Harnessing Brain Plasticity: The Therapeutic Power of Repetitive Transcranial Magnetic Stimulation (rTMS) and Theta Burst Stimulation (TBS) in Neurotransmitter Modulation, Receptor Dynamics, and Neuroimaging for Neurological Innovations
Abstract
:1. Introduction
Technique | Stimulation Pattern | Effect on Cortical Excitability | Therapeutic Potential |
---|---|---|---|
rTMS | Repetitive pulses of magnetic stimulation over a specific brain region | Low-frequency: Inhibitory High-frequency: Excitatory | Modulates cortical networks in particular brain regions |
TBS | Burst of high-frequency magnetic pulses mimicking theta rhythms | Intermittent (iTBS): Excitatory Continuous (cTBS): Inhibitory | Targets neuroplasticity with patterned stimulation |
Neurotransmitter System | Role | Effect of rTMS/TBS |
---|---|---|
GABA (Gamma-Aminobutyric Acid) | Inhibitory synaptic transmission | Modulates GABAergic transmission to decrease cortical inhibition |
Glutamate | Excitatory synaptic transmission | Enhances glutamatergic signaling, promoting cortical excitation |
NMDA and AMPA Receptors | Synaptic plasticity and transmission | Modulates function of NMDA and AMPA receptors, influencing long-term potentiation (LTP) and long-term depression (LTD) |
Protein | Role in Synaptic Plasticity | Effect of rTMS/TBS |
---|---|---|
BDNF | Promotes neuronal growth and synaptic plasticity | Increases BDNF expression, promoting neuroplasticity and cognitive recovery |
TrkB | Receptor for BDNF activates signaling pathways | Modulates synaptic structure and function via activation of intracellular cascades |
PSD-95 | Maintains synaptic integrity | rTMS/TBS modulates expression, influencing the stability of synaptic connections |
Neuroimaging Techniques | Purpose | Advantages |
---|---|---|
fMRI (Functional MRI) | Measures brain activity and connectivity | Real-time observation of brain regions affected by rTMS/TBS |
dMRI (Diffusion MRI) | Assesses structural brain changes | Identifies alterations in white matter pathways |
MRS (Magnetic Resonance Spectroscopy) | Analyzes the chemical composition of brain tissue | Provides information on metabolite concentrations in brain regions |
CHESS (Chemical Shift Selective Imaging) | Visualizes specific metabolites using selective imaging techniques | Enhances imaging of targeted compounds within brain structures |
PET (Positron Emission Tomography) | Measures metabolic processes and neurotransmitter systems | Visualizes the direct effects of rTMS/TBS on neurotransmitter activity |
EEG (Electroencephalography) | Monitors electrical activity in the brain | Tracks immediate cortical excitability changes post-stimulation |
MEG (Magnetoencephalography) | Records magnetic fields produced by neuronal activity | Provides high temporal resolution for tracking brain activity |
fNIRS (Functional Near-Infrared Spectroscopy) | Measures brain hemodynamics through light absorption | Non-invasive, portable, and can be used in naturalistic settings |
Factors | Description |
---|---|
Genetic Variability | Polymorphisms in genes like BDNF can influence neuroplasticity and treatment efficacy |
Brain Anatomy | Structural differences in cortical regions affect the outcome of rTMS/TBS |
Disease Pathology | Different neurological conditions respond variably to brain stimulation techniques |
2. Fundamental Concepts of the Transcranial Magnetic Stimulation (TMS) Techniques
2.1. Repetitive Transcranial Magnetic Stimulation (rTMS)
2.2. Theta Burst Stimulation (TBS)
3. Rules of Synaptic Plasticity Induced by rTMS/TBS
3.1. Neurotransmitter Involvement in Hippocampal Neurons
3.2. Timing-Dependent Effects
3.3. Network Remodeling
3.4. Excitatory and Inhibitory Postsynaptic Potentials of Neuron
4. Protein Expression in rTMS/TBS
4.1. Genetic Factors
4.2. Gene Expression Changes
4.3. Protein Regulation
4.4. Epigenetic Modifications
5. Modulation of Gamma-Aminobutyric Acid (GABA)/Glutamate Neurotransmission and Receptors by rTMS/TBS (Table 6)
5.1. GABAergic Mediated Inhibition by rTMS/TBS
5.2. Glutamate-Induced Excitation by rTMS/TBS
5.2.1. rTMS/TBS-Induced Modulation of N-methyl-D-aspartate (NMDA) Receptors
5.2.2. rTMS/TBS-Induced Modulation of α-amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid (AMPA) Receptors
5.2.3. rTMS/TBS-Induced Modulation of Kainate Receptors
Study | Cells/Brain Slice/Animal/Human | Methodology (Stimulation) | Targets | Inhibit/Exhibit | Neurotransmitter and Neuroreceptor | Main Results | Interpretation |
---|---|---|---|---|---|---|---|
Ibáñez et al. (2020) [62] | Human | TMS (Single Pulse) | Primary motor cortex (M1) | Inhibit (SICI) | GABA-A receptor | SICI changes depend on the brain state; variations in methodology lead to different outcomes. | Methodology influences the interpretation of SICI results, highlighting sensitivity to brain states. |
Moretti et al. (2020) [63] | Animal | rTMS | Striatal regions (related to dopamine release) and glutamatergic systems (cortex-striatal circuits | Exhibit | Glutamate (NMDA), Dopamine | rTMS modulates glutamatergic and dopaminergic pathways, showing potential relevance to substance use disorders. | rTMS may influence pathways involved in addiction, offering potential therapeutic applications. |
Moxon-Emre et al. (2021) [64] | Human | rTMS | Dorsolateral Prefrontal Cortex (DLPFC) | Modulate | Glutamate, Glutamine | rTMS changes glutamate/glutamine ratios in young adults with autism. | Supports the potential of rTMS for cortical modulation in autism spectrum disorders. |
Kullmann et al. (1996) [65] | Brain Slice (Rat) | Tetanic stimulation or pairing-induced stimulation | Hippocampal CA1 region | Exhibit | Glutamate | Evidence of presynaptic expression and glutamate spill-over at synapses during LTP. | Highlights the role of extrasynaptic glutamate spill-over in synaptic plasticity. |
Belardinelli et al. (2021) [66] | Human | TMS (Single Pulse) | Primary motor cortex (hand area) | Modulate | Glutamate | TMS-EEG identified signatures of glutamatergic neurotransmission in the cortex. | Demonstrates how TMS-EEG can reveal glutamatergic activity in human cortical networks. |
Huerta and Volpe (2009) [67] | Human | rTMS, TBS | Cortical regions and hippocampus | Modulate | N/A | TMS enhances synaptic plasticity and induces network oscillations. | TMS is shown to enhance brain plasticity, contributing to neural network dynamics. |
Dubin et al. (2016) [68] | Human | rTMS | Prefrontal Cortex | Inhibit | GABA | Elevated prefrontal GABA levels post-TMS treatment in patients with depression. | Suggests that TMS-induced GABA increases are associated with treatment efficacy in major depression. |
Rafique and Steeves (2020) [69] | Human | rTMS | Visual Cortex | Inhibit | GABA, Glutamate | Low-frequency rTMS affects neurotransmitter concentrations in the visual cortex. | Demonstrates that different rTMS frequencies influence GABA and glutamate differently. |
Stoby et al. (2022) [70] | Human | TBS | Visual Cortex | No Effect | GABA, Glutamate | No significant changes in GABA and glutamate concentrations after TBS. | It indicates that TBS does not significantly affect neurotransmitter levels in the visual cortex. |
Ciampi de Andrade et al. (2014) [71] | Human | rTMS | Motor cortex (M1) and the dorsolateral prefrontal cortex/premotor cortex (DLPFC/PMC) | Inhibit | Glutamate (NMDA receptor) | rTMS-induced analgesia depends on NMDA receptor activity in pain modulation. | Suggests NMDA receptor involvement in the analgesic effects of rTMS in chronic pain treatment. |
Barnes et al. (2020) [72] | Brain Slice (Rat) | TBS | Hippocampus (specifically the CA1 region, stratum radiatum | Exhibit | Glutamate | Relationship between glutamate dynamics and synaptic plasticity. | Highlights glutamate’s key role in synaptic plasticity and learning processes. |
6. Brain-Derived Neurotrophic Factor Gene (BDNF) Neuron Activity and Synaptic Plasticity rTMS/TBS
6.1. BDNF Changes
6.2. BDNF Alters Neuron Activity Changes and Synaptic Plasticity
7. Tropomyosin-Related Kinase Receptor Type B (TrkB) rTMS/TBS (Table 7)
7.1. Neurotrophin-Dependent Plasticity
7.2. Modulation of Neurotrophins and Effects on Synaptic Plasticity
7.3. Hippocampal Plasticity
7.4. Neurotrophin Signaling and TrkB
7.5. BDNF-TrkB and LTP-LTD Induction
7.6. Synaptic Tagging and Capture Hypothesis
Study | Methodology (Stimulation) | Targets | LTP/LTD | Neurotransmitter and Neuroreceptor | Main Results | Interpretation |
---|---|---|---|---|---|---|
Keifer (2021) [92] | N/A | BDNF (Gene) | N/A | BDNF | Comparative genomics of BDNF gene and its transcriptional regulation across species. | Insight into non-canonical transcription of BDNF and its implications for neurological diseases. |
Luo et al. (2017) [93] | rTMS | BDNF/TrkB Signaling, Neurogenesis | LTP | BDNF, TrkB | High-frequency rTMS enhances functional recovery post-ischemia via BDNF/TrkB signaling. | rTMS promotes neurogenesis and recovery through the BDNF-TrkB pathway in ischemic models. |
S KS et al. (2024) [94] | N/A | Mitochondria, BDNF-TrkB Signaling | N/A | BDNF, TrkB | BDNF-TrkB signaling modulates mitochondrial function, relevant to neurodegenerative diseases. | Mitochondrial BDNF-TrkB signaling may offer new insights into neurodegenerative disease mechanisms. |
Thoenen (2000) [95] | N/A | Neurotrophins, Synaptic Plasticity | LTP | BDNF, NGF | Neurotrophins, including BDNF, are critical for activity-dependent synaptic plasticity. | Highlights the importance of neurotrophins in synaptic plasticity and neural function. |
Wang et al. (2011) [96] | rTMS | BDNF-TrkB, Lymphocytes, Brain | LTP | BDNF, TrkB | rTMS enhances BDNF-TrkB signaling in both the brain and lymphocytes. | Provides evidence for peripheral and central effects of rTMS on BDNF-TrkB signaling. |
Cohen-Cory et al. (2010) [97] | N/A | Neuronal Connectivity | LTP | BDNF | BDNF is essential for structural neuronal connectivity during development. | Demonstrates the role of BDNF in forming neuronal connections. |
Shang et al. (2016) [98] | rTMS | Spatial Cognition, Synaptic Plasticity | LTP | BDNF, Synaptic Proteins | rTMS increases spatial cognition and synaptic plasticity through elevated BDNF and synaptic protein levels. | rTMS boosts cognitive function and plasticity by increasing BDNF in the brain. |
Minichiello et al. (2002) [99] | High-frequency electrical stimulation | Hippocampus (CA1 region) | LTP | BDNF, TrkB | TrkB-mediated signaling is necessary for hippocampal LTP. | BDNF-TrkB signaling is critical for long-term potentiation in the hippocampus. |
Zhang et al. (2016) [100] | Lipopolysaccharide (LPS)-induced inflammation | Prefrontal cortex, hippocampus, and nucleus accumbens | LTP | BDNF, TrkB | BDNF-TrkB signaling is implicated in inflammation-related depression and may serve as a therapeutic target. | Potential therapeutic relevance of BDNF-TrkB in managing inflammation-linked depression. |
Montalbano et al. (2013) [101] | Chemically induced long-term potentiation (c-LTP) via glycine and tetraethylammonium (TEA) chloride. | Hippocampus | LTD | BDNF | Blocking BDNF signaling converts chemically induced LTP into long-term depression (LTD). | Shows how BDNF signaling can reverse synaptic strengthening to weakening (LTD). |
Liu et al. (2024) [102] | rTMS | Hippocampus, Sexual Behavior, BDNF-TrkB | LTP | BDNF, TrkB | rTMS via BDNF-TrkB pathway enhances sexual behavior and neuroplasticity in rapid ejaculation rat models. | rTMS improves sexual function and plasticity through BDNF-TrkB signaling. |
Lu et al. (2011) [103] | TBS | Hippocampus (CA1 region) | LTP | BDNF, TrkB | TrkB acts as a synaptic and behavioral tag necessary for memory formation and retention. | Identifies TrkB as a key player in memory tagging processes in the brain. |
Redondo and Morris (2011) [104] | TBS | Hippocampus (CA1 region), dendrites | LTP | BDNF | Proposes synaptic tagging and capture hypothesis for long-term memory formation. | Provides a theoretical framework for understanding how synapses capture and store memories. |
Ma et al. (2013) [17] | rTMS | Hippocampus, Synaptic Plasticity, BDNF-TrkB | LTP | BDNF, TrkB | Magnetic stimulation modulates synaptic plasticity via BDNF-TrkB signaling in cultured hippocampal neurons. | Suggest magnetic stimulation to regulate plasticity through BDNF signaling in neurons. |
Lu et al. (2008) [18] | TBS and HFS | Protein Synthesis-Dependent LTP, BDNF | LTP | BDNF | BDNF regulates protein synthesis required for long-term potentiation and memory. | Highlights the role of BDNF in protein synthesis and long-term memory processes. |
8. Ligand G-Protein and Metabotropic Glutamate Receptors mGluR in rTMS/TBS
9. Channel Ion Ionic Imbalance Electrochemical Gradient/Voltage-Dependent Gradient (Resting Level) Channel According to the Gradient rTMS/TBS (Table 8)
9.1. Ion Channels
9.2. Electrochemical Gradient
9.3. Resting Membrane Potential
9.4. Ion Channels and Membrane Potential
Study | Cells/Brain Slice/Animal/Human | Methodology (Stimulation) | Targets | Main Results | Interpretation |
---|---|---|---|---|---|
Reis J, et al. (2004) [109] | Human | TMS | Motor Cortex Excitability | Levetiracetam modulates ion channels to influence motor cortex excitability. | Levetiracetam influences cortical excitability primarily by ion channel modulation, impacting motor control. |
Ye H, et al. (2024) [110] | cells from the buccal ganglia of Aplysia californica | High-frequency magnetic stimulation (micro-magnetic stimulation or µMS) | Cellular Mechanisms | Carry-over effects observed post-stimulation. | Magnetic stimulation induces carry-over effects at a cellular level, which may influence neural excitability. |
Hernández-Balaguera E, et al. (2018) [111] | Neuronal membranes (whole-cell patch-clamped cells) | Electrical Circuit Modelling with Whole-Cell Patch-Clamp | GABAergic synapses, Somatostatin (SST) interneurons, Parvalbumin (PV) interneurons, Dentate gyrus (DG), Granule cells (GCs), Medial septum (MS), Protein Kinase A (PKA), Synaptic plasticity | Capacitance distribution identified through fractional-order electrical circuit model. | The study enhances understanding of neuronal membrane capacitance and its influence on excitability. |
Pfeiffer F, Benali A. (2020) [112] | Human (brain) | rTMS | Axonal fibers and OPCs | Potential neuroprotective role of NIBS in preventing neuronal degeneration. Ion Channel Re-distribution/Ion Accumulation | Neuromodulation may mitigate the effects of demyelination by preventing harmful ion accumulation and redistribution. |
Banerjee J, et al. (2017) [113] | Rat (primary cortical neurons co-cultured with glial cells) | rTMS | Somatosensory cortex, Layer 4/5 pyramidal neurons, Neocortex | Immediate effects were observed in cortical neurons after repetitive stimulation. | Repetitive magnetic stimulation has direct, immediate effects on neuron function, potentially useful for clinical applications. |
Su SC, et al. (2012) [83] | Neurons (animal and human studies) | rTMS | N-type Voltage-Gated Calcium Channels and Presynaptic Function | Cyclin-dependent kinase 5 regulates N-type voltage-gated calcium channels affecting presynaptic function. | The study highlights the regulatory role of cyclin-dependent kinase 5 in calcium channel function, with implications for synaptic plasticity. |
10. Neuroimaging rTMS/TBS (Table 9)
10.1. Functional Magnetic Resonance Imaging (fMRI)
10.1.1. Resting-State Functional Connectivity (rsFC)
10.1.2. Network Modulation
10.1.3. Dynamic Causal Modeling (DCM)
10.1.4. Mapping and Modulating Functional Hubs
10.2. Magnetic Resonance Spectroscopy (MRS)
10.3. Diffusion Magnetic Resonance Imaging (dMRI)
10.4. Chemical Shift Selective (CHESS)
10.5. Positron Emission Tomography (PET)
10.6. Electroencephalography (EEG)
10.7. Magnetoencephalography (MEG)
10.8. Functional Near-Infrared Spectroscopy (fNIRS)
Study | Neuroimaging Type | Stimulation Method | Brain Target | Frequency and Intensity of Stimulation | Main Results | p-Value |
---|---|---|---|---|---|---|
Kirkovski M, et al. (2023) [115] | Task-based fMRI | TBS | Various cortical areas | High-frequency, repetitive TBS | TBS induces significant neurobiological effects on cortical plasticity and functional connectivity. | p < 0.05 |
Schluter RS, et al. (2018) [116] | Resting-state fMRI | rTMS | Left and right prefrontal cortex | 10 Hz, high-frequency rTMS | Differential modulation of resting-state connectivity in left and right prefrontal cortices, with implications for lateralization in neural processing. | p < 0.01 |
Vidal-Piñeiro D, et al. (2014) [117] | Task-based fMRI | Non-invasive Brain Stimulation | Episodic memory network | Variable stimulation frequencies | Task-dependent activity within the episodic memory network predicts memory outcomes, highlighting the role of specific brain circuits in aging populations. | p = 0.03 |
Bhat P, et al. (2023) [118] | Task-based fMRI | rTMS | Supplementary motor area (SMA) | 1 Hz, 90% motor threshold | Significant improvement in task-based connectivity in Parkinson’s patients, demonstrating the therapeutic potential of rTMS for motor symptoms. | p < 0.05 |
Sharbafshaaer M, et al. (2023) [11] | Task-based fMRI | rTMS | Dorsolateral prefrontal cortex (DLPFC) | 10 Hz, 90% motor threshold | rTMS significantly improves cognitive functions and connectivity within fronto-parietal networks in MCI patients. | p < 0.05 |
Esposito S, et al. (2022) [119] | Resting-state fMRI | rTMS | DLPFC | 10 Hz, 90% motor threshold | Enhanced semantic fluency and fronto-parietal connectivity, indicating potential cognitive benefits of rTMS in MCI. | p < 0.05 |
Cohan R, et al. (2023) [120] | Resting-state fMRI | Continuous and intermittent TBS | Primary visual cortex | N/A | Neither continuous nor intermittent TBS modulated resting-state functional connectivity in the visual cortex. | p > 0.05 |
Zhou IY, et al. (2014) [121] | Resting-state fMRI | rTMS | Corpus callosum and interhemispheric cortical areas | N/A | Morphological brain plasticity is foundational to connectivity changes observed in functional neuroimaging studies. | N/A |
Lafleur L-P, et al. (2016) [122] | Task-based fMRI | Dual-coil TMS | Various cortical areas | 10 Hz, 90% motor threshold | Effective connectivity and plasticity between cortical areas were significantly enhanced, emphasizing rTMS’s role in network reorganization. | p = 0.02 |
Kozyrev V, et al. (2018) [123] | Task-based fMRI | TMS | Visual cortex | High-frequency TMS | TMS induced targeted remodeling of visual cortical maps, demonstrating plasticity within visual processing areas. | p < 0.05 |
Stephan KE, et al. (2010) [124] | Task-based fMRI | Dynamic Causal Modeling (DCM) | Various brain regions | N/A | Provided guidelines for the use of DCM in fMRI to model brain dynamics and causality in connectivity. | N/A |
Hodkinson DJ, et al. (2021) [125] | Task-based fMRI | TMS | Motor cortex | High-frequency TMS | Significant plasticity was induced in the operculo-insular and anterior cingulate cortex, as evidenced by changes in task-based connectivity. | p = 0.001 |
Snyder AZ, et al. (2019) [126] | Resting-state fMRI | Structural-Functional Mapping | Various brain regions | N/A | Demonstrated structure-function relationships in the brain, contributing to models of connectivity in resting-state fMRI. | N/A |
Jung J, et al. (2020) [127] | Resting-state fMRI | Concurrent TMS/fMRI | Primary motor cortex | N/A | Demonstrated modulation of brain networks through concurrent TMS and resting-state fMRI, focusing on the motor cortex. | p < 0.05 |
Rhodes CJ, (2017) [128] | MRS | MRS Imaging | Atomic nuclei (NMR), unpaired electrons (EPR), and muon particles (μSR) | N/A | MRS provides a detailed examination of brain metabolites, including GABA and glutamate, offering insights into brain function and pathology. | N/A |
Cuypers K, Marsman A, (2021) [129] | MRS | Bimodal approach combining TMS with MRS | Primary motor cortex (M1), contralateral motor cortex | TMS paired with MRS to assess motor-cortical plasticity | The bimodal approach allows for a more comprehensive understanding of TMS effects on neurotransmitter systems (GABA, glutamate) and brain plasticity. | N/A |
Stagg CJ, (2014) [130] | MRS | TMS, tDCS | Primary motor cortex (M1), primary visual cortex (V1), sensorimotor cortex, and dorsolateral prefrontal cortex (DLPFC) | N/A | MRS reveals changes in GABA levels, contributing to motor-cortical plasticity and offering a tool for studying TMS-induced effects. | N/A |
Dubin MJ, et al. (2016) [68] | MRS | TMS | Prefrontal cortex | High-frequency TMS | Elevated prefrontal GABA levels were observed in patients with major depressive disorder (MDD) after TMS treatment. | p < 0.05 |
Amico E, et al. (2017) [131] | dMRI | TMS | Left Precuneus and Left Premotor Cortex | N/A | TMS/EEG-dMRI reveals dynamic interactions between structural and functional connectivity, highlighting brain network plasticity. | N/A |
Song SK, et al. (2002) [132] | dMRI | Diffusion MRI | White matter | N/A | Increased radial diffusion without changes in axial diffusion suggests dysmyelination, revealing critical insights into white matter pathology. | N/A |
Tavor I, et al. (2020) [133] | dMRI | Diffusion MRI | Left premotor cortex | 50 Hz bursts at 80% of the active motor threshold (aMT), | Short-term plasticity in motor areas following motor sequence learning was detected through changes in diffusion MRI metrics. | p < 0.05 |
Haase A, et al. (1985) [134] | CHESS | CHESS Imaging | Not specific | Chemical shift selective | Introduction of CHESS (Chemical Shift Selective) imaging technique in 1H NMR, improving the resolution and specificity of brain metabolite imaging. | N/A |
Sanaenezhad F, (2017) [135] | CHESS | MRS Imaging | Not specific | N/A | MRS was proposed as a comprehensive neuroimaging tool for detecting metabolic changes, offering insights into brain health and disorders. | N/A |
Baroncini M, et al. (2010) [136] | dMRI and metabolic magnetic resonance imaging | Structural MRI | Hypothalamus | N/A | Showed sex steroid hormone-related structural plasticity in the human hypothalamus, with changes in brain morphology influenced by hormonal factors. | p < 0.05 |
Paus T, et al. (2001) [137] | PET | rTMS to the left mid-dorsolateral frontal cortex (MDL-FC) | Mid-dorsolateral frontal cortex | Repetitive TMS (rTMS), frequency not reported | Demonstrated modulation of cortico-cortical connectivity in the mid-dorsolateral frontal cortex by rTMS. | N/A |
Laruelle M, (2000) [138] | PET | Binding competition techniques | Synaptic neurotransmission | N/A | A critical review of in vivo PET techniques for imaging synaptic neurotransmission, emphasizing limitations and insights into receptor competition. | N/A |
Aceves-Serrano L, et al. (2022) [27] | PET and MRI | A narrative review of rTMS effects | Various brain regions | Clinical rTMS, frequency/intensity varies | Reviewed PET and MRI findings showing clinical rTMS effects on neurotransmission, functional connectivity, and metabolic changes in the brain. | N/A |
Pascual-Leone A et al., 2011 [12] | EEG | Characterization of cortical plasticity and network dynamics | Various cortical regions | Not specified in the summary | Characterized brain cortical plasticity and network dynamics across the age span in health and disease | N/A |
Tremblay S et al., 2019 [139] | EEG | Review of clinical utility and prospects | Various cortical regions | Not specified in the summary | Discussed clinical utility and prospects of TMS-EEG | Not specified in the summary |
Cash RF et al., 2017 [140] | EEG | Paired-pulse TMS-EEG | Motor and dorsolateral prefrontal cortex | Not specified in the summary | Characterized glutamatergic and GABA(A)-mediated neurotransmission | Not specified in the summary |
Liu L, et al. (2022) [141] | MEG | Systematic review of MEG-based dynamic brain network research | N/A | Not applicable (review study) | Provided a comprehensive overview of MEG dynamic brain network studies | Not applicable |
Allen CP, et al. (2014) [142] | MRS, MEG | Combined TMS, MRS, and MEG to investigate visual awareness | Visual Cortex | Reversible inhibition of visual cortex | Demonstrated enhanced visual awareness following reversible cortical inhibition | p < 0.05 |
Curtin A, et al. (2019) [143] | fNIRS | A systematic review of integrated fNIRS and TMS research | Not specified | N/A | Reviewed the integration of fNIRS and TMS in studying cortical activation | N/A |
Chen SY, et al. (2024) [144] | fNIRS | Meta-analysis of rTMS effects on cortical activity | Cortical regions | Repetitive TMS (parameters not specified) | Demonstrated significant effects of rTMS on cortical activity, evaluated through fNIRS | p < 0.01 |
Hu M, et al. (2021) [145] | fNIRS | Assessment of high-intensity interval exercise effects on brain plasticity | Motor Cortex | High-intensity interval exercise (exact parameters not provided) | Found that short-term high-intensity interval exercise promotes motor cortex plasticity and improves executive function in sedentary females | p < 0.05 |
11. Neurological Diseases rTMS/TBS (Table 10)
11.1. Mild Cognitive Impairment and Alzheimer’s Disease
11.2. Parkinson’s Disease
11.3. Multiple Sclerosis
11.4. Stroke
11.5. Chronic Pain Disorders
11.6. Migraine
11.7. Tinnitus
Reference | Disease | Method | Brian Target | Frequency and Intensity of Stimulation | Main Results | p-Value |
---|---|---|---|---|---|---|
Sharbafshaaer et al. (2023) [11] | MCI | rTMS | Prefrontal Cortex | Various across studies (e.g., 10 Hz, 20 Hz) | Cognitive functions showed improvement in working memory and executive function | Significant improvement (p < 0.05) |
Chou et al. (2020) [148] | MCI and AD | rTMS | Dorsolateral Prefrontal Cortex | 10 Hz, 110% Motor Threshold | Meta-analysis confirmed modest cognitive enhancement effects | Significant effect size (p < 0.01) |
Nardone et al. (2014) [149] | MCI and AD | rTMS | Dorsolateral Prefrontal Cortex | 20 Hz, 90% Motor Threshold | Demonstrated potential in slowing cognitive decline, particularly in early AD | Not consistently significant (p > 0.05) |
Cirillo et al. (2023) [150] | MCI | rTMS | Parietal Cortex | 10 Hz, 90% Motor Threshold | Long-term improvement in visuospatial abilities and reduced MMP levels | Significant results (p < 0.01) |
Li et al. (2024) [151] | AD | rTMS | Prefrontal Cortex | 10 Hz, 100–120% Motor Threshold | rTMS optimized intervention strategy led to cognitive benefits in AD patients | Significant cognitive improvement (p< 0.001) |
Hamada et al. (2008) [152] | PD | rTMS | Supplementary Motor Area | High frequency (10–20 Hz), 110% Motor Threshold | Improvement in motor function and reduction of tremors | Significant improvement (p < 0.05) |
Chung et al. (2020) [153] | PD | rTMS | Motor Cortex | 1 Hz, 90–110% Motor Threshold | Enhanced gait performance and balance during gait training | Significant effect (p < 0.01) |
Bologna et al. (2016) [154] | PD | rTMS | Motor Cortex | 1 Hz or higher, variable intensity | Evaluated motor cortex plasticity; relevance in treating motor dysfunction in PD | Mixed results (p-values varied) |
Cheng et al. (2021) [155] | PD | TBS | Motor and Non-motor Brain Regions | Theta burst stimulation, 80–100% Motor Threshold | Improvement in both motor and non-motor functions, including cognitive and mood | Significant (p < 0.001) |
Aloizou et al. (2021) [156] | MS | rTMS | Motor Cortex, Prefrontal Cortex | Various frequencies (e.g., 1 Hz, 10 Hz) | Positive effects on spasticity, fatigue, and cognitive functions | Significant for certain outcomes (p < 0.05) |
Agüera et al. (2020) [157] | MS | rTMS | Prefrontal Cortex | 10 Hz, 80–100% Motor Threshold | Study protocol for assessing neurochemical and clinical effects | Study protocol—no results yet |
Hulst et al. (2017) [158] | MS | rTMS | Dorsolateral Prefrontal Cortex (DLPFC) | 10 Hz, 110% Motor Threshold | Improved working memory performance and increased functional connectivity | Significant (p < 0.05) |
Sheng et al. (2023) [159] | Stroke | rTMS | Primary Motor Cortex (M1), Trunk Motor Cortex | Variable, theta burst stimulation | Explored neuroinflammatory pathways and recovery mechanisms | Mechanisms explained—no direct p-value |
Smith and Stinear (2016) [160] | Stroke | TMS | Motor Cortex, Prefrontal Cortex | 1–20 Hz, 100–120% Motor Threshold | Evaluated readiness for clinical use, promising for motor recovery | Mixed evidence (p-values varied) |
Vallejo et al. (2023) [161] | Stroke | rTMS | Motor Cortex, Prefrontal Cortex | Various frequencies, e.g., 1 Hz, 10 Hz | Reviewed rTMS role in neurorehabilitation; highlighted controversies | Mixed results across studies |
Aloizou et al. (2021) [156] | MS | rTMS | Motor Cortex, Prefrontal Cortex | Various frequencies (e.g., 1 Hz, 10 Hz) | Positive effects on spasticity, fatigue, and cognitive functions | Significant for certain outcomes (p < 0.05) |
Barr et al. (2013) [162] | Chronic Pain | rTMS | Motor Cortex, Prefrontal Cortex | Variable frequencies (e.g., 1 Hz, 10 Hz) | GABAergic inhibitory activity measured; potential for chronic pain treatment | Significant inhibition (p < 0.05) |
Pinot-Monange et al. (2019) [163] | Endometriosis, Chronic Pelvic Pain | rTMS | Motor Cortex | High-frequency (10 Hz), 80–90% Motor Threshold | Reduction in chronic pelvic pain in endometriosis patients | Significant reduction (p < 0.05) |
Lefaucheur et al. (2014) [164] | Pain and other Neurological Conditions | rTMS | Primary Motor Cortex (M1), Dorsolateral Prefrontal Cortex and Temporoparietal Cortex | 1–20 Hz, 80–120% Motor Threshold | Provided therapeutic guidelines for rTMS use in different conditions | Based on clinical trials (varied p-values) |
Schwedt and Vargas (2015) [165] | Migraine and Cluster Headache | rTMS | Motor Cortex, Occipital Cortex | 1 Hz, 100–120% Motor Threshold | Reviewed efficacy of neurostimulation for migraine and cluster headache | Mixed evidence (p-values varied) |
Brighina et al. (2010) [166] | Migraine with Aura | rTMS | Motor Cortex | High-frequency (10 Hz), 110% Motor Threshold | Restored cortical excitability and reduced migraine frequency | Significant (p < 0.01) |
Lipton and Pearlman (2010) [167] | Migraine | rTMS | Motor Cortex, Occipital Cortex | Variable frequencies (e.g., 1 Hz, 10 Hz) | Summarized TMS effectiveness in reducing migraine attacks | Significant reduction (p < 0.05) |
Yang et al. (2023) [168] | Intractable Tinnitus | rTMS | Left Dorsolateral Prefrontal Cortex and Left Temporoparietal Junction | 1 Hz, 80–100% Motor Threshold | Brain alterations detected pre- and post-rTMS; improvement in tinnitus symptoms | Significant brain changes (p < 0.05) |
Kleinjung et al. (2005) [169] | Chronic Tinnitus | rTMS | Auditory Cortex | Low-frequency (1 Hz), 110% Motor Threshold | Long-term reduction in tinnitus symptoms | Significant reduction (p < 0.05) |
Schoisswohl et al. (2023) [170] | Chronic Tinnitus | cTBS | Auditory Cortex | Theta Burst, 80% Motor Threshold | Feasibility of combining acoustic stimulation and rTMS; reduced tinnitus symptoms | Feasibility proven (no direct p-value) |
12. Discussion
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dumas, A.; Destrebecq, F.; Esposito, G.; Suchonova, D.; Steen Frederiksen, K. Rethinking the detection and diagnosis of Alzheimer’s disease: Outcomes of a European Brain Council project. Aging Brain 2023, 4, 100093. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Cui, Y.; Zhang, J.; Yan, R.; Su, D.; Zhao, D.; Wang, A.; Feng, T. Temporal trends in the prevalence of Parkinson’s disease from 1980 to 2023: A systematic review and meta-analysis. Lancet Healthy Longev. 2024, 5, e464–e479. [Google Scholar] [CrossRef] [PubMed]
- Wafa, H.A.; Wolfe, C.D.A.; Emmett, E.; Roth, G.A.; Johnson, C.O.; Wang, Y. Burden of Stroke in Europe: Thirty-Year Projections of Incidence, Prevalence, Deaths, and Disability-Adjusted Life Years. Stroke 2020, 51, 2418–2427. [Google Scholar] [CrossRef] [PubMed]
- 2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 2024, 20, 3708–3821. [CrossRef]
- Siebner, H.R.; Funke, K.; Aberra, A.S.; Antal, A.; Bestmann, S.; Chen, R.; Classen, J.; Davare, M.; Di Lazzaro, V.; Fox, P.T.; et al. Transcranial magnetic stimulation of the brain: What is stimulated?—A consensus and critical position paper. Clin. Neurophysiol. 2022, 140, 59–97. [Google Scholar] [CrossRef]
- Park, J.H. Reliability of theta burst stimulation as a neuromodulation tool. J. Neurophysiol. 2022, 127, 1532–1534. [Google Scholar] [CrossRef]
- Lowe, C.J.; Manocchio, F.; Safati, A.B.; Hall, P.A. The effects of theta burst stimulation (TBS) targeting the prefrontal cortex on executive functioning: A systematic review and meta-analysis. Neuropsychologia 2018, 111, 344–359. [Google Scholar] [CrossRef]
- Somaa, F.A.; de Graaf, T.A.; Sack, A.T. Transcranial Magnetic Stimulation in the Treatment of Neurological Diseases. Front. Neurol. 2022, 13, 793253. [Google Scholar] [CrossRef]
- Tyc, F.; Boyadjian, A. Cortical plasticity and motor activity studied with transcranial magnetic stimulation. Rev. Neurosci. 2006, 17, 469–495. [Google Scholar] [CrossRef]
- Hallett, M. Transcranial magnetic stimulation: A primer. Neuron 2007, 55, 187–199. [Google Scholar] [CrossRef]
- Sharbafshaaer, M.; Gigi, I.; Lavorgna, L.; Esposito, S.; Bonavita, S.; Tedeschi, G.; Esposito, F.; Trojsi, F. Repetitive Transcranial Magnetic Stimulation (rTMS) in Mild Cognitive Impairment: Effects on Cognitive Functions-A Systematic Review. J. Clin. Med. 2023, 12, 6190. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Leone, A.; Freitas, C.; Oberman, L.; Horvath, J.C.; Halko, M.; Eldaief, M.; Bashir, S.; Vernet, M.; Shafi, M.; Westover, B.; et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr. 2011, 24, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Higgins, E.S.; George, M.S. Synaptic Plasticity 101: The Story of the AMPA Receptor for the Brain Stimulation Practitioner. Neuromodulation 2022, 25, 1289–1298. [Google Scholar] [CrossRef]
- Brown, J.C.; Yuan, S.; DeVries, W.H.; Armstrong, N.M.; Korte, J.E.; Sahlem, G.L.; Carpenter, L.L.; George, M.S. NMDA-receptor agonist reveals LTP-like properties of 10-Hz rTMS in the human motor cortex. Brain Stimul. 2021, 14, 619–621. [Google Scholar] [CrossRef]
- Lu, B.; Nagappan, G.; Lu, Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 2014, 220, 223–250. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Z.; Su, Y.; Kang, L.; Geng, D.; Wang, Y.; Luan, F.; Wang, M.; Cui, H. Magnetic stimulation modulates structural synaptic plasticity and regulates BDNF–TrkB signal pathway in cultured hippocampal neurons. Neurochem. Int. 2013, 62, 84–91. [Google Scholar] [CrossRef]
- Lu, Y.; Christian, K.; Lu, B. BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol. Learn. Mem. 2008, 89, 312–323. [Google Scholar] [CrossRef]
- Siebner, H.R.; Bergmann, T.O.; Bestmann, S.; Massimini, M.; Johansen-Berg, H.; Mochizuki, H.; Bohning, D.E.; Boorman, E.D.; Groppa, S.; Miniussi, C.; et al. Consensus paper: Combining transcranial stimulation with neuroimaging. Brain Stimul. 2009, 2, 58–80. [Google Scholar] [CrossRef]
- Lefaucheur, J.-P. Chapter 37—Transcranial magnetic stimulation. In Handbook of Clinical Neurology; Levin, K.H., Chauvel, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 160, pp. 559–580. [Google Scholar]
- Cywiak, C.; Ashbaugh, R.C.; Metto, A.C.; Udpa, L.; Qian, C.; Gilad, A.A.; Reimers, M.; Zhong, M.; Pelled, G. Non-invasive neuromodulation using rTMS and the electromagnetic-perceptive gene (EPG) facilitates plasticity after nerve injury. Brain Stimul. 2020, 13, 1774–1783. [Google Scholar] [CrossRef]
- Gordon, P.C.; Belardinelli, P.; Stenroos, M.; Ziemann, U.; Zrenner, C. Prefrontal theta phase-dependent rTMS-induced plasticity of cortical and behavioral responses in human cortex. Brain Stimul. 2022, 15, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Michael, J.A.; Fitzgibbon, B.M.; Hoy, K.E.; Fitzgerald, P.B. Low-frequency rTMS is better tolerated than high-frequency rTMS in healthy people: Empirical evidence from a single session study. J. Psychiatr. Res. 2019, 113, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Klomjai, W.; Katz, R.; Lackmy-Vallée, A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 2015, 58, 208–213. [Google Scholar] [CrossRef]
- Jemna, N.; Zdrenghea, A.C.; Frunza, G.; Demea, A.D.; Hapca, G.E.; Grad, D.A.; Muresanu, I.A.; Chereches, R.M.; Muresanu, F.D. Theta-burst stimulation as a therapeutic tool in neurological pathology: A systematic review. Neurol. Sci. 2024, 45, 911–940. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Rothwell, J.C.; Chen, R.S.; Lu, C.S.; Chuang, W.L. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin. Neurophysiol. 2011, 122, 1011–1018. [Google Scholar] [CrossRef]
- Aceves-Serrano, L.; Neva, J.L.; Doudet, D.J. Insight into the Effects of Clinical Repetitive Transcranial Magnetic Stimulation on the Brain from Positron Emission Tomography and Magnetic Resonance Imaging Studies: A Narrative Review. Front. Neurosci. 2022, 16, 787403. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Fujiwara, T.; Lin, S.-C.; Takahashi, Y.; Hatori, K.; Liu, M.; Huang, Y.-Z. Priming with Intermittent Theta Burst Transcranial Magnetic Stimulation Promotes Spinal Plasticity Induced by Peripheral Patterned Electrical Stimulation. Front. Neurosci. 2018, 12, 508. [Google Scholar] [CrossRef]
- Diao, X.; Lu, Q.; Qiao, L.; Gong, Y.; Lu, X.; Feng, M.; Su, P.; Shen, Y.; Yuan, T.F.; He, C. Cortical Inhibition State-Dependent iTBS Induced Neural Plasticity. Front. Neurosci. 2022, 16, 788538. [Google Scholar] [CrossRef]
- Rounis, E.; Huang, Y.Z. Theta burst stimulation in humans: A need for better understanding effects of brain stimulation in health and disease. Exp. Brain Res. 2020, 238, 1707–1714. [Google Scholar] [CrossRef]
- Stanojevic, J.B.; Zeljkovic, M.; Dragic, M.; Stojanovic, I.R.; Ilic, T.V.; Stevanovic, I.D.; Ninkovic, M.B. Intermittent theta burst stimulation attenuates oxidative stress and reactive astrogliosis in the streptozotocin-induced model of Alzheimer’s disease-like pathology. Front. Aging Neurosci. 2023, 15, 1161678. [Google Scholar] [CrossRef]
- Müller-Dahlhaus, F.; Ziemann, U.; Classen, J. Plasticity resembling spike-timing dependent synaptic plasticity: The evidence in human cortex. Front. Synaptic Neurosci. 2010, 2, 34. [Google Scholar] [CrossRef] [PubMed]
- Benke, T.A.; Lüthi, A.; Isaac, J.T.; Collingridge, G.L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 1998, 393, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Markram, H.; Gerstner, W.; Sjöström, P.J. A history of spike-timing-dependent plasticity. Front. Synaptic Neurosci. 2011, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Frémaux, N.; Gerstner, W. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules. Front. Neural Circuits 2015, 9, 85. [Google Scholar] [CrossRef]
- Frémaux, N.; Sprekeler, H.; Gerstner, W. Reinforcement learning using a continuous time actor-critic framework with spiking neurons. PLoS Comput. Biol. 2013, 9, e1003024. [Google Scholar] [CrossRef] [PubMed]
- Goetz, S.M.; Luber, B.; Lisanby, S.H.; Murphy, D.L.K.; Kozyrkov, I.C.; Grill, W.M.; Peterchev, A.V. Enhancement of Neuromodulation with Novel Pulse Shapes Generated by Controllable Pulse Parameter Transcranial Magnetic Stimulation. Brain Stimul. 2016, 9, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Anil, S.; Lu, H.; Rotter, S.; Vlachos, A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. bioRxiv 2023, 19, e1011027. [Google Scholar] [CrossRef]
- Jannati, A.; Oberman, L.M.; Rotenberg, A.; Pascual-Leone, A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023, 48, 191–208. [Google Scholar] [CrossRef]
- Di Lazzaro, V.; Ziemann, U. The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front. Neural Circuits 2013, 7, 18. [Google Scholar] [CrossRef]
- Hamada, M.; Murase, N.; Hasan, A.; Balaratnam, M.; Rothwell, J.C. The role of interneuron networks in driving human motor cortical plasticity. Cereb. Cortex 2013, 23, 1593–1605. [Google Scholar] [CrossRef]
- Hallett, M.; Di Iorio, R.; Rossini, P.M.; Park, J.E.; Chen, R.; Celnik, P.; Strafella, A.P.; Matsumoto, H.; Ugawa, Y. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin. Neurophysiol. 2017, 128, 2125–2139. [Google Scholar] [CrossRef] [PubMed]
- Attwell, D.; Laughlin, S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow. Metab. 2001, 21, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, R.; Baker, B.J. Mapping of excitatory and inhibitory postsynaptic potentials of neuronal populations in hippocampal slices using the GEVI, ArcLight. J. Phys. D Appl. Phys. 2018, 51, 504003. [Google Scholar] [CrossRef]
- Daoudal, G.; Hanada, Y.; Debanne, D. Bidirectional plasticity of excitatory postsynaptic potential (EPSP)-spike coupling in CA1 hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. USA 2002, 99, 14512–14517. [Google Scholar] [CrossRef]
- Takagi, H. Roles of ion channels in EPSP integration at neuronal dendrites. Neurosci. Res. 2000, 37, 167–171. [Google Scholar] [CrossRef]
- Staff, N.P.; Spruston, N. Intracellular correlate of EPSP-spike potentiation in CA1 pyramidal neurons is controlled by GABAergic modulation. Hippocampus 2003, 13, 801–805. [Google Scholar] [CrossRef]
- Debanne, D.; Russier, M. The contribution of ion channels in input-output plasticity. Neurobiol. Learn. Mem. 2019, 166, 107095. [Google Scholar] [CrossRef]
- Kilman, V.; van Rossum, M.C.; Turrigiano, G.G. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses. J. Neurosci. 2002, 22, 1328–1337. [Google Scholar] [CrossRef]
- Özyurt, M.G.; Haavik, H.; Nedergaard, R.W.; Topkara, B.; Şenocak, B.S.; Göztepe, M.B.; Niazi, I.K.; Türker, K.S. Transcranial magnetic stimulation induced early silent period and rebound activity re-examined. PLoS ONE 2019, 14, e0225535. [Google Scholar] [CrossRef]
- Etiévant, A.; Manta, S.; Latapy, C.; Magno, L.A.; Fecteau, S.; Beaulieu, J.M. Repetitive transcranial magnetic stimulation induces long-lasting changes in protein expression and histone acetylation. Sci. Rep. 2015, 5, 16873. [Google Scholar] [CrossRef] [PubMed]
- Consales, C.; Merla, C.; Marino, C.; Benassi, B. The epigenetic component of the brain response to electromagnetic stimulation in Parkinson’s Disease patients: A literature overview. Bioelectromagnetics 2018, 39, 3–14. [Google Scholar] [CrossRef]
- Tan, M.S.; Jiang, T.; Tan, L.; Yu, J.T. Genome-wide association studies in neurology. Ann. Transl. Med. 2014, 2, 124. [Google Scholar] [CrossRef]
- Wathra, R.A.; Men, X.; Elsheikh, S.S.M.; Marshe, V.S.; Rajji, T.K.; Lissemore, J.I.; Mulsant, B.H.; Karp, J.F.; Reynolds, C.F., 3rd; Lenze, E.J.; et al. Exploratory genome-wide analyses of cortical inhibition, facilitation, and plasticity in late-life depression. Transl. Psychiatry 2023, 13, 234. [Google Scholar] [CrossRef]
- Raginis-Zborowska, A.; Cheng, I.; Pendleton, N.; Payton, A.; Ollier, W.; Michou, E.; Hamdy, S. Genetic influences on the variability of response to repetitive transcranial magnetic stimulation in human pharyngeal motor cortex. Neurogastroenterol. Motil. 2019, 31, e13612. [Google Scholar] [CrossRef]
- Thomson, A.C.; Kenis, G.; Tielens, S.; de Graaf, T.A.; Schuhmann, T.; Rutten, B.P.F.; Sack, A.T. Transcranial Magnetic Stimulation-Induced Plasticity Mechanisms: TMS-Related Gene Expression and Morphology Changes in a Human Neuron-Like Cell Model. Front. Mol. Neurosci. 2020, 13, 528396. [Google Scholar] [CrossRef]
- Silvennoinen, K.; Balestrini, S.; Rothwell, J.C.; Sisodiya, S.M. Transcranial magnetic stimulation as a tool to understand genetic conditions associated with epilepsy. Epilepsia 2020, 61, 1818–1839. [Google Scholar] [CrossRef]
- Müller, M.B.; Toschi, N.; Kresse, A.E.; Post, A.; Keck, M.E. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology 2000, 23, 205–215. [Google Scholar] [CrossRef]
- Baek, A.; Park, E.J.; Kim, S.Y.; Nam, B.G.; Kim, J.H.; Jun, S.W.; Kim, S.H.; Cho, S.R. High-Frequency Repetitive Magnetic Stimulation Enhances the Expression of Brain-Derived Neurotrophic Factor Through Activation of Ca2+-Calmodulin-Dependent Protein Kinase II-cAMP-Response Element-Binding Protein Pathway. Front. Neurol. 2018, 9, 285. [Google Scholar] [CrossRef]
- Wimberger, S.; Akrap, N.; Firth, M.; Brengdahl, J.; Engberg, S.; Schwinn, M.K.; Slater, M.R.; Lundin, A.; Hsieh, P.P.; Li, S.; et al. Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing. Nat. Commun. 2023, 14, 4761. [Google Scholar] [CrossRef]
- Ibáñez, J.; Spampinato, D.A.; Paraneetharan, V.; Rothwell, J.C. SICI during changing brain states: Differences in methodology can lead to different conclusions. Brain Stimul. 2020, 13, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Moretti, J.; Poh, E.Z.; Rodger, J. rTMS-Induced Changes in Glutamatergic and Dopaminergic Systems: Relevance to Cocaine and Methamphetamine Use Disorders. Front. Neurosci. 2020, 14, 137. [Google Scholar] [CrossRef]
- Moxon-Emre, I.; Daskalakis, Z.J.; Blumberger, D.M.; Croarkin, P.E.; Lyon, R.E.; Forde, N.J.; Tani, H.; Truong, P.; Lai, M.C.; Desarkar, P.; et al. Modulation of Dorsolateral Prefrontal Cortex Glutamate/Glutamine Levels Following Repetitive Transcranial Magnetic Stimulation in Young Adults with Autism. Front. Neurosci. 2021, 15, 711542. [Google Scholar] [CrossRef]
- Kullmann, D.M.; Erdemli, G.; Asztély, F. LTP of AMPA and NMDA receptor-mediated signals: Evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 1996, 17, 461–474. [Google Scholar] [CrossRef]
- Belardinelli, P.; König, F.; Liang, C.; Premoli, I.; Desideri, D.; Müller-Dahlhaus, F.; Gordon, P.C.; Zipser, C.; Zrenner, C.; Ziemann, U. TMS-EEG signatures of glutamatergic neurotransmission in human cortex. Sci. Rep. 2021, 11, 8159. [Google Scholar] [CrossRef]
- Huerta, P.T.; Volpe, B.T. Transcranial magnetic stimulation, synaptic plasticity and network oscillations. J. Neuroeng. Rehabil. 2009, 6, 7. [Google Scholar] [CrossRef]
- Dubin, M.J.; Mao, X.; Banerjee, S.; Goodman, Z.; Lapidus, K.A.; Kang, G.; Liston, C.; Shungu, D.C. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy. J. Psychiatry Neurosci. 2016, 41, E37–E45. [Google Scholar] [CrossRef]
- Rafique, S.A.; Steeves, J.K.E. Assessing differential effects of single and accelerated low-frequency rTMS to the visual cortex on GABA and glutamate concentrations. Brain Behav. 2020, 10, e01845. [Google Scholar] [CrossRef]
- Stoby, K.S.; Rafique, S.A.; Oeltzschner, G.; Steeves, J.K.E. Continuous and intermittent theta burst stimulation to the visual cortex do not alter GABA and glutamate concentrations measured by magnetic resonance spectroscopy. Brain Behav. 2022, 12, e2478. [Google Scholar] [CrossRef]
- Ciampi de Andrade, D.; Mhalla, A.; Adam, F.; Texeira, M.J.; Bouhassira, D. Repetitive transcranial magnetic stimulation induced analgesia depends on N-methyl-D-aspartate glutamate receptors. Pain 2014, 155, 598–605. [Google Scholar] [CrossRef]
- Barnes, J.R.; Mukherjee, B.; Rogers, B.C.; Nafar, F.; Gosse, M.; Parsons, M.P. The Relationship Between Glutamate Dynamics and Activity-Dependent Synaptic Plasticity. J. Neurosci. 2020, 40, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, M.J.; Bloom, F.; Landis, S.C.; Roberts, J.L.; Squire, L.R. Fundamental Neuroscience; Academic Press Inc.: Cambridge, MA, USA, 1999; p. 1600. [Google Scholar]
- Hardingham, G.E.; Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat. Rev. Neurosci. 2010, 11, 682–696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Xing, M.; Wang, Y.; Tao, H.; Cheng, Y. Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia. Neuroscience 2015, 311, 284–291. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Chen, R.-S.; Rothwell, J.C.; Wen, H.-Y. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin. Neurophysiol. 2007, 118, 1028–1032. [Google Scholar] [CrossRef]
- Kole, M.H.; Fuchs, E.; Ziemann, U.; Paulus, W.; Ebert, U. Changes in 5-HT1A and NMDA binding sites by a single rapid transcranial magnetic stimulation procedure in rats. Brain Res. 1999, 826, 309–312. [Google Scholar] [CrossRef]
- de Lores Arnaiz, G.R.; Bersier, M.G. Relationship between Na+, K+-ATPase and NMDA receptor at central synapses. Curr. Protein Pept. Sci. 2014, 15, 761–777. [Google Scholar] [CrossRef]
- Evans, R.C.; Morera-Herreras, T.; Cui, Y.; Du, K.; Sheehan, T.; Kotaleski, J.H.; Venance, L.; Blackwell, K.T. The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons. PLoS Comput. Biol. 2012, 8, e1002493. [Google Scholar] [CrossRef]
- Hoogendam, J.M.; Ramakers, G.M.; Di Lazzaro, V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 2010, 3, 95–118. [Google Scholar] [CrossRef]
- Diering, G.H.; Huganir, R.L. The AMPA Receptor Code of Synaptic Plasticity. Neuron 2018, 100, 314–329. [Google Scholar] [CrossRef]
- Kelly, P.T. Calmodulin-dependent protein kinase II. Multifunctional roles in neuronal differentiation and synaptic plasticity. Mol. Neurobiol. 1991, 5, 153–177. [Google Scholar] [CrossRef]
- Su, S.C.; Seo, J.; Pan, J.Q.; Samuels, B.A.; Rudenko, A.; Ericsson, M.; Neve, R.L.; Yue, D.T.; Tsai, L.H. Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5. Neuron 2012, 75, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Clarke, V.R.; Collingridge, G.L.; Lauri, S.E.; Taira, T. Synaptic kainate receptors in CA1 interneurons gate the threshold of theta-frequency-induced long-term potentiation. J. Neurosci. 2012, 32, 18215–18226. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Vivanco, A.; Jiménez-Redondo, E.; Cano-Adamuz, N.; Méndez, P. Protein Kinase A-Dependent Plasticity of Local Inhibitory Synapses from Hilar Somatostatin-Expressing Neurons. eNeuro 2023, 10. [Google Scholar] [CrossRef] [PubMed]
- Notaras, M.; van den Buuse, M. Brain-Derived Neurotrophic Factor (BDNF): Novel Insights into Regulation and Genetic Variation. Neuroscientist 2019, 25, 434–454. [Google Scholar] [CrossRef]
- Chan, S.; Bota, R. Personalized TMS: Role of RNA genotyping. Ment. Illn. 2019, 11, 8–15. [Google Scholar] [CrossRef]
- Cheeran, B.; Talelli, P.; Mori, F.; Koch, G.; Suppa, A.; Edwards, M.; Houlden, H.; Bhatia, K.; Greenwood, R.; Rothwell, J.C. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J. Physiol. 2008, 586, 5717–5725. [Google Scholar] [CrossRef]
- Abellaneda-Pérez, K.; Martin-Trias, P.; Cassé-Perrot, C.; Vaqué-Alcázar, L.; Lanteaume, L.; Solana, E.; Babiloni, C.; Lizio, R.; Junqué, C.; Bargalló, N.; et al. Author Correction: BDNF Val66Met gene polymorphism modulates brain activity following rTMS-induced memory impairment. Sci. Rep. 2022, 12, 1171. [Google Scholar] [CrossRef]
- Mastroeni, C.; Bergmann, T.O.; Rizzo, V.; Ritter, C.; Klein, C.; Pohlmann, I.; Brueggemann, N.; Quartarone, A.; Siebner, H.R. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex? PLoS ONE 2013, 8, e57957. [Google Scholar] [CrossRef]
- Miyasaka, Y.; Yamamoto, N. Neuronal Activity Patterns Regulate Brain-Derived Neurotrophic Factor Expression in Cortical Cells via Neuronal Circuits. Front. Neurosci. 2021, 15, 699583. [Google Scholar] [CrossRef]
- Keifer, J. Comparative Genomics of the BDNF Gene, Non-Canonical Modes of Transcriptional Regulation, and Neurological Disease. Mol. Neurobiol. 2021, 58, 2851–2861. [Google Scholar] [CrossRef]
- Luo, J.; Zheng, H.; Zhang, L.; Zhang, Q.; Li, L.; Pei, Z.; Hu, X. High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Improves Functional Recovery by Enhancing Neurogenesis and Activating BDNF/TrkB Signaling in Ischemic Rats. Int. J. Mol. Sci. 2017, 18, 455. [Google Scholar] [CrossRef] [PubMed]
- Soman, K.S.; Swain, M.; Dagda, R.K. BDNF-TrkB Signaling in Mitochondria: Implications for Neurodegenerative Diseases. Mol. Neurobiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Thoenen, H. Neurotrophins and activity-dependent plasticity. Prog. Brain Res. 2000, 128, 183–191. [Google Scholar] [CrossRef]
- Wang, H.Y.; Crupi, D.; Liu, J.; Stucky, A.; Cruciata, G.; Di Rocco, A.; Friedman, E.; Quartarone, A.; Ghilardi, M.F. Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte. J. Neurosci. 2011, 31, 11044–11054. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Cory, S.; Kidane, A.H.; Shirkey, N.J.; Marshak, S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev. Neurobiol. 2010, 70, 271–288. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, X.; Shang, X.; Zhang, H.; Liu, Z.; Yin, T.; Zhang, T. Repetitive transcranial magnetic stimulation effectively facilitates spatial cognition and synaptic plasticity associated with increasing the levels of BDNF and synaptic proteins in Wistar rats. Neurobiol. Learn. Mem. 2016, 134, 369–378. [Google Scholar] [CrossRef]
- Minichiello, L.; Calella, A.M.; Medina, D.L.; Bonhoeffer, T.; Klein, R.; Korte, M. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 2002, 36, 121–137. [Google Scholar] [CrossRef]
- Zhang, J.C.; Yao, W.; Hashimoto, K. Brain-derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-related Depression and Potential Therapeutic Targets. Curr. Neuropharmacol. 2016, 14, 721–731. [Google Scholar] [CrossRef]
- Montalbano, A.; Baj, G.; Papadia, D.; Tongiorgi, E.; Sciancalepore, M. Blockade of BDNF signaling turns chemically-induced long-term potentiation into long-term depression. Hippocampus 2013, 23, 879–889. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, M.; Wang, W.; Yue, S.; Jannini, T.B.; Jannini, E.A.; Jiang, H.; Zhang, X. Repetitive transcranial magnetic stimulation via the hippocampal brain-derived neurotrophic factor-tyrosine kinase receptor B pathway to affect sexual behavior and neuroplasticity in rapid ejaculation rats. Andrology 2024, 12, 1429–1438. [Google Scholar] [CrossRef]
- Lu, Y.; Ji, Y.; Ganesan, S.; Schloesser, R.; Martinowich, K.; Sun, M.; Mei, F.; Chao, M.V.; Lu, B. TrkB as a potential synaptic and behavioral tag. J. Neurosci. 2011, 31, 11762–11771. [Google Scholar] [CrossRef] [PubMed]
- Redondo, R.L.; Morris, R.G. Making memories last: The synaptic tagging and capture hypothesis. Nat. Rev. Neurosci. 2011, 12, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Weis, W.I.; Kobilka, B.K. The Molecular Basis of G Protein-Coupled Receptor Activation. Annu. Rev. Biochem. 2018, 87, 897–919. [Google Scholar] [CrossRef] [PubMed]
- Miura, M.; Watanabe, M.; Offermanns, S.; Simon, M.I.; Kano, M. Group I metabotropic glutamate receptor signaling via Gαq/Gα11 secures the induction of long-term potentiation in the hippocampal area CA1. J. Neurosci. 2002, 22, 8379–8390. [Google Scholar] [CrossRef] [PubMed]
- Niswender, C.M.; Conn, P.J. Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 295–322. [Google Scholar] [CrossRef]
- Holl, N.; Heerdegen, M.; Zschorlich, V.; Köhling, R.; Kirschstein, T. Inhibition of Acute mGluR5-Dependent Depression in Hippocampal CA1 by High-Frequency Magnetic Stimulation. Brain Sciences 2024, 14, 603. [Google Scholar] [CrossRef]
- Reis, J.; Wentrup, A.; Hamer, H.M.; Mueller, H.-H.; Knake, S.; Tergau, F.; Oertel, W.H.; Rosenow, F. Levetiracetam influences human motor cortex excitability mainly by modulation of ion channel function—A TMS study. Epilepsy Res. 2004, 62, 41–51. [Google Scholar] [CrossRef]
- Ye, H.; Dima, M.; Hall, V.; Hendee, J. Cellular mechanisms underlying carry-over effects after magnetic stimulation. Sci. Rep. 2024, 14, 5167. [Google Scholar] [CrossRef]
- Hernández-Balaguera, E.; Vara, H.; Polo, J.L. Identification of Capacitance Distribution in Neuronal Membranes from a Fractional-Order Electrical Circuit and Whole-Cell Patch-Clamped Cells. J. Electrochem. Soc. 2018, 165, G3104. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Benali, A. Could non-invasive brain-stimulation prevent neuronal degeneration upon ion channel re-distribution and ion accumulation after demyelination? Neural Regen. Res. 2020, 15, 1977–1980. [Google Scholar] [CrossRef]
- Banerjee, J.; Sorrell, M.E.; Celnik, P.A.; Pelled, G. Immediate Effects of Repetitive Magnetic Stimulation on Single Cortical Pyramidal Neurons. PLoS ONE 2017, 12, e0170528. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed]
- Kirkovski, M.; Donaldson, P.H.; Do, M.; Speranza, B.E.; Albein-Urios, N.; Oberman, L.M.; Enticott, P.G. A systematic review of the neurobiological effects of theta-burst stimulation (TBS) as measured using functional magnetic resonance imaging (fMRI). Brain Struct. Funct. 2023, 228, 717–749. [Google Scholar] [CrossRef] [PubMed]
- Schluter, R.S.; Jansen, J.M.; van Holst, R.J.; van den Brink, W.; Goudriaan, A.E. Differential Effects of Left and Right Prefrontal High-Frequency Repetitive Transcranial Magnetic Stimulation on Resting-State Functional Magnetic Resonance Imaging in Healthy Individuals. Brain Connect. 2018, 8, 60–67. [Google Scholar] [CrossRef]
- Vidal-Piñeiro, D.; Martin-Trias, P.; Arenaza-Urquijo, E.M.; Sala-Llonch, R.; Clemente, I.C.; Mena-Sánchez, I.; Bargalló, N.; Falcón, C.; Pascual-Leone, Á.; Bartrés-Faz, D. Task-dependent Activity and Connectivity Predict Episodic Memory Network-based Responses to Brain Stimulation in Healthy Aging. Brain Stimul. 2014, 7, 287–296. [Google Scholar] [CrossRef]
- Bhat, P.; Kumaran, S.S.; Goyal, V.; Srivastava, A.K.; Behari, M. Effect of rTMS at SMA on task-based connectivity in PD. Behav. Brain Res. 2023, 452, 114602. [Google Scholar] [CrossRef]
- Esposito, S.; Trojsi, F.; Cirillo, G.; de Stefano, M.; Di Nardo, F.; Siciliano, M.; Caiazzo, G.; Ippolito, D.; Ricciardi, D.; Buonanno, D.; et al. Repetitive Transcranial Magnetic Stimulation (rTMS) of Dorsolateral Prefrontal Cortex May Influence Semantic Fluency and Functional Connectivity in Fronto-Parietal Network in Mild Cognitive Impairment (MCI). Biomedicines 2022, 10, 994. [Google Scholar] [CrossRef]
- Cohan, R.; Rafique, S.A.; Stoby, K.S.; Gorbet, D.J.; Steeves, J.K.E. Continuous and intermittent theta burst stimulation of primary visual cortex do not modulate resting state functional connectivity: A sham-controlled multi-echo fMRI study. Brain Behav. 2023, 13, e2989. [Google Scholar] [CrossRef]
- Zhou, I.Y.; Liang, Y.-X.; Chan, R.W.; Gao, P.P.; Cheng, J.S.; Hu, Y.; So, K.-F.; Wu, E.X. Brain resting-state functional MRI connectivity: Morphological foundation and plasticity. NeuroImage 2014, 84, 1–10. [Google Scholar] [CrossRef]
- Lafleur, L.-P.; Tremblay, S.; Whittingstall, K.; Lepage, J.-F. Assessment of Effective Connectivity and Plasticity with Dual-Coil Transcranial Magnetic Stimulation. Brain Stimul. 2016, 9, 347–355. [Google Scholar] [CrossRef]
- Kozyrev, V.; Staadt, R.; Eysel, U.T.; Jancke, D. TMS-induced neuronal plasticity enables targeted remodeling of visual cortical maps. Proc. Natl. Acad. Sci. USA 2018, 115, 6476–6481. [Google Scholar] [CrossRef] [PubMed]
- Stephan, K.E.; Penny, W.D.; Moran, R.J.; den Ouden, H.E.; Daunizeau, J.; Friston, K.J. Ten simple rules for dynamic causal modeling. Neuroimage 2010, 49, 3099–3109. [Google Scholar] [CrossRef] [PubMed]
- Hodkinson, D.J.; Bungert, A.; Bowtell, R.; Jackson, S.R.; Jung, J. Operculo-insular and anterior cingulate plasticity induced by transcranial magnetic stimulation in the human motor cortex: A dynamic casual modeling study. J. Neurophysiol. 2021, 125, 1180–1190. [Google Scholar] [CrossRef]
- Snyder, A.Z.; Bauer, A.Q. Mapping Structure-Function Relationships in the Brain. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2019, 4, 510–521. [Google Scholar] [CrossRef]
- Jung, J.; Bungert, A.; Bowtell, R.; Jackson, S.R. Modulating Brain Networks with Transcranial Magnetic Stimulation Over the Primary Motor Cortex: A Concurrent TMS/fMRI Study. Front. Hum. Neurosci. 2020, 14, 31. [Google Scholar] [CrossRef]
- Rhodes, C.J. Magnetic resonance spectroscopy. Sci. Prog. 2017, 100, 241–292. [Google Scholar] [CrossRef]
- Cuypers, K.; Marsman, A. Transcranial magnetic stimulation and magnetic resonance spectroscopy: Opportunities for a bimodal approach in human neuroscience. Neuroimage 2021, 224, 117394. [Google Scholar] [CrossRef]
- Stagg, C.J. Magnetic Resonance Spectroscopy as a tool to study the role of GABA in motor-cortical plasticity. NeuroImage 2014, 86, 19–27. [Google Scholar] [CrossRef]
- Amico, E.; Bodart, O.; Rosanova, M.; Gosseries, O.; Heine, L.; Van Mierlo, P.; Martial, C.; Massimini, M.; Marinazzo, D.; Laureys, S. Tracking Dynamic Interactions Between Structural and Functional Connectivity: A TMS/EEG-dMRI Study. Brain Connect. 2017, 7, 84–97. [Google Scholar] [CrossRef]
- Song, S.K.; Sun, S.W.; Ramsbottom, M.J.; Chang, C.; Russell, J.; Cross, A.H. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002, 17, 1429–1436. [Google Scholar] [CrossRef]
- Tavor, I.; Botvinik-Nezer, R.; Bernstein-Eliav, M.; Tsarfaty, G.; Assaf, Y. Short-term plasticity following motor sequence learning revealed by diffusion magnetic resonance imaging. Hum. Brain Mapp. 2020, 41, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Haase, A.; Frahm, J.; Hänicke, W.; Matthaei, D. 1H NMR chemical shift selective (CHESS) imaging. Phys. Med. Biol. 1985, 30, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Sanaenezhad, F. Magnetic Resonance Spectroscopy as Part of a Comprehensive Neuroimaging Assessment Tool. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2017. [Google Scholar]
- Baroncini, M.; Jissendi, P.; Catteau-Jonard, S.; Dewailly, D.; Pruvo, J.P.; Francke, J.P.; Prevot, V. Sex steroid hormones-related structural plasticity in the human hypothalamus. Neuroimage 2010, 50, 428–433. [Google Scholar] [CrossRef]
- Paus, T.; Castro-Alamancos, M.A.; Petrides, M. Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur. J. Neurosci. 2001, 14, 1405–1411. [Google Scholar] [CrossRef]
- Laruelle, M. Imaging synaptic neurotransmission with in vivo binding competition techniques: A critical review. J. Cereb. Blood Flow. Metab. 2000, 20, 423–451. [Google Scholar] [CrossRef]
- Tremblay, S.; Rogasch, N.C.; Premoli, I.; Blumberger, D.M.; Casarotto, S.; Chen, R.; Di Lazzaro, V.; Farzan, F.; Ferrarelli, F.; Fitzgerald, P.B.; et al. Clinical utility and prospective of TMS-EEG. Clin. Neurophysiol. 2019, 130, 802–844. [Google Scholar] [CrossRef]
- Cash, R.F.; Noda, Y.; Zomorrodi, R.; Radhu, N.; Farzan, F.; Rajji, T.K.; Fitzgerald, P.B.; Chen, R.; Daskalakis, Z.J.; Blumberger, D.M. Characterization of Glutamatergic and GABA(A)-Mediated Neurotransmission in Motor and Dorsolateral Prefrontal Cortex Using Paired-Pulse TMS-EEG. Neuropsychopharmacology 2017, 42, 502–511. [Google Scholar] [CrossRef]
- Liu, L.; Ren, J.; Li, Z.; Yang, C. A review of MEG dynamic brain network research. Proc. Inst. Mech. Eng. H 2022, 236, 763–774. [Google Scholar] [CrossRef]
- Allen, C.P.; Dunkley, B.T.; Muthukumaraswamy, S.D.; Edden, R.; Evans, C.J.; Sumner, P.; Singh, K.D.; Chambers, C.D. Enhanced awareness followed reversible inhibition of human visual cortex: A combined TMS, MRS and MEG study. PLoS ONE 2014, 9, e100350. [Google Scholar] [CrossRef]
- Curtin, A.; Tong, S.; Sun, J.; Wang, J.; Onaral, B.; Ayaz, H. A Systematic Review of Integrated Functional Near-Infrared Spectroscopy (fNIRS) and Transcranial Magnetic Stimulation (TMS) Studies. Front. Neurosci. 2019, 13, 84. [Google Scholar] [CrossRef]
- Chen, S.Y.; Tsou, M.H.; Chen, K.Y.; Liu, Y.C.; Lin, M.T. Impact of repetitive transcranial magnetic stimulation on cortical activity: A systematic review and meta-analysis utilizing functional near-infrared spectroscopy evaluation. J. Neuroeng. Rehabil. 2024, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Zeng, N.; Gu, Z.; Zheng, Y.; Xu, K.; Xue, L.; Leng, L.; Lu, X.; Shen, Y.; Huang, J. Short-Term High-Intensity Interval Exercise Promotes Motor Cortex Plasticity and Executive Function in Sedentary Females. Front. Hum. Neurosci. 2021, 15, 620958. [Google Scholar] [CrossRef]
- Vucic, S.; Stanley Chen, K.H.; Kiernan, M.C.; Hallett, M.; Benninger, D.H.; Di Lazzaro, V.; Rossini, P.M.; Benussi, A.; Berardelli, A.; Currà, A.; et al. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin. Neurophysiol. 2023, 150, 131–175. [Google Scholar] [CrossRef]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, J.D.; et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef]
- Chou, Y.-H.; Ton That, V.; Sundman, M. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 2020, 86, 1–10. [Google Scholar] [CrossRef]
- Nardone, R.; Tezzon, F.; Höller, Y.; Golaszewski, S.; Trinka, E.; Brigo, F. Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer’s disease. Acta Neurol. Scand. 2014, 129, 351–366. [Google Scholar] [CrossRef]
- Cirillo, G.; Pepe, R.; Siciliano, M.; Ippolito, D.; Ricciardi, D.; de Stefano, M.; Buonanno, D.; Atripaldi, D.; Abbadessa, S.; Perfetto, B.; et al. Long-Term Neuromodulatory Effects of Repetitive Transcranial Magnetic Stimulation (rTMS) on Plasmatic Matrix Metalloproteinases (MMPs) Levels and Visuospatial Abilities in Mild Cognitive Impairment (MCI). Int. J. Mol. Sci. 2023, 24, 3231. [Google Scholar] [CrossRef]
- Li, S.; Lan, X.; Liu, Y.; Zhou, J.; Pei, Z.; Su, X.; Guo, Y. Unlocking the Potential of Repetitive Transcranial Magnetic Stimulation in Alzheimer’s Disease: A Meta-Analysis of Randomized Clinical Trials to Optimize Intervention Strategies. J. Alzheimers Dis. 2024, 98, 481–503. [Google Scholar] [CrossRef]
- Hamada, M.; Ugawa, Y.; Tsuji, S. High-frequency rTMS over the supplementary motor area for treatment of Parkinson’s disease. Mov. Disord. 2008, 23, 1524–1531. [Google Scholar] [CrossRef]
- Chung, C.L.; Mak, M.K.; Hallett, M. Transcranial Magnetic Stimulation Promotes Gait Training in Parkinson Disease. Ann. Neurol. 2020, 88, 933–945. [Google Scholar] [CrossRef]
- Bologna, M.; Suppa, A.; Conte, A.; Latorre, A.; Rothwell, J.C.; Berardelli, A. Are studies of motor cortex plasticity relevant in human patients with Parkinson’s disease? Clin. Neurophysiol. 2016, 127, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Zhu, T.; Zhao, W.; Sun, L.; Shen, Y.; Xiao, W.; Zhang, S. Effect of Theta Burst Stimulation-Patterned rTMS on Motor and Nonmotor Dysfunction of Parkinson’s Disease: A Systematic Review and Metaanalysis. Front. Neurol. 2021, 12, 762100. [Google Scholar] [CrossRef] [PubMed]
- Aloizou, A.M.; Pateraki, G.; Anargyros, K.; Siokas, V.; Bakirtzis, C.; Liampas, I.; Nousia, A.; Nasios, G.; Sgantzos, M.; Peristeri, E.; et al. Transcranial magnetic stimulation (TMS) and repetitive TMS in multiple sclerosis. Rev. Neurosci. 2021, 32, 723–736. [Google Scholar] [CrossRef]
- Agüera, E.; Caballero-Villarraso, J.; Feijóo, M.; Escribano, B.M.; Conde, C.; Bahamonde, M.C.; Giraldo, A.I.; Paz-Rojas, E.; Túnez, I. Clinical and Neurochemical Effects of Transcranial Magnetic Stimulation (TMS) in Multiple Sclerosis: A Study Protocol for a Randomized Clinical Trial. Front. Neurol. 2020, 11, 750. [Google Scholar] [CrossRef]
- Hulst, H.E.; Goldschmidt, T.; Nitsche, M.A.; de Wit, S.J.; van den Heuvel, O.A.; Barkhof, F.; Paulus, W.; van der Werf, Y.D.; Geurts, J.J.G. rTMS affects working memory performance, brain activation and functional connectivity in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 386–394. [Google Scholar] [CrossRef]
- Sheng, R.; Chen, C.; Chen, H.; Yu, P. Repetitive transcranial magnetic stimulation for stroke rehabilitation: Insights into the molecular and cellular mechanisms of neuroinflammation. Front. Immunol. 2023, 14, 1197422. [Google Scholar] [CrossRef]
- Smith, M.C.; Stinear, C.M. Transcranial magnetic stimulation (TMS) in stroke: Ready for clinical practice? J. Clin. Neurosci. 2016, 31, 10–14. [Google Scholar] [CrossRef]
- Vallejo, P.; Cueva, E.; Martínez-Lozada, P.; García-Ríos, C.A.; Miranda-Barros, D.H.; Leon-Rojas, J.E. Repetitive Transcranial Magnetic Stimulation in Stroke: A Literature Review of the Current Role and Controversies of Neurorehabilitation Through Electromagnetic Pulses. Cureus 2023, 15, e41714. [Google Scholar] [CrossRef]
- Barr, M.S.; Farzan, F.; Davis, K.D.; Fitzgerald, P.B.; Daskalakis, Z.J. Measuring GABAergic inhibitory activity with TMS-EEG and its potential clinical application for chronic pain. J. Neuroimmune Pharmacol. 2013, 8, 535–546. [Google Scholar] [CrossRef]
- Pinot-Monange, A.; Moisset, X.; Chauvet, P.; Gremeau, A.-S.; Comptour, A.; Canis, M.; Pereira, B.; Bourdel, N. Repetitive Transcranial Magnetic Stimulation Therapy (rTMS) for Endometriosis Patients with Refractory Pelvic Chronic Pain: A Pilot Study. J. Clin. Med. 2019, 8, 508. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; André-Obadia, N.; Antal, A.; Ayache, S.S.; Baeken, C.; Benninger, D.H.; Cantello, R.M.; Cincotta, M.; de Carvalho, M.; De Ridder, D.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 2014, 125, 2150–2206. [Google Scholar] [CrossRef]
- Schwedt, T.J.; Vargas, B. Neurostimulation for Treatment of Migraine and Cluster Headache. Pain Med. 2015, 16, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Brighina, F.; Palermo, A.; Daniele, O.; Aloisio, A.; Fierro, B. High-frequency transcranial magnetic stimulation on motor cortex of patients affected by migraine with aura: A way to restore normal cortical excitability? Cephalalgia 2010, 30, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Lipton, R.B.; Pearlman, S.H. Transcranial magnetic simulation in the treatment of migraine. Neurotherapeutics 2010, 7, 204–212. [Google Scholar] [CrossRef]
- Yang, S.; Yang, D.; Gou, C.; Tu, M.; Tan, Y.; Yang, L.; Wang, X. Brain alterations in patients with intractable tinnitus before and after rTMS: A resting-state functional magnetic resonance imaging study. Clin. Neurol. Neurosurg. 2023, 227, 107664. [Google Scholar] [CrossRef]
- Kleinjung, T.; Eichhammer, P.; Langguth, B.; Jacob, P.; Marienhagen, J.; Hajak, G.; Wolf, S.R.; Strutz, J. Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus. Otolaryngol. Head. Neck Surg. 2005, 132, 566–569. [Google Scholar] [CrossRef]
- Schoisswohl, S.; Langguth, B.; Weber, F.C.; Abdelnaim, M.A.; Hebel, T.; Schecklmann, M. Activate & fire: A feasibility study in combining acoustic stimulation and continuous theta burst stimulation in chronic tinnitus. BMC Neurol. 2023, 23, 14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharbafshaaer, M.; Cirillo, G.; Esposito, F.; Tedeschi, G.; Trojsi, F. Harnessing Brain Plasticity: The Therapeutic Power of Repetitive Transcranial Magnetic Stimulation (rTMS) and Theta Burst Stimulation (TBS) in Neurotransmitter Modulation, Receptor Dynamics, and Neuroimaging for Neurological Innovations. Biomedicines 2024, 12, 2506. https://doi.org/10.3390/biomedicines12112506
Sharbafshaaer M, Cirillo G, Esposito F, Tedeschi G, Trojsi F. Harnessing Brain Plasticity: The Therapeutic Power of Repetitive Transcranial Magnetic Stimulation (rTMS) and Theta Burst Stimulation (TBS) in Neurotransmitter Modulation, Receptor Dynamics, and Neuroimaging for Neurological Innovations. Biomedicines. 2024; 12(11):2506. https://doi.org/10.3390/biomedicines12112506
Chicago/Turabian StyleSharbafshaaer, Minoo, Giovanni Cirillo, Fabrizio Esposito, Gioacchino Tedeschi, and Francesca Trojsi. 2024. "Harnessing Brain Plasticity: The Therapeutic Power of Repetitive Transcranial Magnetic Stimulation (rTMS) and Theta Burst Stimulation (TBS) in Neurotransmitter Modulation, Receptor Dynamics, and Neuroimaging for Neurological Innovations" Biomedicines 12, no. 11: 2506. https://doi.org/10.3390/biomedicines12112506