a novel approach for
accurately identifying and segmenting external breakage hazard targets. Tian Ersheng
et al. [21] employed an enhanced K-means algorithm for target size clustering analysis
and applied the YOLOv4 algorithm to detect external breakage hidden targets, improving
the identification accuracy. Zheng Hanbo et al. [22] proposed a YOLO-2MCS-based hid-
den target detection method for transmission line corridors, incorporating a hybrid data
augmentation strategy to improve the model’s ability to detect multi-scale targets. Sun
Yang et al. [23] introduced a transmission line foreign object detection algorithm based on
channel pruning, effectively reducing the model size and improving the detection efficiency.
Long Leyun et al. [24] enhanced YOLOv5 by incorporating a self-attention module for
improved feature extraction and used a multi-scale domain-adaptive network for adversar-
ial learning to boost the model’s generalization ability. Wang Yanhai et al. [25] proposed
an improved YOLOv7-based target detection algorithm for mechanical breach hazards,
integrating the Swin Transformer attention mechanism to enhance the multi-scale feature
extraction and using depthwise separable convolution to reduce the model computational
costs, resulting in a superior detection accuracy and model efficiency compared to other
mainstream algorithms.

Although the above algorithms have shown success in detecting breakage obstacles
on transmission lines, they still face challenges in dealing with the diverse and complex
environments of transmission line corridors. Due to significant background noise interfer-
ence, targets are often indistinguishable from the natural surroundings, making it difficult
for the model to accurately distinguish between relevant targets and irrelevant background.
Additionally, small targets are more likely to be overlooked or misdetected, especially at
long distances or from restricted viewing angles, leading to a reduced detection accuracy.
Furthermore, when multiple targets appear in the same frame, occlusion and deforma-
tion between targets exacerbate the problem of missed detections. In conclusion, existing
research has not fully addressed the issues of multi-target misdetection and small target
detection in complex environments. Therefore, further exploration is needed to improve the
feature extraction, network architecture design, and multi-target differentiation to enhance
the accuracy and robustness of transmission line hazard detection.
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2.2. YOLOv7 Network Structure

YOLOv7 is an end-to-end target detection model that introduces several optimiza-
tions compared to YOLOv5, particularly in the network structure, data augmentation, and
activation functions. The specific network structure is shown in Figure 1. YOLOv7 en-
hances the model’s feature learning capabilities through the introduction of a new network
architecture called E-ELAN. This architecture maintains the integrity of gradient paths
while optimizing feature extraction and fusion, thereby accelerating model convergence
and improving its robustness in handling complex scenes and diverse targets. Additionally,
YOLOv7 incorporates RepConv, a re-partitioned convolutional layer [26], in the Head layer
of the prediction Head. This adjustment modifies the number of output feature channels,
optimizing the computational efficiency and enhancing the model’s expressive power.
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Figure 1. The YOLOv7 network structure. It consists of the backbone, Neck, and Head, where the
CBS module consists of the Conv, BN, and SiLU activation functions to extract basic features. The
ELAN and ELAN-W modules are used to enhance the gradient flow and multi-scale feature learning,
while the SPPCSPC modules integrate the Spatial Pyramid Pooling (SPP) and Cross-Stage Partial
(CSP) architectures to improve the feature representation. MP-1 and MP-2 are subsampling modules,
which can effectively transmit multi-scale information. The RepConv module is used to classify and
locate objects.
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3. Proposed Methodology
The network structure of YOLOv7 is relatively complex, requiring significant com-

putational resources, which can lead to the overlooking or misdetection of small targets
in complex backgrounds. To address these issues, this paper introduces ShuffleNetv2
as the backbone network for the original YOLOv7 architecture and embeds the ACmix
attention mechanism module into the Neck layer. Additionally, we designed the PC-ELAN
module to replace the ELAN-W module in the Neck network, optimizing the feature ex-
traction and fusion. Finally, the SIoU loss function is adopted for edge regression, enabling
the lightweight and accurate detection of external breakage obstacles. The results of the
improved network are shown in Figure 2.
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Figure 2. Improved network structure diagram. SNet-2 is a ShuffleNetv2 base unit, which realizes
efficient and lightweight feature extraction through a channel grouping and mixing mechanism.
ACmix is a newly added attention mechanism that highlights key information areas by dynamically
weighting them. PC-ELAN is an ELAN module improved by PConv, which effectively reduces
redundant calculations in the feature extraction process. The SIOU loss function is used in Detect to
improve the location accuracy of the target.
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3.1. Backbone Network Lightweighting Based on ShuffleNetv2

YOLOv7 uses CSP-Darknet53 as its backbone network, which has a large number of
model parameters and a slower detection speed. To optimize this, this paper introduces
ShuffleNetv2 [27] as a lightweight network to replace the YOLOv7 backbone, reducing the
number of parameters and improving the detection efficiency.

ShuffleNetv2 is a lightweight convolutional neural network, and Figure 3 shows its
basic unit. This network reduces the computation complexity and the number of param-
eters while maintaining a high accuracy. Compared to ShuffleNetv1 [28], ShuffleNetv2
optimizes the network structure by introducing channel segmentation. In this operation,
the input feature map is split into several groups, with each group undergoing convo-
lution independently, and the resulting feature maps are then reassembled. The process
begins with the channel segmentation of the input feature map, which is divided into two
branches. The left branch performs no operation, while the right branch contains two
standard convolutions and one depth-separable convolution. Finally, the two branches are
fused using a Concat operation. This channel mixing operation allows for the exchange
of information between feature maps from different groups, reducing the computational
complexity and making more efficient use of hardware resources, thereby improving the
computational efficiency.
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Figure 3. ShuffleNetv2 basic unit.

3.2. Embedded ACmix Attention Mechanism to Capture Global Information

The ACmix attention mechanism [29] (shown in Figure 4) combines traditional con-
volution with a self-attention mechanism to generate the final feature representation by
aggregating the output features from both the convolution path and the self-attention
path. This mechanism merges the local feature extraction capability of convolution with
the global contextual awareness of self-attention, improving the model’s ability to focus
on small targets in complex environments. In traditional convolution, the convolution
operation effectively captures local features and can control the fine-grainedness of these
features by adjusting parameters such as the kernel size and stride. In the self-attention
module, multi-Head self-attention is computed through intermediate features, allowing
the model to focus on different regions of the input and to capture global information
mor effectively.

∼
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gij = ∑
p,q

g(p,q)
ij (3)

where K represents the kernel size; Kp,q represents the center position in terms of (p, q) and
K is the nuclear inch scale; f and g represent the input and output feature maps, respectively;
fi,j, gi,j represent the feature tensor of the corresponding pixel (i, j) for f and g, respectively;
(p, q) represents the kernel position.
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The self-attention mechanism determines the attention weights by dynamically calcu-
lating the similarity between relevant pixels using a weighted average operation on the
input feature context. This allows the attention module to adaptively focus on different
regions, expand its receptive field, and capture more contextual information. As a result, it
can more effectively distinguish between the background and the target, capturing more
useful features. The computation process can be divided into the following two phases. In
the first phase, the input is projected into query and value matrices via 1 × 1 convolutions,
with the features transformed into queries, keys, and values. In the second phase, attention
weights are computed, and the value matrices are aggregated. For a standard self-attentive
module with N heads, the input tensor is F ∈ RCin×H×W, its input tensor is a, and its output
tensor is G ∈ RCout×H×W, where H and W denote the height and width, and fij ∈ RCin and
gij ∈ RCout are pixels (i, j) corresponding to F and G, and its output computation can be
expressed as

gij =
N

∏
l=1

 ∑
a,b∈Nk(i,j)

A
(

W(l)
q fij, W(l)

k fab

)
W(l)

v fab

 (4)

where W(l)
q ,W(l)

k ,W(l)
v represent the projection matrices for the queries, keys, and values,

respectively; Nk(i, j) denotes the local region centered at (i, j) with a pixel space range of k;
and ∏N

l=1 is the concatenation of the outputs from N attention heads. The self-attention
weights are calculated as

A
(

W(l)
q fij, W(l)

k fab

)
= softmax


(

W(l)
q fij

)T(
W(l)

k fab

)
√

d

 (5)

In summary, the above can be decomposed into two stages and reformulated as
the following:

q(l)
ij = W(l)

q fij, k(l)
ij = W(l)

k fij, v(l)
ij = W(l)

v fij (6)
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N

∏
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 ∑
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A
(
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ab

)
ν
(l)
ab

 (7)
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Ultimately, the output of the ACmix module is the sum of the results from the two
paths, as shown in Equation (8), where α and β represent the learning parameters for convo-
lution and self-attention, respectively, with default values of 1. This fusion process preserves
the convolution’s sensitivity to local features while incorporating the self-attention mecha-
nism’s ability to capture global features. This enhances the model’s feature extraction and
expression capabilities.

Fout = αFconv + βFatt (8)

3.3. Designing PC-ELAN Modules to Reduce Memory Consumption

The PC-ELAN module replaces the standard convolution in the ELAN-W of the
original YOLOv7 Neck network with a lightweight partial convolution (PConv). The
structure of the partial convolution (PConv) is shown in Figure 5, where * represents the
convolution operation. In this approach, when performing spatial feature extraction with
the convolution kernel, consecutive channels in the front or back segments are selected to
represent the entire feature map, while the remaining channels are preserved. This reduces
the network size while maintaining efficient spatial feature extraction.
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Compared to standard convolution, PConv applies convolution to only a portion of
the feature map, effectively reducing the computational load and memory usage while
maximizing the device’s computational power. The FLOP formula for PConv [30] is
provided in Equation (9), as follows:

FLOPs = h × w × k2 × c2
p (9)

where h and w represent the height and width of the feature map, respectively, while
k denotes the size of the convolution kernel, corresponding to the number of channels
processed by the regular convolution.

3.4. Improving Convergence Speed Using SIoU Loss Function

The coordinate loss function in YOLOv7 is computed using the Complete Intersection
over Union (CIoU), as follows:

LCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + αv (10)

α =
v

(1 − IoU) + v
(11)
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v =
4
π2

(
arctan

wgt

hgt − arctan
w
h

)2

(12)

where c denotes the diagonal length of the smallest enclosing rectangle that contains both
the predicted and actual bounding boxes. This is commonly used as a measure of the spatial
relationship and enclosing properties between the two frames; ρ denotes the Euclidean
distance between the centroids of the predicted and actual boxes, quantifying the spatial
distance between them; α is a positive trade-off coefficient; v is used as a measure of the
consistency in aspect ratios.

The CIoU builds upon the DIoU [31] by adding an additional penalty term to update
the loss related to the scale aspect of the bounding boxes. This improves the stability of
the target box regression and mitigates the divergence problem that may arise during the
training of the IoU [32] and GIoU [33]. However, while the CIoU takes into account the
centroid distance, overlap area, aspect ratio, and width-to-height ratio, it does not fully
account for true aspect ratio differences or the directional mismatch between the predicted
and actual boxes. This limitation restricts the model’s ability to optimize the similarity, thus
reducing the detection efficiency.

To address these limitations, the loss function is improved by replacing the CIoU
with the SIoU [34] to accelerate the convergence. The SIoU loss function incorporates scale
sensitivity and angular considerations. It adjusts the predicted box to be more accurately
aligned with the target position, reduces the degrees of freedom, and reflects the effect of
the width and height on the confidence more realistically. Furthermore, during bounding
box regression, the SIoU considers the rotational alignment between the predicted and
true boxes, correcting the directional mismatches and improving the model’s performance
compared to the CIoU. Specifically, the SIoU incorporates the vector angles between the real
and predicted boxes and redefines the loss function with the following four components:
the angle loss, distance loss, shape loss, and IoU loss.

(1) Angle loss

The angular loss function part, which optimizes the loss calculation by considering the
angle of the vectors between the real and predicted frames, is defined as shown in Figure 6
and Equation (13) below:

∧
= 1 − 2 ∗ sin2

(
arcsin

(
Ch
σ

)
− π

4

)
(13)

where Ch is the height difference between the center point of the real frame and the
predicted frame, σ is the distance between the center point of the real frame and the
predicted frame, and arcsin

(
Ch
σ

)
is the angle α.
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(2) Distance loss

Distance loss is used to measure the distance between the true box and the predicted
box. The purpose of the distance loss is to accelerate the convergence and improve the
performance by minimizing the normalized distance between the centroids of the two
bounding boxes, as defined in Figure 7 and Equation (14) below:

∆ = ∑
t=x,y

(
1 − e−γρt

)
(14)

where ρx =

(
bgt

cx−bcx
cw

)2
,ρy =

(
bgt

cy−bcy
ch

)2

, γ = 2 − Λ, and cw, ch are the width and height

of the smallest outer rectangle of the real and predicted boxes.
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(3) Shape loss

The shape loss helps the model to better match the geometric properties of the real
and predicted frames by considering the height information of the bounding box, which is
defined by Equation (15), as follows:

Ω = ∑
t=w,h

(
1 − e−ωt

)θ (15)

where ωw =
|w−wgt|

max(w,wgt)
,ωh =

|h−hgt|
max(h,hgt)

, and θ controls the amount of attention paid to the
shape loss.

(4) IoU loss

The IoU is the ratio of the area of the intersection of the prediction frame and the real
frame (ground truth) to the area of concatenation, defined in Figure 8 and Equation (16),
as follows:

IoU =

∣∣B ∩ BGT
∣∣

|B ∪ BGT |
(16)

In summary, the final SIoU loss function is defined as follows:

Lbox = 1 − IoU +
∆ + Ω

2
(17)
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4. Experiments
4.1. Experimental Environment and Parameter Configuration

The configuration details of the experimental environment are provided in Table 1. The
input image size is 640 × 640 × 3. The weight decay is set to 0.0005, and the training batch
size is 16, with a total of 200 batches. The initial learning rate is 0.01, and the momentum is
set to 0.95.

Table 1. Experimental environment configuration.

Configuration Name Version/Parameter

Operating system Ubuntu 20.04LTS
GPU RTX4090ti × 2
RAM 48 GB

Memory 2TB SATA
PyTorch 2.0.1
CUDA 11.3
Python 3.9.0

4.2. Experimental Dataset

The experiments in this paper are validated on two video surveillance externally
damaged obstacle datasets, which include the general background external broken target
dataset and complex background external broken target dataset; the information of the
datasets is shown in Figure 9, and Labelme software v4.5.6 (MIT Computer Science and
Artificial Intelligence Laboratory, Cambridge, MA, USA) was used to label the data, and
the sample dataset is shown in Figure 10, which is briefly introduced as follows:

(1) General background external broken target dataset: This dataset contains the follow-
ing five typical hidden target categories: trucks, crane towers, excavators, cranes,
and trees. It includes a total of 1307 images with a resolution of 800 × 600, yielding
1612 labeled samples. The breakdown is as follows: 356 trucks, 541 crane towers,
298 excavators, 174 cranes, and 243 trees.

(2) Complex background external broken target dataset: This dataset contains 500 high-
definition images of externally broken obstacles under complex backdrop conditions,
with a resolution of 1200 × 900, totaling 1694 labeled samples. The distribution is as
follows: 478 trucks, 641 crane towers, 214 excavators, 123 cranes, and 238 trees.
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4.3. Evaluation Index

To validate the detection performance of the model, the experiments used several
evaluation metrics, including Precision (P), Recall (R), Average Precision (AP), Mean
Average Precision (mAP), Frames Per Second (FPS), Giga Floating Point Operations Per
Second (GFLOPs), and Number of Parameters (Params).

P =
TP

TP + FP
(18)

R =
TP

TP + FN
(19)

AP =
∫ 1

0
P(r)dr (20)
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mAP =
1
N

N

∑
n=1

AP(n) (21)

P represents the proportion of predicted positive samples that are actually positive,
ranging from [0, 1], which should be maximized for optimal results. R indicates the
proportion of actual positive samples that are correctly predicted as positive, also ranging
from [0, 1], with larger values preferred. AP combines P and R to measure the detection
precision for a single category, ranging from [0, 1], with higher values indicating better
performance. mAP averages the AP across all categories, providing an overall measure
of the detection accuracy for multiple categories, with values closer to one being better.
FPS indicates the number of frames per second the model can process, which should be
maximized for optimal results. GFLOPs refers to the computation required by the model to
process an image, with lower values being better. Params indicates the total parameters in
the model, with smaller values being preferred, as they indicate a more lightweight model.

4.4. Experimental Results and Analysis
4.4.1. Attention Mechanism Selection Experiments

This experiment was conducted using the general background external broken tar-
get dataset. Various attention mechanisms, including ACmix, Squeeze-and-Excitation
(SE) [35], Coordinate Attention (CA) [36], and the Convolutional Block Attention Module
(CBAM) [37], were integrated into the YOLOv7 model so to analyze their impact on the
detection performance. The experimental results are presented in Table 2. Among the tested
mechanisms, the ACmix attention mechanism demonstrates the best overall performance,
improving the detection accuracy by 1% compared to the CBAM model. Additionally,
the number of parameters and computational load are reduced by 0.2M and 0.4 GFLOPs,
respectively, resulting in an enhanced detection efficiency.

Table 2. Comparison results of the different attentional mechanisms for the general background
external broken target dataset.

Index Attention Mechanism Params M FLOPs G FPS mAP %

A SE 37.8 103.8 64.8 86.2
B CA 38.1 103.7 63.9 88.4
C CBAM 37.8 103.9 64.7 89.9
D ACmix 37.6 103.5 65.2 90.9

4.4.2. Loss Function Selection Experiment

In this paper, experiments were conducted using the complex background external
broken target dataset to compare the different loss functions and analyze their impact on
model performance. The experimental results are presented in Table 3, while Figure 11a,b
illustrate the loss reduction curves during training and validation for each loss function.
From the graphs, it can be observed that the SIoU loss reaches the minimum, exhibits
smaller fluctuations, converges faster, leading to the best detection performance.

Table 3. Comparison results of the different loss functions for the complex background external
broken target dataset.

Index Loss P % R % mAP0.5 % mAP0.5–0.95 %

A CIoU 91.1 85.1 89.7 56.3
B DIoU 89.7 85 89.6 56.1
C EIoU 91.2 85.8 89.9 56.3
D SIoU 91.3 85.1 90.4 56.1



Processes 2025, 13, 271 14 of 20Processes 2025, 13, 271 15 of 21 
 

 

  
(a) (b) 

Figure 11. Different IoU loss function curves for the complex background external broken target 

dataset. (a) Training set; (b) Validation set. 

4.4.3. Ablation Experiment 

To evaluate the performance of the improved modules, ablation experiments were 

conducted based on the proposed network structure. The experimental data used were 

from the general background external broken target dataset, and the results are shown in 

Table 4, where a ‘√’ indicates the corresponding method was applied. 

Group A represents the results of the original YOLOv7 algorithm. Group B intro-

duces ShuffleNetv2 as the backbone network. This improves the model’s detection speed 

by 1.7 frames/s and reduces the number of parameters and FLOPs by 12M and 18.6G, 

respectively. However, detection accuracy decreases by 1.3%. This is because Shuf-

fleNetv2 employs techniques such as grouped convolution and channel blending to re-

duce the computational complexity, sacrificing some model capacity and limiting its abil-

ity to capture rich feature information compared to the original network. Group C embeds 

the ACmix attention mechanism in the SPPCSPC layer of the Neck network, improving 

the detection accuracy by 1.2%. This is due to ACmix’s ability to combine channel and 

spatial attention, thereby better capturing important features in the image. Group D re-

places the ELAN-W modules in both the backbone and Neck networks with the PC-ELAN 

modules. This reduces the number of parameters and FLOPs by 9.8M and 30G, respec-

tively. The improvement is attributed to PConv in PC-ELAN, which effectively reduces 

the computational cost of feature maps. Group E adopts the SIoU loss function, increasing 

the detection speed by 2.9 frames/s. This improvement results from the SIoU’s ability to 

reduce unstable gradient changes, leading to a more stable training process. Groups F and 

G incorporate the ACmix attention mechanism and optimize the loss function within the 

ShuffleNetv2 backbone network, respectively. Both groups achieve reductions in param-

eters and FLOPs. Group H is the proposed improved algorithm, achieving an FPS of 69.3 

frames/s, with a significant reduction in both parameters and computational load, while 

achieving the highest detection accuracy. In summary, the reduction in the detection ac-

curacy caused by introducing the ShuffleNetv2 backbone is fully compensated—and fur-

ther improved—by embedding the ACmix attention mechanism, employing the PC-

ELAN module, and adopting the SIoU loss function. These enhancements strike a balance 

between detection accuracy and model lightweighting, effectively improving the speed, 

parameter efficiency, and computational cost. 

  

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 50 100 150 200 250

L
o
ss

Epoch

CIoU
DIoU
EIoU
SIoU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 50 100 150 200 250

L
o
ss

Epoch

CIoU

DIoU

EIoU

SIoU

Figure 11. Different IoU loss function curves for the complex background external broken target
dataset. (a) Training set; (b) Validation set.

4.4.3. Ablation Experiment

To evaluate the performance of the improved modules, ablation experiments were
conducted based on the proposed network structure. The experimental data used were
from the general background external broken target dataset, and the results are shown in
Table 4, where a ‘

√
’ indicates the corresponding method was applied.

Group A represents the results of the original YOLOv7 algorithm. Group B introduces
ShuffleNetv2 as the backbone network. This improves the model’s detection speed by
1.7 frames/s and reduces the number of parameters and FLOPs by 12M and 18.6G, re-
spectively. However, detection accuracy decreases by 1.3%. This is because ShuffleNetv2
employs techniques such as grouped convolution and channel blending to reduce the com-
putational complexity, sacrificing some model capacity and limiting its ability to capture
rich feature information compared to the original network. Group C embeds the ACmix
attention mechanism in the SPPCSPC layer of the Neck network, improving the detection
accuracy by 1.2%. This is due to ACmix’s ability to combine channel and spatial attention,
thereby better capturing important features in the image. Group D replaces the ELAN-W
modules in both the backbone and Neck networks with the PC-ELAN modules. This
reduces the number of parameters and FLOPs by 9.8M and 30G, respectively. The improve-
ment is attributed to PConv in PC-ELAN, which effectively reduces the computational
cost of feature maps. Group E adopts the SIoU loss function, increasing the detection
speed by 2.9 frames/s. This improvement results from the SIoU’s ability to reduce unstable
gradient changes, leading to a more stable training process. Groups F and G incorporate
the ACmix attention mechanism and optimize the loss function within the ShuffleNetv2
backbone network, respectively. Both groups achieve reductions in parameters and FLOPs.
Group H is the proposed improved algorithm, achieving an FPS of 69.3 frames/s, with
a significant reduction in both parameters and computational load, while achieving the
highest detection accuracy. In summary, the reduction in the detection accuracy caused
by introducing the ShuffleNetv2 backbone is fully compensated—and further improved—
by embedding the ACmix attention mechanism, employing the PC-ELAN module, and
adopting the SIoU loss function. These enhancements strike a balance between detection
accuracy and model lightweighting, effectively improving the speed, parameter efficiency,
and computational cost.
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Table 4. Results of the ablation experiments on the general background external broken target dataset.

Index SNetv2 ACmix PC-ELAN SIoU Params M FLOPs G FPS mAP %

A 36.5 103.2 65.8 89.7
B

√
24.5 84.6 67.5 88.4

C
√

37.6 103.5 65.2 90.9
D

√
26.7 72.3 66.4 89.3

E
√

36.5 103.2 68.7 90.4
F

√ √
29.2 67.8 65.3 89.8

G
√ √

23.7 66.4 68.3 91.2
H

√ √ √ √
24.7 56.8 69.3 92.7

4.4.4. Comparative Experiment

To further validate the performance of the proposed algorithm, comparison experi-
ments were conducted against mainstream models, including Faster R-CNN, SSD, YOLOv3,
YOLOv5m, YOLOv5s, YOLOX, YOLOv7-tiny, YOLOv7, and YOLOv8s, using the general
background external broken target dataset.

As shown in Table 5, the proposed method achieves an average accuracy of 92.7%,
which is 3% higher than the original YOLOv7. Additionally, the number of parameters and
computational cost are reduced by 32.3% and 44.9%, respectively, compared to YOLOv7,
resulting in optimal overall performance. Although the YOLOv8s model has a slightly
lower number of parameters and computational cost than the proposed algorithm, its
accuracy is significantly lower. In summary, the improved model presented in this paper
demonstrates a faster detection speed and higher accuracy, making it more suitable for
deployment on resource-constrained edge devices. This makes it particularly advantageous
for industrial applications, supporting the intelligent development of modern transmission
line inspection systems.

Table 5. Comparison experiment results on the general background external broken target dataset.

Index Model P % R % Params M FLOPs G FPS mAP %

A Faster R-CNN 61.1 82.1 52.7 95.7 22.6 82.6
B SSD 57.6 74.5 31.9 67.83 38.9 65.4
C YOLOv3 87.5 61.5 78.5 134.6 37.6 85.2
D YOLOv5m 81.7 74.2 30.8 68.3 59.2 82.2
E YOLOv5s 83.1 78.8 17.2 35.8 72.4 84.6
F YOLOX 86.3 79.2 18.3 41.26 58.7 86.2
G YOLOv7-tiny 85.5 84.1 13.7 26.8 58.8 87.7
H YOLOv7 87.9 86.9 36.5 103.2 65.8 89.7
I YOLOv8s 91.1 75.6 11.1 28.4 75.2 84.3
J Ours 90.4 87.7 24.7 56.8 69.3 92.7

To provide a more intuitive comparison of the detection performance, representative
images from both the general and complex background target datasets were selected for
visual analysis. Figure 12 shows the detection results for each comparative model under the
general background dataset. The Faster R-CNN algorithm exhibits severe issues with false
positives and missed detections, particularly in scenarios involving dense and overlapping
small targets. In such cases, the network tends to either merge multiple targets into one or
incorrectly split similar regions, leading to detection errors. Although the YOLOv5m model
shows improvements in the detection accuracy, its performance on small objects remains
limited. This is due to the sparse pixel representation of small objects in the images, which
diminishes the models’ ability to recognize them, resulting in continued false positives and
missed detections.
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The algorithm proposed in this paper enhances the detection accuracy and reduces the
occurrence of false positives and missed detections by improving the model’s long-range
dependency and feature fusion capabilities. As shown in Figure 9, the proposed model
achieves superior detection performance compared to the other tested models.
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4.4.5. Generalization Experiment

To evaluate the generalization ability of the proposed method in complex backgrounds,
validation experiments were conducted using the complex background external broken
target dataset. This dataset includes a variety of challenging conditions and interference
factors, such as different terrain types (e.g., mountainous areas, forests, and fields) and
adverse weather conditions, to simulate the diversity and complexity of real-world sce-
narios. The detection results are presented in Table 6. As can be seen from the table, the
model proposed in this paper achieves the highest detection accuracy of the target, while
significantly reducing the number of parameters and computational cost, and improves its
ability to deal with complex backgrounds by utilizing global contextual information.

The results of visual analysis in complex backgrounds are shown in Figure 13. In
scenes with intricate backgrounds and numerous interfering targets, the original algorithm
exhibits severe false positives and missed detections, particularly in the areas marked by red
circles. The detection accuracy for external breakage obstacles deteriorates in such cases. In
contrast, the improved algorithm effectively suppresses background noise interference and
substantially mitigates the issues of false positives and missed detections for small targets
and multiple overlapping targets. In summary, the proposed algorithm better adapts to
real-world transmission line scenarios by integrating multi-scale feature information of
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externally breakage obstacles. As a result, it achieves superior detection performance for
such targets under complex background conditions.

Table 6. Experiments on the generalizability of the complex background external broken tar-
get dataset.

Index Model P % R % Params M FLOPs G FPS mAP %

A Faster R-CNN 59.5 80.9 52.7 95.7 21.4 80.1
B SSD 54.7 72.1 31.9 67.83 36.2 63.7
C YOLOv3 84.5 60.2 78.5 134.6 39.3 81.6
D YOLOv5m 80.2 72.5 30.8 68.3 57.1 79.2
E YOLOv5s 81.5 76.3 17.2 35.8 74.2 83.6
F YOLOX 84.1 77.5 18.3 41.26 57.3 81.4
G YOLOv7-tiny 84.3 83.4 13.7 26.8 68.5 84.7
H YOLOv7 87.2 85.3 36.5 103.2 64.5 88.6
I YOLOv8s 88.7 73.1 11.1 28.4 72.1 84.1
J Ours 90.4 86.5 24.7 56.8 69.3 91.4
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5. Discussion and Conclusions
In this paper, we proposed an improved lightweight obstacle detection algorithm for

small targets outside of broken transmission lines, which enhances the detection perfor-
mance by incorporating ShuffleNetv2, the ACmix attention mechanism, the PC-ELAN
module, and the SIoU loss function. The experimental results show that the algorithm
achieves a 92.7% and 91.4% detection accuracy on two datasets with general and complex
backgrounds, respectively, which is 3.0% and 2.8% higher than the original YOLOv7 model.
Additionally, the model’s parameters are reduced by 32.3%, and the computational cost is
lowered by 44.8%. These improvements alleviate issues such as misdetection, omissions,
and inefficiency in detecting small obstacle targets in transmission lines, providing reliable
technical support for enhancing the safety and stability of power transmission systems,
with strong practical application prospects.
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Although the model proposed in this paper alleviates small target misdetection and
omission, it still has the following limitations:

(1) FLOPs Optimization: While the model demonstrates lower FLOPs compared to
most other models, as shown in Tables 5 and 6, its computation still exceeds that of
YOLOv5s, YOLOv7-tiny, and YOLOv8s. Future work will focus on further reducing
the computation and model parameters while maintaining the detection accuracy,
enabling the model to be deployed efficiently in industrial environments.

(2) Handling Complex Scenes: The model performs well in general background scenarios,
as shown in Figure 12, but there is room for improvement in the accuracy when dealing
with complex backgrounds. Future work will aim to enhance the model’s robustness
in extremely complex environments, ensuring good detection performance in more
challenging scenes.
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PConv Partial Convolution
CNNs Convolutional Neural Networks
SPP Spatial Pyramid Pooling
CSP Cross-Stage Partial
IoU Intersection over Union
CIoU Complete Intersection over Union
GIoU Generalized Intersection over Union
DIoU Distance Intersection over Union
EIoU Enhanced Intersection over Union
SIoU Scalable Intersection over Union Loss
mAP Mean Average Precision
FPS Frames Per Second
GFLOPs Giga Floating Point Operations Per Second
Params Number of Parameters
SE Squeeze-and-Excitation
CA Coordinate Attention
CBAM Convolutional Block Attention Module
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