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Abstract: This paper defines stubbornness as an optimal feedback Nash equilibrium within
a dynamic setting. Stubbornness is treated as a player-specific parameter, with the team’s
coach initially selecting players based on their stubbornness and making substitutions
during the game according to this trait. The payoff function of a soccer player is evaluated
based on factors such as injury risk, assist rate, pass accuracy, and dribbling ability. Each
player aims to maximize their payoff by selecting an optimal level of stubbornness that
ensures their selection by the coach. The goal dynamics are modeled using a backward
parabolic partial stochastic differential equation (BPPSDE), leveraging its theoretical con-
nection to the Feynman–Kac formula, which links stochastic differential equations (SDEs) to
partial differential equations (PDEs). A stochastic Lagrangian framework is developed, and
a path integral control method is employed to derive the optimal measure of stubbornness.
The paper further applies a variant of the Ornstein–Uhlenbeck BPPSDE to obtain an explicit
solution for the player’s optimal stubbornness.

Keywords: stochastic differential games; BPPSDE; path integral control; feedback Nash
equilibrium; sports analytics
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1. Introduction
In this paper, we determine the optimal degree of stubbornness for a soccer player to

enhance their chances of being selected by the coach, considering goal dynamics governed
by a backward parabolic partial stochastic differential equation (BPPSDE) by utilizing a
Feynman-type path integral control method [1,2]. Since stubbornness is an inherent trait
of a player that cannot be easily or flexibly modified, it is treated as a fixed parameter
for each individual. The coach selects players based on this trait, considering the specific
circumstances of the match. Stubbornness is a valuable quality in soccer, particularly
for scoring goals, as it fosters persistence and resilience. Several factors highlight the
benefits of stubbornness: first, a determined player will not give up easily, even when
faced with strong defenses or multiple failed attempts, creating scoring opportunities
through persistent efforts. Second, challenges such as defensive pressure, adverse weather,
or fatigue can obstruct scoring, yet stubborn players are more likely to persist, maintaining
their focus until they succeed. Third, a stubborn mindset keeps players mentally strong
and confident, with the belief that they can eventually get the ball past the goalkeeper.
Fourth, when combined with adaptability, stubbornness enables players to learn from
missed opportunities, adjusting their tactics instead of getting discouraged, which typically
leads to higher success rates. Lastly, a relentless attitude can inspire teammates to adopt the
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same persistence, boosting the team’s energy and increasing the chances of breakthroughs.
The examples are the performance of Diego Maradona in the quarterfinal against England
and the semifinal against Belgium in the 1986 Men’s Soccer World Cup. Soccer history is
filled with examples of skilled players whose careers faltered due to a lack of discipline
and teamwork. In this analysis, the coach has the authority to assess and manage a
player’s level of stubbornness. If a player is overly stubborn, the coach may view them
as a liability to the team, where the costs outweigh the benefits. While the coach may
naturally prefer the least stubborn players, relying solely on this strategy may not lead to
consistent success for the team, as this approach could become predictable to the opposition.
If the opposing team is aware of this preference, they can simply focus on countering the
coach’s strategies. Conversely, if a player demonstrates some level of flexibility, it forces the
opposition to spend additional time analyzing potential strategies. Moreover, spontaneous
decisions made by a player in the heat of the moment could yield favorable outcomes for
their team. Therefore, we adopt a balanced approach to determine an optimal level of
stubbornness, striking a middle ground that benefits the team strategically. In this analysis,
it is assumed that a player’s stubbornness arises from a mean field interaction [3,4]. We also
provide an explicit solution for stubbornness as a feedback Nash equilibrium, assuming
the player’s objective function incorporates factors such as stubbornness. Since the coach
cannot frequently or continuously substitute players due to a limited number of allowed
substitutions, and players’ behavioral traits (e.g., stubbornness levels) tend to remain stable
during a match, these practical constraints simplify the general optimization problem into a
discrete and finite framework appropriate for soccer. To adapt the feedback control model to
this scenario, we first determine the control values from the general model. The coach then
partitions the continuous range of stubbornness levels into discrete sub-intervals, forming
distinct categories. Based on the feedback control value provided by the general model,
the coach assigns a player to the corresponding category. For instance, if the stubbornness
level is defined over the interval [0, 1], the coach might divide it into subgroups such as
A = [0, 0.25), B = [0.25, 0.5), C = [0.5, 0.75), and D = [0.75, 1]. If a player’s feedback control
value is determined to be 0.32, they would be placed in category B. This approach allows
us to translate continuous control values into actionable discrete decisions.

Soccer enjoys widespread popularity globally thanks to its straightforward rules.
Among the most significant tournaments in the sport are the World Cup, the Euro Cup,
and the Copa America, with the World Cup being the most renowned. Santos (2014) [5]
emphasized that FIFA has been concerned about teams becoming overly defensive in their
goal-scoring strategies since the early 1990s, which has led to a reduction in the total number
of goals over time and a subsequent dip in the sport’s appeal. For example, during the 2006
men’s World Cup, both Italy and Spain conceded only two goals throughout their seven
matches. A USA Today article from 17 March 1994, highlighted FIFA’s goal to promote
more attacking and high-scoring games. This objective has prompted some teams to alter
their approach, as seen in the 2014 men’s World Cup semifinal, where Germany scored
five goals against Brazil in the first half. In the 2018 men’s World Cup, France adopted
an offensive strategy despite lacking star players and having a younger team, allowing
them to play freely and ultimately win the tournament. On the other hand, teams with
well-known soccer stars sometimes underperformed because their predictable playstyles,
honed over long careers, were easily countered by opponents. This highlights how mental
stress can significantly impact game outcomes, influencing the financial stakes for both
winners and losers.

Soccer is a game rich in strategic complexity, providing numerous avenues for analyz-
ing optimal tactics [6]. In a match, two teams face off for ninety minutes, each composed of
a goalkeeper and ten outfield players. Coaches have the flexibility to organize their players
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in any formation and can alter their team’s playing style at any point during the game [6].
The primary goal for each team is to score while simultaneously preventing the opposition
from doing so. The strategies employed by both teams are highly interdependent, as the
approach taken by one team directly affects the other’s chances of scoring or conceding
goals [6,7].

The soccer literature contains numerous papers across various branches of physics [8,9].
Researchers in statistical physics have primarily examined sports through the lens of
stochastic processes, such as analyzing the temporal evolution of scores [10]. Meanwhile,
other investigations have introduced novel approaches, utilizing methods like ordinary dif-
ferential equations [11], stochastic agent-based game simulations [12], and network science
theory [13] to capture the intricate dynamic behavior of team players. Continuous-time
models are valuable for sports like soccer, hockey, athletics, swimming, speed skating,
and basketball. These models produce observation sequences representing events such
as goals, shifts in possession, lead changes, and baskets scored, all occurring over time
intervals that are not fixed or countable [14]. Although there have been recent advance-
ments, soccer analytics appears to lag behind other major team sports, such as basketball or
baseball. This has resulted in soccer team management and strategy being less recognized
as analytics-driven. A key challenge in soccer lies in data collection. Typically, data in
ball-based sports focuses on events occurring near the ball (on-ball actions). However,
in soccer, a significant portion of the game’s dynamics takes place away from the ball (off-
ball dynamics), which is essential for evaluating team performance [15]. As a result, on-ball
actions may offer limited insights compared to off-ball dynamics when it comes to strategy
and player assessment [9]. In this context, a possible solution should be constructing a
stochastic control environment in such a way that the coach of a team can select players
based on their stubbornness, and furthermore, chooses players based on stubbornness. This
is a new approach to address this issue. Furthermore, BPPSDE provides more flexibility on
the goal dynamics.

Palomino (1998) made a notable impact on the development of dynamic game-theoretic
models aimed at optimizing strategic decisions in sports [16]. This research examined
how two competing soccer teams continuously chose between defensive and offensive
formations. It was observed that a team leading in the score tends to adopt a defensive
stance when the match is tied or they are behind, particularly in the second half. In a similar
vein, Banerjee (2007) [17] explored the strategic shifts in the National Hockey League
following a change in the point-scoring system for games tied at the end of regulation
time [6]. The analysis in these studies, however, is constrained by certain assumptions that
are either unrealistic or contentious, limiting the scope for a broader dynamic strategic
evaluation. For example, one study assumes—without verification—that adopting an
offensive strategy boosts the goal-scoring rate of the attacking team more significantly
than that of the defending team. This assumption is tested by examining the 2014 men’s
soccer World Cup semifinal between Germany and Brazil, where Germany scored five
goals in just 29 min, including four within the first six minutes, ultimately leading 7-0
by the second half [4]. However, despite Germany’s aggressive approach early on, they
only managed to score two additional goals in the remaining hour of the game. Another
study challenges the previous assumption by introducing a parameter that accounts for
a comparative advantage in either offense or defense. Both articles under review focus
on the strategic decisions available to soccer teams, yet they primarily discuss the binary
options of attack and defense, neglecting a vital secondary dimension: the choice between
a violent and non-violent style of play [6]. Teams that play violently may commit fouls and
risk red cards, while other aggressive acts may aim to disrupt or sabotage the opposing
team [6]. The study by Dobson (2010) [6] assumes that these strategic choices are discrete,
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forcing teams to select between defensive and attacking formations, as well as violent
and non-violent styles of play. These choices significantly affect the chances of scoring or
conceding goals and the probability of receiving red cards. Through numerical simulations,
Dobson shows that optimal strategic decisions depend on various factors, including the
current score difference and the time remaining in the game [6]. In this paper, we treat
stubbornness as a continuous control variable, with its maximum value representing an
attacking approach.

The structure of the paper is as follows: Section 2 discusses the properties of the payoff
function and the BPPSDE. Section 3 presents an explicit solution for optimal stubbornness
using the Wick-rotated Schrödinger-type equation. Finally, Section 4 offers a brief conclusion.

2. Background Framework
In this section, we will be discussing the construction of forward-looking stochastic

goal dynamics along with a conditional expected dynamic objective function.

2.1. General Notation

In this paper, we define sample space Ω, σ-field F and probability measure P. We
denote {Ft}t∈I as a family of sub-σ-fields of F , such that I represents an ordered indexed
set with the condition Fs ⊂ Ft for every continuous time s < t, and s, t ∈ I. Moreover, we
define canonical filtration, augmented by P null sets, FW

t := σ{Ws|0 ≤ s ≤ t} ∨ N , t ∈
[0, ∞), where N is the collection of P null sets. We denote the goal dynamics and adjusted
goal dynamics as x(.) and x†(.), respectively. We denote u(.) as the stubbornness of a
player, which is fixed throughout match such that functional control space U takes values
from R. Similarly, functional state space X takes the values from Rk. Throughout our
analysis, we use µ and σ as drift and diffusion components of the SDEs. σ consists of two
subparts, σ1 and σ2. ϕ∗ is the value function that solves the BPPSDE, V represents the rate
of change ϕ∗ and Θ represents a source term that influences the evolution of ϕ∗ such that
|Θ| ≤ C(1 + |x|), where C is a positive finite constant. We denote T [t, x(t)] as the terminal
condition of the BPPSDE. We denote regular expectation and conditional expectation on
goal dynamics as E{.} and Es := E{.|Fs}, respectively. For t > 0, we denote ℘ as the
σ-field corresponding to the predictable sets on {Ω, (0, t)} associated with the filtration
Fs≥0, Lp is the functional space, which is defined using a natural generalization of the
p-norm for finite dimensional vector spaces and ∂̃α

x is the vector of weak derivatives with
respect to the vector x with α̃th order, where α̃ = (α1, α2, . . . , αℑ)

′. We denote Sobolev space
as S J,p, where the integer J ∈ N and p > 1 with fS being a function takes values from
Sobolev space. For ȷ and ȷ > 1, we use the notation G ȷ = G ȷ(Rℑ) for the Sobolev space
S ȷ,p(Rℑ) on Rℑ for all ȷ ̸= 0. We define

G0 = L2 = G0(Rℑ) = L2(Rℑ),

Gȷ = Gȷ(Rℑ) = L2
(

Ω × [0, t],P,G ȷ

)
.

Furthermore, consider the notation ||.||ȷ = ||.||G ȷ . Additionally, for a function f defined on
Ω × [0, t]×Rȷ is

||| f |||2ȷ = E
{∫ t

0
|| f (s, .)||2ȷ ds

}
.

We also denote B(R) as the Borel measurable set on R. We use H1 and H2 are two separable
Hilbert spaces such that H1 is densely embedded in H2. We also assume that both H1

and H2 have the same dual space H∈ such that H1 ⊂ H2 ⊂ H∈ with the linear operators
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Ξ1(ω, s) : H1 → H∈ and Ξ2(ω, s) : H2 → H∈ with corresponding norms ||.||H1 , ||.||H2 and
||.||H∈ , respectively We define a stopping time as

ℵk(ω) = inf

{
s; sup

s≤t
||ϕ∗(ω, s, x(s), u(s))||H2 ≥ k

}
∧ t.

Finally, we denote J(u), π(.), x0, L̂ and λ as expected payoff, payoff functions, initial goal
dynamics, Lagrangian and Lagrangian multiplier, respectively. There are additional no-
tations introduced in Section 3. As it is not needed to state the main results, we do not
introduce it here.

2.2. Probabilistic Construction

Let t > 0 be a fixed finite time. Define Ws as a k-dimensional Wiener process that
appeared in a soccer game at time s for all s ∈ [0, t] defined on a complete probability space
(Ω,F ,P) with sample space Ω, σ-field F and probability measure P. Here, k represents
the number of independent sources of uncertainty (e.g., player actions, weather conditions,
strategy randomness).

Definition 1. Consider {Ft}t∈I as a family of sub-σ-fields of F , such that I represents an ordered
indexed set with the condition Fs ⊂ Ft for every s < t, and s, t ∈ I. This family {Ft}t∈I is called
a filtration of the above process [18,19].

If we simply talk of a goal dynamics {x}t∈I or simply x(t), then this implies the choice
of filtration corresponding to a soccer match is

Ft := F x
t := σ{x(s)|s ≤ t, s, t ∈ I},

which is called canonical or natural filtration of xt∈I . In our case, the Wiener process is
associated with the canonical filtration, augmented by P null sets,

FW
t := σ{Ws|0 ≤ s ≤ t} ∨N , t ∈ [0, ∞),

where N is the collection of P null sets.
In this paper, x(s) ∈ X denotes the goal dynamics at time s for an individual player,

with values in R. The goalkeepers are excluded from this analysis, as they typically remain
at their goal posts and generally do not move to the opposite side to score. By goal
dynamics, we refer to the probability of scoring a goal at a specific continuous time point
s. A higher probability of scoring does not guarantee that a goal has actually been scored.
For instance, this includes situations where a striker misses the goal, a shot is deflected by
the opposing goalkeeper or players, or an offside call is made, among other possibilities.
Let the goal dynamics be represented by a stochastic differential equation (SDE)

dx(s) = µ[s, x(s), u(s), σ2[s, x(s), u(s)]]ds + σ[s, x(s), u(s)]dWs, (1)

where µ : [0, t]×X × U ×R 7→ Rk, σ2 : [0, t]×X × U 7→ Rk×k and σ : [0, t]×X × U 7→
Rk×k are the drift and diffusion coefficients, respectively, x(0) = x0, and the control
variable u ∈ U takes values in R. Clearly, x(s) in Equation (1) does not guarantee that
x ∈ [0, 1]. To make this restriction, we need to do a logistic transformation x†(s) =

[1 + exp{−x(s)}]−1.
In Equation (1), as σ2 measures uncertainty or variability in the goal dynamics, it acts

as a feedback mechanism, adjusting µ to account for this variability. In other words, this
represents how a system compensates for expected fluctuations or adapts to anticipated
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noise. Furthermore, since σ2 encodes variance or correlation structures in the noise, µ could
use this information to stabilize the system. In this environment, σ2 reflects how uncertainty
evolves under different values of stubbornness u(s). Including it in µ allows for antici-
pating performance due to stubbornness under uncertainty, or risk-aware stubbornness
that adapts the deterministic trajectory based on noise levels. Moreover, inclusion of σ2

introduces nonlinear relationships between µ and σ. As σ2 depends on σ, the drift term µ

could account for second-order effects or corrections arising from goal dynamics. In our
context, σ2 represents variability in scoring rates or possession changes due to environ-
mental uncertainties. Including it in the drift implies the deterministic trend accounts for
these uncertainties.

In this framework, the control variable u represents the selection of players based
on their fixed stubbornness parameter. Relying on prior knowledge of each player’s
stubbornness, the coach initially selects the team before the game begins and subsequently
substitutes players during the match based on their level of stubbornness and the game’s
conditions at time s. A highly stubborn player makes decisions independently, disregarding
strategies set in the dressing room or by the coach, leading to a high value of u. Conversely,
a less stubborn player adheres to team strategies, resulting in a low value of u. We can
assume, without loss of generality, that u ∈ [0, 1], where 0 indicates no stubbornness.
The coach always prefers a player with u → 0. Although the coach might instinctively
favor u → 0, relying exclusively on this strategy could compromise the team’s long-term
success, as it risks becoming predictable to the opposition. If the opposing team recognizes
this preference, they can concentrate their efforts on countering the coach’s tactics. On the
other hand, when a player exhibits a certain degree of flexibility, it compels the opposition
to invest more time and effort in evaluating potential strategies. Additionally, quick, on-
the-spot decisions by players can sometimes yield advantageous outcomes for the team.
Therefore, we assume u → ã such that ã > 0, where ã is a constant. Furthermore, define

σ[s, x(s), u(s)] := σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)], (2)

where σ1 represents a stochastic network of passing the ball from a single player to others.
In this context, we account for the passing of 19 players, as a missed pass might result
in the ball being intercepted by an opposing player, and σ2 arises due to environmental
and strategic uncertainties. The negative sign in Equation (2) indicates that σ2 negatively
impacts σ1, as environmental and strategic uncertainties contribute to reducing the size of
the stochastic ball-passing network.

2.3. Existence and Uniqueness of a Solution of the BPPSDE

Consider the BPPSDE in divergence form as[
− ∂ϕ∗

∂s
[s, x(s), u(s)]− V [s, x(s), u(s)]ϕ∗[s, x(s), u(s)] + Θ[s, x(s), u(s)]

+
∂ϕ∗

∂x
[s, x(s), u(s)]µ(s, x(s), u(s), σ2[s, x(s), u(s)])

+
1
2

∂2ϕ∗

∂x2 [s, x(s), u(s)](σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)])2
]

ds

− ∂ϕ∗

∂x
[s, x(s), u(s)]σ2[s, x(s), u(s)] dWs = 0,

with terminal condition ϕ∗(t, x, u) = T [t, x(t)], where ϕ∗(s, x, u) is the value function,
representing the solution of the BPPSDE, V(s, x, u) represents the discount factor or rate
of change in ϕ∗ due to external influences, which is assumed to be smooth and bounded:
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|V(s, x, u)| ≤ C, and Θ(s, x, u) represents a source term that influences the evolution of ϕ∗

such that |Θ(s, x, u)| ≤ C(1 + |x|).

Assumption 1. The drift coefficient µ is smooth (continuously differentiable) in all its arguments
and satisfies linear growth and Lipschitz conditions:

|µ(s, x, u, σ2)| ≤ C(1 + |x|), |µ(s, x1, u, σ2)− µ(s, x2, u, σ2)| ≤ L|x1 − x2|,

and the diffusion coefficients σ1(s, x, u) and σ2(s, x, u) are smooth in all their arguments and satisfy
similar growth and Lipschitz conditions as µ:

|σi(s, x, u)| ≤ C(1 + |x|), |σi(s, x1, u)− σi(s, x2, u)| ≤ L|x1 − x2|,

for i = 1, 2.

In the following lemma, we adopt a similar approach to the Feynman–Kac formula.
However, since we assume the existence of a unique solution to a stochastic parabolic partial
differential equation, we cannot label it as the Feynman–Kac formula, as that specifically
relates a deterministic linear parabolic partial differential equation to path integrals.

Lemma 1. Let[
− V [s, x(s), u(s)] ϕ∗[s, x(s), u(s)]

+ Θ[s, x(s), u(s)] +
∂ϕ∗[s, x(s), u(s)]

∂s

+
∂ϕ∗[s, x(s), u(s)]

∂x
µ{s, x(s), u(s), σ2[s, x(s), u(s)]}

+
∂2ϕ∗[s, x(s), u(s)]

2∂x2 {σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]}2
]

ds

− ∂ϕ∗[s, x(s), u(s)]
∂x

σ2[s, x(s), u(s)] dWs = 0, (3)

be a BPPSDE where [s, x(s), u(s)] ∈ [0, t]×R× [0, 1] subject to the terminal condition
ϕ∗[t, x(t), u(t)] = T [t, x(t)], Θ,V , µ, σ1, and σ2 are known functions and ϕ∗[s, x(s), u(s)] :
[0, t]×R× [0, 1] → R is an unknown function. Then, assuming a unique solution exists, it can be
written as the conditional expectation

ϕ∗[s, x(s), u(s)]

= E
{
T [t, x(t)] exp

{
−
∫ t

s
V [κ, x(κ), u(κ)] dκ

}
+
∫ t

s
Θ[s1, x(s1), u(s1)] exp

{
−
∫ s1

s
V [κ, x(κ), u(κ)] dκ

}
ds1

∣∣∣∣Fs

}
for all s1 ∈ [0, s] such that X is an Itô’s process of the form represented by SDE (1).

Proof. Assume that ϕ∗[s, x(s), u(s)] is a solution to the stochastic differential equation
given in Equation (3). Define a stochastic process

Z(s1) = exp
{
−
∫ s1

s
V [κ, x(κ), u(κ)] dκ

}
ϕ∗[s1, x(s1), u(s1)]

+
∫ s1

s
exp

{
−
∫ l

s
V(κ, x(κ), u(κ))dκ

}
Θ[l, x(l), u(l)] dl, (4)
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Applying Itô’s Formula to Equation (4) yields,

dZ(s1) = − exp
{
−
∫ s1

s
V [κ, x(κ), u(κ)] dκ

}
V [s1, x(s1), u(s1)] ϕ∗[s1, x(s1), u(s1)] ds1

+ exp
{
−
∫ s1

s
V [κ, x(κ), u(κ)] dκ

}
{dϕ∗[s1, x(s1), u(s1)]}

+ exp
{
−
∫ s1

s
V [κ, x(κ), u(κ)] dκ

}
Θ[s1, x(s1), u(s1)] ds1

= exp
{
−
∫ s1

s
V [κ, x(κ), u(κ)] dκ

}{
dϕ∗[s1, x(s1), u(s1)] + Θ[s1, x(s1), u(s1)] ds1

− V [s1, x(s1), u(s1)] ϕ∗[s1, x(s1), u(s1)] ds1

}
. (5)

By Lemma (A1) of the appendix, it is shown that

dϕ∗[s1, x(s1), u(s1)]

=

{
∂ϕ∗[s1, x(s1), u(s1)]

∂s1
+

∂ϕ∗[s1, x(s1), u(s1)]

∂x
µ

{
s1, x(s1), u(s1), σ2[s1, x(s1), u(s1)]

}
+

1
2

∂2ϕ∗[s1, x(s1), u(s1)]

∂x2 {σ1[s1, x(s1), u(s1)]− σ2[s1, x(s1), u(s1)]}2
}

ds1

+
∂ϕ∗[s1, x(s1), u(s1)]

∂x
σ1[s1, x(s1), u(s1)] dWs1

− ∂ϕ∗[s1, x(s1), u(s1)]

∂x
σ2[s1, x(s1), u(s1)] dWs1 . (6)

Equation (6) into (5) implies,

dZ(s1)

= exp
{
−
∫ s1

s
V [κ, x(κ), u(κ)] dκ

}{{
− V [s1, x(s1), u(s1)] ϕ∗[s1, x(s1), u(s1)]

+ Θ[s1, x(s1), u(s1)] +
∂ϕ∗[s1, x(s1), u(s1)]

∂s1

+
∂ϕ∗[s1, x(s1), u(s1)]

∂x
µ{s1, x(s1), u(s1), σ2[s1, x(s1), u(s1)]}

+
1
2

∂2ϕ∗[s1, x(s1), u(s1)]

∂x2 {σ1[s1, x(s1), u(s1)]− σ2[s1, x(s1), u(s1)]}2}ds1

− ∂ϕ∗[s1, x(s1), u(s1)]

∂x
σ2[s1, x(s1), u(s1)] dWs1

}
+ exp

{
−
∫ s1

s
V [κ, x(κ), u(κ)] dκ

}
∂ϕ∗[s1, x(s1), u(s1)]

∂x
σ1[s1, x(s1), u(s1)] dWs1 . (7)

Because ϕ∗[s, x(s), u(s)] is a solution of the stochastic differential equation given in
Equation (3). Equation (7) becomes,

dZ(s1) = exp
{
−
∫ s1

s
V [κ, x(κ), u(κ)] dκ

}
∂ϕ∗[s1, x(s1), u(s1)]

∂x
σ1[s1, x(s1), u(s1)] dWs1 (8)

The integral form of Equation (8) is,

Z(t)−Z(s)

=
∫ t

s
exp

{
−
∫ s1

s
V [κ, x(κ), u(κ)] dκ

}
∂ϕ∗[s1, x(s1), u(s1)]

∂x
σ1[s1, x(s1), u(s1)] dWs1 (9)
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From Lemma (1), we can conclude that if the BPPSDE has a unique solution then that
can be written as a conditional expectation, and

dϕ∗[s, x(s), u(s)] =
{
V [s, x(s), u(s)] ϕ∗[s, x(s), u(s)]

− Θ[s, x(s), u(s)]

− ∂ϕ∗[s, x(s), u(s)]
∂x

µ{s, x(s), u(s), σ2[s, x(s), u(s)]}

− 1
2

∂2ϕ∗[s, x(s), u(s)]
∂x2 {σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]}2

}
ds

+
∂ϕ∗[s, x(s), u(s)]

∂x
σ2[s, x(s), u(s)] dWs. (10)

In Lemma (1), we demonstrate the relationship between a BPPSDE with a unique
solution and the path integral. Since our main focus is on establishing the existence of a
unique solution for a dynamic objective function governed by an SDE, in Proposition 1,
we identify the conditions under which this SDE has a unique solution. To achieve this,
we first define a complete filtration, which is a sequence of complete σ-algebras in the Fs-
measurable space. Then, utilizing Assumptions 2–5, and finally, with Definitions 2 and 3,
we obtain the unique solution for the SDE.

Suppose, for t > 0, ℘ is the σ-field corresponding to the predictable sets on {Ω, (0, t)}
associated with the filtration Fs≥0, Lp is the functional space, which is defined using a
natural generalization of the p-norm for finite dimensional vector spaces and ∂̃α

x is the vector
of weak derivatives with respect to the vector x with α̃th order, where α̃ = (α1, α2, . . . , αℑ)

′.

Definition 2 (Sobolev space [20,21]). For ℑ ≥ 1 suppose Ω is an open set in Rℑ. Let p ≥ 1 and
ȷ ∈ N. The Sobolev space S ȷ,p is defined as

{ fs ∈ Lp(Ω × (0, t)×Rℑ); for all |α| ≤ ȷ, ∂α
x ∈ Lp(Ω)}, (11)

where α̃ = (α1, α2, . . . , αℑ)
′, |α̃| = ∑ℑ

k=1 αk and ∂̃α
x = (∂α

x1
, ∂α

x2
, ∂α

x3
, . . . , ∂α

xℑ)
′ is the vector of

weak derivatives.

Suppose ȷ is an integer and G ȷ = G ȷ(Rℑ) is the Sobolev space S ȷ,p(Rℑ) on Rℑ for all
ȷ ̸= 0. Denote

G0 = L2 = G0(Rℑ) = L2(Rℑ),

Gȷ = Gȷ(Rℑ) = L2
(

Ω × [0, t],P,G ȷ

)
.

Furthermore, consider the notation ||.||ȷ = ||.||G ȷ . Additionally, for a function f defined on
Ω × [0, t]×Rȷ is

||| f |||2ȷ = E
{∫ t

0
|| f (s, .)||2ȷ ds

}
.

Remark 3.2 of Du et al. (2010) [20] provides the conditions for finding a solution to
Equation (10).

Definition 3 ([20]). The function pair {ϕ∗[s, x(s), u(s)], σ2[s, x(s), u(s)]} that maps Ω× [0, t]×
R to R2 is a weak solution to the parabolic partial stochastic differential Equation (10) if
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ϕ∗[s, x(s), u(s)] ∈ L2[Ω × (0, t),℘,G1] and σ2[s, x(s), u(s)] ∈ L2[Ω × (0, t),℘,G0], such that
for each τ ∈ G1 and each (ω, s) ∈ Ω × [0, t],

∫
R

ϕ∗[s, x(s), u(s)]τ[x(s)] dx(s)

=
∫
R

T [t, x(t)]τ[x(t)] dx(t) +
∫ t

0

∫
R

{
− V [s, x(s), u(s)] ϕ∗[s, x(s), u(s)] + Θ[s, x(s), u(s)]

+
∂ϕ∗[s, x(s), u(s)]

∂x
µ{s, x(s), u(s), σ2[s, x(s), u(s)]}

+
1
2

∂2ϕ∗[s, x(s), u(s)]
∂x2 {σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]}2

}
τ[x(s)] dx(s) ds

+
∫ t

0

∫
R

∂ϕ∗[s, x(s), u(s)]
∂x

σ2[s, x(s), u(s)] dx(s) dWs. (12)

Assumption 2. The functions ϕ∗,V , Θ, µ, σ1 and σ2 are ℘×B(R)-measurable real valued func-
tions where the terminal value T [t, x(t)] is a Ft ×B(R) measurable real valued function, where
B(R) is the Borel measurable set on R.

Assumption 3. (Super parabolicity) For any two given constants C ∈ (1, ∞) and c ∈ (0, 1)
c + σ2

1 (ω, s, x) + σ2
2 (ω, s, x) ≤ 2σ1(ω, s, x)σ2(ω, s, x) ≤ C for all (ω, s, x) ∈ Ω × [0, t]×R1.

Assumption 4. Suppose H1 and H2 are two separable Hilbert spaces such that H1 is densely
embedded in H2. We also assume that both H1 and H2 have the same dual space H∈ such that
H1 ⊂ H2 ⊂ H∈ with the linear operators Ξ1(ω, s) : H1 → H∈ and Ξ2(ω, s) : H2 → H∈
given by

Ξ1(ω, s)ϕ∗[s, x(s), u(s)] =
∂ϕ∗[s, x(s), u(s)]

∂x
µ{s, x(s), u(s), σ2[s, x(s), u(s)]},

and

Ξ2(ω, s)σi[s, x(s), u(s)] =
1
2

∂2ϕ∗[s, x(s), u(s)]
∂x2 {σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]}2

for i = 1, 2. We further assume T [t, x(t)] and Θ[s, x(s), u(s)] take values in H1 and H∈.

Denote the norms of the spaces H1,H2 and H∈ as ||.||H1 , ||.||H2 and ||.||H∈ , respectively.
Furthermore, in order to define inner products and duality products, we use (. , .) and ⟨. , .⟩,
respectively. Finally, define

σ̂[s, x(s), u(s)] :=
{

∂

∂x
ϕ∗[s, x(s), u(s)]

}
σ2[s, x(s), u(s)] ∈ H2. (13)

Let us assume three processes h1, h2 and hϵ, which are defined on Ω × [0, t] and take
the values from H1,H2 and H∈, respectively. Moreover, for all ω ∈ Ω, consider h1(ω, s)
is measurable with respect to (ω, s), and Fs-measurable in ω for almost everywhere s.
For every η† ∈ H1, ⟨η†, hϵ(ω, s)⟩ is Fs-measurable in ω for almost everywhere in s and
is measurable with respect to (ω, s). Let h2(ω, s) be strongly continuous in s and is Fs-
measurable with respect to ω for any s, and is a local martingale. Assume ⟨h2⟩ is an
increasing process for ||h2||2H2

in a Doob–Meyer decomposition (p. 1240 of [22]). Lemma
3.1 of [20] implies if ϕ ∈ L2(Ω,Ft,H2), for each η† ∈ H1 and (ω, s) ∈ Ω × [0, t],

(η†, h1(s)) = (η†, ϕ) +
∫ t

s
⟨η†, hϵ(ν)⟩dν + (η†, h2(t)− h2(s)).
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Then, ∃ Ω∗ ⊂ Ω such as P(Ω∗) = 1, and another function f , which takes values from H1,
so that the following conditions hold:

(i) f (s) is Fs-measurable ∀ s ∈ [0, t] and strongly continuous with respect to s for any
ω ∈ Ω∗ and f (s) = h1(s) ∈ H2 for almost surely (ω, s) ∈ Ω × [0, t], and the terminal
condition f (t) = ϕ.

(ii) for every ω ∈ Ω∗ and s ∈ [0, t],

|| f (s)||2H2
= ||ϕ||2H2

+ 2
∫ t

s
⟨h1(ν), hϵ(ν)⟩dν + 2

∫ t

s
( f (ν), dh2(ν))− ⟨h2⟩t + ⟨h2⟩s.

Define H∗
2 :=

{
h1 =

(
h11, h12, . . . , h1ȷ

)∣∣∣∣h1j ∈ H2, j = 1, 2, . . . , ȷ

}
with corresponding

norm ||h1||H∗
2

:=
[
∑

ȷ
j=1 ||h1j||2H2

]1/2
.

Assumption 5 (coercivity condition). For any two constants ζ1 > 0 and ζ2 > 0 there exists

2⟨x, Ξ1x⟩+ ||Ξ∗
2 x||2H∗

2
≤ −ζ1||x||2H1

+ ζ2||x||2H2
,

||Ξ1x||H∗
2
≤ Ξ2||x||H1 , (14)

where (ω, s) ∈ Ω × [0, t] and Ξ∗
2 : H1 → H∗

2 is the adjoint operator of Ξ2.

Now we are going to give an example showing that Hilbert spaces and their dual
spaces satisfy Assumptions 4 and 5. The assumptions imply

H1 ⊂ H2 ⊂ H∗
2 ,

where the embedding H1 ⊂ H2 is dense, and H∗
2 is the dual space of H2. This yields

||x||H2 ≤ C1||x||H1 , ||x||H∗
2
≤ C2||x||H2 ,

for embedding constants C1, C2 > 0. Let Ω ⊂ Rd be a bounded domain with a smooth
boundary. Consider the following spaces:

(i) H1 = H1
0(Ω), the Sobolev space of functions that are square-integrable, have square-

integrable weak derivatives, and vanish on the boundary of Ω.
(ii) H2 = L2(Ω), the space of square-integrable functions.
(iii) H∗

2 = H−1(Ω), the dual space of H1
0(Ω), consisting of continuous linear functionals

on H1
0(Ω).

Furthermore, the spaces have the following properties, the embedding H1 ⊂ H2 is
dense and continuous, the dual pairing ⟨x, y⟩ between x ∈ H∗

2 and y ∈ H1 satisfies the
required structure, and the norms are ordered as:

||x||H1 ≥ ||x||H2 ≥ ||x||H∗
2
,

consistent with the hierarchical embedding. Define Ξ1 as a first-order differential opera-
tor, e.g.,

Ξ1x =
∂

∂x
ϕ∗[s, x(s), u(s)]µ[s, x(s), u(s), σ2[s, x(s), u(s)]],

which maps H1 to H2. Define Ξ2 as a second-order differential operator, e.g.,

Ξ2x =
1
2

∂2ϕ∗[s, x(s), u(s)]
∂x2

(
σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]

)2,
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which maps H2 to H∗
2 . The coercivity condition is:

2⟨x, Ξ1x⟩+ ||Ξ∗
2 x||2H∗

2
≤ −ζ1||x||2H1

+ ζ2||x||2H2
,

and
||Ξ1x||H∗

2
≤ Ξ2||x||H1 .

For Ξ1x = ∂
∂x ϕ∗[s, x(s), u(s)] and Ξ2x = ∂2ϕ∗ [s,x(s),u(s)]

∂x2 , we use integration by parts
and the Poincaré inequality:

2⟨x, Ξ1x⟩H2 + ||Ξ∗
2 x||2H∗

2
≤ −ζ1||x||2H1

+ ζ2||x||2H2
.

This holds for appropriate constants ζ1 > 0 and ζ2 > 0, ensuring coercivity. Finally,
from the notation, H1 ⊂ H2, indicating H1 is the more restrictive space (e.g., H1

0(Ω)), while
H2 is less restrictive (e.g., L2(Ω)). Their dual spaces satisfy H∗

2 ⊃ H2, which is consistent
with the embeddings.

Proposition 1. Suppose all the previous assumptions and definitions hold. Furthermore, let
us consider Θ ∈ L2(Ω × (0, t),℘,H∈) and T ∈ L2(Ω,Ft,H2). Then, Equation (10) has a
unique solution (ϕ∗, σ̂) ∈ L2(Ω × (0, t),℘,H1 ×H∗

2) such that ϕ∗ ∈ ζ†([0, t],H2) (almost sure),
and moreover,

E sup
s≤t

||ϕ∗(s, x(s), u(s))||2H2
+E

∫ t

0

(
||ϕ∗[s, x(s), u(s)]||H1 + ||σ̂[s, x(s), u(s)]||H∗

2

)
ds

≤ ζ

(
E
∫ t

0
||Θ[s, x(s), u(s)]||H∈ ds +E||T [t, x(t), u(t)]||H2

2

)
where ζ = ζ(ζ1, ζ2, t) is a constant.

Proof. To prove the above theorem we will take two steps. In the first step, we will assume
that a solution to Equation (10) exists and demonstrate that this solution is unique. In the
second step, we will establish the existence of the solution.

Proposition 3.2 of Du et al. (2010) [20] and Hu et al. [23] imply a process (ϕ∗, σ̂)

is a Fs-adapted H1 ×H∗
2 valued solution of Equation (10), if ϕ∗ ∈ L2(Ω × (0, t),℘,H1)

and σ̂ ∈ L2(Ω × (0, t),℘,H∗
2) such that for each η ∈ H1 and (ω, s) ∈ Ω × [0, t] (almost

everywhere),

(η, ϕ∗(s, x(s), u(s))) =
∫ t

0
[⟨η, Ξ1ϕ∗(s, x(s), u(s))⟩+ Ξ2 σ̂(s, x(s), u(s))

+ Θ(s, x(s), u(s))] ds −
∫ t

0
σ̂(s, x(s), u(s)) dWs. (15)

Lemma 3.1 in [20] implies ϕ∗(s, x(s), u(s)) ∈ ζ([0, t],H2) (almost sure).
Let E sups≤t ||ϕ∗(s, x(s), u(s))||2H2

be measurable. In other words,

E
{

sup
s≤t

||ϕ∗(s, x(s), u(s))||2H2

}
< ∞,

and we define a stopping time

ℵk(ω) = inf

{
s; sup

s≤t
||ϕ∗(ω, s, x(s), u(s))||H2 ≥ k

}
∧ t. (16)
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Condition 16 implies that ℵk(ω) → t almost surely as k → ∞. After implementing Itô’s
formula, Equation (10) yields

ϕ∗(t ∧ ℵk, x(t), u(t)) = −
∫ s∧ℵk

0

[
− V(s, x(s), u(s)) ϕ∗(s, x(s), u(s))

+ Θ(s, x(s), u(s))

+
∂ϕ∗(s, x(s), u(s))

∂x
µ[s, x(s), u(s), σ2(s, x(s), u(s))]

+
∂2ϕ∗(s, x(s), u(s))

2∂x2 [σ1(s, x(s), u(s))− σ2(s, x(s), u(s))]2
]
ds

+
∫ s∧ℵk

o

∂ϕ∗(s, x(s), u(s))
∂x

σ2(s, x(s), u(s))dWs. (17)

Moreover, Assumption 4 and lemma 3.1 in [20] imply,

ϕ∗(t ∧ ℵk, x(t), u(t)) = −
∫ s∧ℵk

0

[
2⟨ϕ∗(s, x(s), u(s)), Ξ1ϕ∗(s, x(s), u(s))⟩

+ 2(Ξ∗
2ϕ∗(s, x(s), u(s)), σ̂(s, x(s), u(s)))

+ 2⟨ϕ∗(s, x(s), u(s)), Θ(s, x(s), u(s))⟩ − ||σ̂(s, x(s), u(s))||2H∗
2

]
ds

+
∫ s∧ℵk

0
2(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s)) dWs, (18)

and Assumption 5 yields

ϕ∗(t ∧ ℵk, x(t), u(t))

= −
∫ s∧ℵk

0

[
2⟨ϕ∗(s, x(s), u(s)), Ξ1ϕ∗(s, x(s), u(s))⟩

+ 2(Ξ∗
2ϕ∗(s, x(s), u(s)), σ̂(s, x(s), u(s)))

+ 2⟨ϕ∗(s, x(s), u(s)), Θ(s, x(s), u(s))⟩ − ||σ̂(s, x(s), u(s))||2H∗
2

]
ds

+
∫ s∧ℵk

0
2(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s)) dWs

≤ ζ(ζ2)
∫ t

0

(
||ϕ∗(s, x(s), u(s))||2H1

+ ||σ2(s, x(s), u(s))||2H∗
2
+ ||Θ(s, x(s), u(s))||2H∗

1

)
ds

+
∫ s∧ℵk

0
2(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s)) dWs. (19)

Burkholder–Davis–Gundy (BDG) [see Proposition A3 in Appendix A] implies

E
∣∣∣∣ sup

s≤ℵk

∫ t

0
(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s))) dWs

∣∣∣∣
≤ ζ

[
E
∫ ℵk

0
||ϕ∗(s, x(s), u(s))||2H2

||σ̂(s, x(s), u(s))||2H∗
2

] 1
2

≤ 1
4
E sup

s≤ℵk

||ϕ∗(s, x(s), u(s))||2H2
+ ζ E

∫ t

0
||σ̂(s, x(s), u(s))||2H∗

2
ds. (20)
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Hence,

E
{

sup
s≤ℵk

||ϕ∗(s, x(s), u(s))||2H2

}

≤ ζ(ζ2)
∫ t

0

(
||ϕ∗(s, x(s), u(s))||2H1

+ ||σ2(s, x(s), u(s))||2H∗
2

+ ||Θ(s, x(s), u(s))||2H∗
1

)
ds. (21)

Since constant ζ does not depend on k, as k → ∞ we will obtain

E
{

sup
s≤t

||ϕ∗(s, x(s), u(s))||2H2

}
< ∞.

After using Itô’s formula one more time like in condition (19) and using Assumption 5,
we obtain,

||ϕ∗(s, x(s), u(s))||2H2

= T (t, x(t), u(t)) +
∫ t

0

[
2⟨ϕ∗(s, x(s), u(s)), Ξ1ϕ∗(s, x(s), u(s))⟩

+ 2(Ξ∗
2ϕ∗(s, x(s), u(s)), σ̂(s, x(s), u(s)))

+ 2⟨ϕ∗(s, x(s), u(s)), Θ(s, x(s), u(s))⟩ − ||σ̂(s, x(s), u(s))||2H∗
2

]
ds

+
∫ t

0
2(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s)) dWs

≤ T (t, x(t), u(t)) +
∫ t

0

[
2⟨ϕ∗(s, x(s), u(s)), Ξ1ϕ∗(s, x(s), u(s))⟩

+ (1 + ϵ)||Ξ∗
2ϕ∗(s, x(s), u(s))||2H∗

2

+
1

1 + ϵ
||σ2(s, x(s), u(s))||2H∗

2
− ||σ2(s, x(s), u(s))||2H∗

2

+ ϵ||ϕ∗(s, x(s), u(s))||2H1
+

1
ϵ
||Θ(s, x(s), u(s))||2H∈

]
ds

+
∫ t

0
2(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s)) dWs

≤ T (t, x(t), u(t)) +
∫ t

0

[
− 2ϵ⟨ϕ∗(s, x(s), u(s)), Ξ1ϕ∗(s, x(s), u(s))⟩

+ (1 + ϵ)(−ζ1||ϕ∗(s, x(s), u(s))||2H1
+ ζ2||ϕ∗(s, x(s), u(s))||2H2

)

− ϵ

1 + ϵ
||σ2(s, x(s), u(s))||2H∗

2
+ ϵ||ϕ∗(s, x(s), u(s))||2H1

+
1
ϵ
||Θ(s, x(s), u(s))||2H∈

]
ds +

∫ t

0
2(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s)) dWs

≤ T (t, x(t), u(t)) +
∫ t

0

[
{2ϵζ2 − ζ1(1 + ϵ) + ϵ}||ϕ∗(s, x(s), u(s))||2H1

+ (1 + ϵ)ζ2||ϕ∗(s, x(s), u(s))||2H2

− ϵ

1 + ϵ
||σ2(s, x(s), u(s))||H∗

2
+

1
ϵ
||Θ(s, x(s), u(s))||2H∈

]
ds

+
∫ t

0
2(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s)) dWs. (22)

Since ϵ → 0 then 2ϵζ2 − ζ1(1 + ϵ) + ϵ → −ζ1 < 0. Thus
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||ϕ∗(s, x(s), u(s))||2H2
+
∫ t

0

(
||ϕ∗(s, x(s), u(s))||2H1

+ ||σ2(s, x(s), u(s))||H∗
2

)
ds

≤ ζ(ζ1, ζ2)

[
T (t, x(t), u(t)) +

∫ t

0

(
||ϕ∗(s, x(s), u(s))||2H2

+ ||Θ(s, x(s), u(s))||H∈

)
ds
]

+
∫ t

0
2(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s)) dWs. (23)

Since E
{

sups≤t ||ϕ∗(s, x(s), u(s))||2H2

}
< ∞, repeating (22) with

∫ t

0
(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s)) dWs

being a uniform martingale. After taking expectations of both sides in (23) and by using
Gronwall inequality [see Corollary A1 in Appendix A] we get,

sup
s≤t

E ||ϕ∗(s, x(s), u(s))||2H2
+E

∫ t

0

(
||ϕ∗(s, x(s), u(s))||2H1

+ ||σ2(s, x(s), u(s))||H∗
2

)
ds

≤ ζ eζt
(
E
[
T (t, x(t), u(t))

]
+E

∫ t

0
||Θ(s, x(s), u(s))||H∈ ds

)
. (24)

Equation (23) and the BDG inequality yield

E sup
s≤t

||ϕ∗(s, x(s), u(s))||2H2

≤ ζ(ζ1, ζ2, t)
[
T (t, x(t), u(t)) +

∫ t

0

(
||ϕ∗(s, x(s), u(s))||2H2

+ ||Θ(s, x(s), u(s))||H∈

)
ds
]

+
1
2
E sup

s≤t
||ϕ∗(s, x(s), u(s))||2H2

+ ζ E
∫ t

0
||σ2(s, x(s), u(s))||2H∗

2
ds. (25)

Inequality (25) with (24) gives the estimate of (20).
In this second part of the proof, we will demonstrate the existence of the solution.

Assume that {bi : i = 1, 2, 3, . . . } is a complete orthogonal basis in H2, which also serves as
an orthogonal basis in H1. We are employing the Galerkin approximation method here.
Now, consider our system of BSDEs without the terminal condition in R1 with the basis
function as follows

ϕ∗i
n (s, x(s), u(s)) =

∫ t

0

[
⟨bi, Ξ1(s, x(s), u(s))bj⟩ϕ

∗j
n (s, x(s), u(s))

+
(
bi, Ξ2(s, x(s), u(s))σ̂j

n(s, x(s), u(s))
)

+ ⟨bi, Θ(s, x(s, u(s)))⟩
]

ds −
∫ t

0
σi

2n(s, x(s), u(s)) dWs. (26)

where ϕ∗i
n (s, x(s), u(s)) and σ̂

j
n(s, x(s), u(s)) are two unknown processes in R1 ×R1. From

Lemma 2 of Mahmudov et al. (2007) [24], we know that E [bi, T (t, x(t), u(t))] < ∞ and
E
∫ t

0 ⟨bi, Θ(s, x(s), u(s))⟩2 < ∞. Then, by Lemma 4.2 of Du et al. (2010) [20], there exists a
unique solution of Equation (26). Define this solution as

ϕ∗
n(s, x(s), u(s)) :=

n

∑
i=1

ϕ∗i
n (s, x(s), u(s))bi,
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and σ̂n(s, x(s), u(s)) = ∑n
i=1 σ̂i

n(s, x(s), u(s))bi. After applying Itô’s lemma and Burkholder–
Davis–Gundy inequality of ||ϕ∗

n(s, x(s), u(s))||2H2
like in the previous section, we obtain,

E sup
s≤t

||ϕ∗
n(s, x(s), u(s))||2H2

+E
∫ t

0

(
||ϕ∗

n(s, x(s), u(s))||2H1
+ ||σ2n(s, x(s), u(s))||H∗

2

)
ds

≤ ζ(ζ1, ζ2)

(
E [T (t, x(t), u(t))] +E

∫ t

0
||Θ(s, x(s), u(s))||2H∈ ds

)
. (27)

From (27) and Proposition 3.2 of Du et al. (2010) [20], we know ∃{n1} ∈ {n}, where {n1}
is the subsequence of {n} and (ϕ∗, σ̂) ∈ L2(Ω × (0, t),℘,H1 ×H∈) such that,

ϕ∗
n1

w→ ϕ∗ ∈ L2(Ω × (0, t),℘,H1),

σ̂n1
w→ σ̂ ∈ L2(Ω × (0, t),℘,H∈). (28)

Suppose h̄ : (Ω,F ) → R1 and ℧ : [0, t] → R1, where both of them are bounded measurable
functions. Now the BSDE (26) with n ∈ N and bi ∈ {bi}, where i ≤ n becomes,

E
∫ t

0
h̄℧(s)(bi, ϕ∗

n1
(s, x(s), u(s))) ds

= E
∫ t

0
h̄℧(s)

{ ∫ t

0

[
⟨bi, Ξ1(s, x(s), u(s))bj⟩ϕ

∗j
n (s, x(s), u(s))

+
(
bi, Ξ2(s, x(s), u(s))σ̂j

n(s, x(s), u(s))
)

+ ⟨bi, Θ(s, x(s, u(s)))⟩
]

ds −
∫ t

0
σi

2n(s, x(s), u(s)) dWs

}
ds. (29)

Furthermore,

E
∫ t

0
h̄℧(s)(bi, ϕ∗

n1
(s, x(s), u(s))) ds → E

∫ t

0
h̄℧(s)(bi, ϕ∗(s, x(s), u(s))) ds. (30)

In view of the second condition of Assumption 5 and estimate (27), we obtain

E
∣∣∣∣h̄⟨bi, Ξ1ϕ∗

n1
(s, x(s), u(s))⟩ ds

∣∣∣∣ < ζ < ∞. (31)

Since ζ is independent of n1, for every s ∈ [0, t]

E
∫ t

0
h̄⟨bi, Ξ1ϕ∗

n1
(s, x(s), u(s))⟩ ds → E

∫ t

0
h̄⟨bi, Ξ1ϕ∗(s, x(s), u(s))⟩ ds. (32)

Applying Fubini’s theorem and Lebesgue-dominated convergence theorem yields

E
∫ t

0
h̄℧(s)

∫ t

s1

⟨bi, Ξ1ϕ∗
n1
(s, x(s), u(s))⟩ ds1ds

=
∫ t

0
℧(s) E

∫ t

s1

h̄⟨bi, Ξ1ϕ∗
n1
(s, x(s), u(s))⟩ ds1ds

→
∫ t

0
℧(s) E

∫ t

s1

h̄⟨bi, Ξ1ϕ∗(s, x(s), u(s))⟩ ds1ds. (33)
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Similarly,

E
∫ t

0
h̄℧(s)

∫ t

s1

(
bi, Ξ2 σ̂∗

n1
(s, x(s), u(s))

)
ds1ds

→ E
∫ t

0
h̄℧(s)

∫ t

s1

(
bi, Ξ2 σ̂∗(s, x(s), u(s))

)
ds1ds. (34)

Assumption 5 and Equation (27) imply

E
∣∣∣∣h̄ ∫ t

0
(bi, σ̂n1(s, x(s), u(s))) dWs

∣∣∣∣ < ζ < ∞. (35)

Since (bi, σ̂n1(s, x(s), u(s))) w→ (bi, σ̂(s, x(s), u(s))) in L2(0, t), the previous result implies

∫ t

0
(bi, σ̂n1(s, x(s), u(s))) dWs

w→
∫ t

0
(bi, σ̂(s, x(s), u(s))) dWs ∈ L2(Ω,Ft,R1). (36)

Fubini’s theorem and Lebesgue’s dominated convergence theorem imply,

E
∫ t

0
h̄℧(s)

∫ t

s1

(
bi, σ̂∗

n1
(s, x(s), u(s))

)
dWsds

→ E
∫ t

0
h̄℧(s)

∫ t

s1

(
bi, σ̂∗(s, x(s), u(s))

)
dWsds. (37)

Therefore, we find for (ω, s) ∈ Ω × [0, t] (a.e.),

(bi, ϕ∗(s, x(t), u(t)) = (bi, T (t, x(t), u(t))) +
∫ t

0

[
⟨bi, Ξ1(s, x(s), u(s))bj⟩ϕ∗j(s, x(s), u(s))

+
(
bi, Ξ2(s, x(s), u(s))σ̂j(s, x(s), u(s))

)
+ ⟨bi, Θ(s, x(s, u(s)))⟩

]
ds −

∫ t

0
σi

2(s, x(s), u(s)) dWs (38)

Hence, we conclude that if we have a stochastic differential equation like BPPSDE, there
exists a unique solution. This completes the proof.

In Lemma 1, we demonstrate the connection between a unique solution to a BPPSDE
and path integrals. Then, using Assumptions 2–5 and Proposition 1, we establish the
conditions under which a unique solution to the BPPSDE exists. Our goal is now to
maximize the payoff function of a soccer player π(s, x(s), u(s)), where the stochastic goal
dynamics take the form

dx(s) = µ[s, x(s), u(s), σ2(s, x(s), u(s))] ds + [σ1(s, x(s), u(s))− σ2(s, x(s), u(s))] dWs.

Let x∗ be the optimal output share of the firm corresponding to the optimal strategy
u∗(s, x∗(s)). Following Du et al. (2013) [25], define ρ ∈ [0, 1) such that a strategy function
of spike variation becomes,

ũ(s, x(s)) :=

u(s, x(s)) if s ∈ [ρ, ρ + ϵ)

u∗(s, x∗(s)) otherwise,
(39)

where ϵ > 0 and ϵ → 0 with any given strategy function u(s, x(s)). Condition (39) implies
x̃(s) is the probability that a goal might be scored when strategy ũ(s) has been used.
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Assumption 6. The stubbornness set U such that U ∋ u(s, x(s)) : [0, t]×H2 → R1 is convex
and the Brownian motion Ws is independent of this set such that

E
{

u(s, x(s))
∣∣∣∣σ(Ws)

}
= u(s, x(s)),

where σ(Ws) is the σ-algebra generated by the Brownian motion.

Assumption 7. For each (x, u) ∈ H2 ×U , we have µ(., x, u), σ1(., x, u), σ2(., x, u) and π(., x, u)
are all predictable processes, where U is a non-empty Borel measurable subset of a metric space.
We also assume for each (s, x, u) ∈ (0, t)×H2 × U ; π, µ, σ1, and σ2 are globally twice Fréchet
differentiable with respect to the goal dynamics x. The functions µx, σ1x, σ2x, πxx, µxx, σ1xx are
dominated by M†, σ2xx are continuous in x(s) and dominated by M†(1 + ||x||H2 + ||u||H1). π

is dominated by M†(1 + ||x||2H2
+ ||u||2H1

).

Suppose, F = π, µ, σ1, σ2, πx, µx, σ1x, σ2x, πxx, µxx, σ1xx such that

F̃ (s) := F (s, x̃(s), ũ(s)),

F̃∆(s) := F (s, x̃(s), ũ(s))− F̃ (s),

F̃ δ(s) := F̃∆(s).I[ρ,ρ+ϵ](s),

F̃xx(s) := 2
∫ 1

0
τ1Fxx(s, τ1x∗(s) + (1 − τ1)x̃(s), ũ(s)) dτ1. (40)

Theorem 1. Let Assumptions 2 through 7 hold. Define a penalized payoff function P : [0, t]×
H1 × [0, 1] → R1 as the form

P := π(s, x(s), u(s)) + ⟨p1, µ(s, x(s), u(s)⟩+ ⟨p2, σ1(s, x(s), u(s), σ2(s, x(s), u(s))⟩. (41)

Furthermore, assume x̃(s) is the optimal goal dynamics corresponding to the stubbornness ũ(s).
Then

dp(t) = Px(s, x̃(s), ũ(s), p(s), q(s)) ds + q(s) dWs, (42)

has a weak unique solution, where q is a different adjoint process.

Proof. Lemmas 5.2 and 5.3 in [25] and Proposition 1 directly imply this result.

Theorem 1 states the existence of a weak solution when we construct a deterministic
Hamiltonian since under stochastic control theory Hamiltonian and Lagrangian approaches
are similar.

2.4. Payoff Function

In this section, we formally define the expected payoff function of a single soccer
player. Let E be the expectation with respect to the probability measure P, and E0{.|Ft} =

E{.|Ft, x(0) = 0} is a conditional expectation based on fixed random initial goal dynamics
x(0), and the stubbornness u(s) ∈ [0, 1] is adapted to filtration Ft. Define an expected
payoff function

J(u) := E0

{∫ t

0
exp(−rs)π(s, x(s), u(s))ds + M(x(t))

∣∣∣∣F0

}
, (43)
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where M(x(t)) is the terminal condition, and an individual soccer player’s payoff function
can be defined as

π(s, x(s), u(s)) :=

[
θ +

3

∑
i=1

αi

]
x(s)− c(u(s))2

(r − µ̄)
√

x(s)
, (44)

where θ > 0 is risk of injury, α1 is constant assist rate at time s, α2 is constant pass accuracy
at time s, α3 is the dribbling skill of a player, c > 0 represents a constant marginal cost of the
player that comes with sacrifices made by that player to be an eligible member of the team,
and µ̄ is the average drift coefficient of the BPPSDE expressed in Equation (1). Moreover

c(u(s))2

(r−µ̄)
√

x(s)
is the performance cost of a player, and M(x(t)) = ω exp(−rt)

√
x(t) is the

terminal bonus offered to each player, where ω is some positive constant [26]. The soccer
player’s objective is to find J(u∗) = supu J(u). The payoff function π : I ×X × U 7→ R for
all X ⊆ R and U ⊆ R, has a local maximum at u∗ ∈ U if there exists a finite number ϵ > 0
so that for some u ∈ (u∗ − ϵ, u∗ + ϵ) ⊂ U , J(u∗) ≥ J(u).

Lemma 2. If the payoff function J(.) is differentiable in the open functional space U , and if it
attains a local maximum at u∗ ∈ U then dJ/du = 0.

Proof. Let J have a local maximum at u∗ ∈ U if there exists a finite number ϵ > 0 so that
for some u ∈ (u∗ − ϵ, u∗ + ϵ) ⊂ U , J(u∗) ≥ J(u). The first order total derivative of J with
respect to u is

d
du

J(u) = lim
u→u∗

J(u)− J(u∗)

u − u∗ .

Since J(u∗) is the maximum, the numerator of the limit is never positive, but the denom-
inator is positive in the cases where u > u∗ and negative for u < u∗. As we assume J(.)
is differentiable at u∗, the left and right limits exist and they are equal. This occurs if
dJ/du = 0. This completes the proof.

We assume J(.) is continuously differentiable (i.e., smooth) with respect to u in (u∗ −
ϵ, u∗ + ϵ) ⊂ U , ∀ϵ > 0. Define u − u∗ = ϵκ. For ϵ → 0, a second order Taylor series
expansion implies

J(u) = j(u∗) + ϵκ
d

du
J(u) +

ϵ2

2!
κ2 d2

du2 J(u) +O(ϵ3).

If dJ/du ̸= 0 and ϵ ↓ 0, the sign of J(u) − J(u∗) is unchanged in (u∗ − ϵ, u∗ + ϵ), such
that κdJ/du would have the same sign for every κ. It is trivial to understand that κ can
be non-zero. This implies κdJ/du can be non-zero too. Hence, κdJ/du = 0. Therefore, the
Taylor series expansion yields that the sign of the difference in the stubbornness of a player
is that of the quadratic term. If d2 J/du2 < 0, then J(u) attains a local maximum.

3. Computation of the Optimal Stubbornness
In this section, we are going to construct a stochastic Lagrangian based on the system

consisting of Equations (1) and (43). In soccer, designing a player’s stubbornness that
rewards the past performance is, in many ways, a much simpler task than designing one to
predict future performance. This exercise boils down to assigning values to the stubborn-
ness in decision making of a player during a match or matches. Therefore, the objective
of a player is to maximize (43) subject to the SDE (1). From Equation (45) of Ewald et al.
(2024) [27] for a player, the stochastic Lagrangian at time s ∈ [0, t] is defined as
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L̂(s, x, λ, u) = E
{ ∫ t

0

{
exp(−rs)π(s, x(s), u(s))ds + M(x(t))

}
ds

+
∫ t

0

[
x(s)− x0 −

∫ s

0
[µ[ν, x(ν), u(ν), σ2[ν, x(ν), u(ν)]]dν − σ[ν, x(ν), u(ν)]dWν]

]
dλ(s)

}
, (45)

where λ(s) is the Lagrangian multiplier.

Proposition 2. For a player, if X0 = {x(s), s ∈ [0, t]} is a goal dynamics then, the optimal
stubbornness as a feedback Nash equilibrium

{
u∗(s, x) ∈ U

}
would be the solution of the follow-

ing equation

∂
∂u f (s, x, u)

[
∂2

∂(x)2 f (s, x, u)
]2

= 2 ∂
∂x f (s, x, u) ∂2

∂x∂u f (s, x, u), (46)

where for an Itô process h(s, x) ∈ [0, t]×R

f (s, x, u) = exp(−rs)π(s, x(s), u(s))ds + M(x(t)) + h(s, x)dλ(s)

+
[

∂h(s,x)
∂s dλ(s) + dλ(s)

ds h(s, x)
]

+ ∂h(s,x)
∂x µ[s, x, u, σ2(s, x, u)]dλ(s) + 1

2 [σ[s, x, u]]2 ∂2h(s,x)
∂(x)2 dλ(s). (47)

Proof. The Euclidean action function of a player can be represented as

A0,t(x) =
∫ t

0
Es

{
exp(−rs)π(s, x(s), u(s))ds + M(x(t))

+

[
x(s)− x0 − µ[s, x, u, σ2(s, x, u)]ds − σ[s, x, u]dB(ν)

]
dλ(s)

}
,

where Es is the conditional expectation on goal dynamics x(s) at the beginning of time
s [28,29]. For all ε > 0, and the normalizing constant Lε > 0 , define a transitional probability
in small time interval as

Ψs,s+ε(x) :=
1
Lε

∫
R

exp
{
− εAs,s+ε(x)

}
Ψs(x)dx(s), (48)

for ϵ ↓ 0, and Ψs(x) is the value of the transition probability at s and goal dynamics x(s)
with the initial condition Ψ0(x) = Ψ0.

For continuous time interval [s, τ], where τ = s + ε, the stochastic Lagrangian is

As,τ(x) =
∫ τ

s
Es

{
exp(−rν)π(ν, x(ν), u(ν))dν

+

[
x(ν)− x0 − µ[ν, x, u, σ2(ν, x, u)]dν − σ[ν, x, u]dB(ν)

]
dλ(ν)

}
, (49)

with the constant initial condition x(0) = x0. This conditional expectation is valid when the
stubbornness u(ν) of a player’s goal dynamics is determined at time ν such that all other
players’ goal dynamics are given [30]. The evolution takes place as the action function is
stationary. Therefore, the conditional expectation with respect to time only depends on the
expectation of the initial time point of interval [s, τ].
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Fubini’s Theorem implies,

As,τ(x) = Es

{ ∫ τ

s
exp(−rν)π(ν, x(ν), u(ν))dν

+

[
x(ν)− x0 − µ[ν, x, u, σ2(ν, x, u)]dν − σ[ν, x, u]dB(ν)

]
dλ(ν)

}
. (50)

By Itô’s Theorem [31], there exists a function h[ν, x(ν)] ∈ C2([0, ∞)×R) such that Y(ν) =
h[ν, x(ν)], where Y(ν) is an Itô process.

Assuming

h[ν + ∆ν, x(ν) + ∆x(ν)] = x(ν)− x0 − µ[ν, x, u, σ2(ν, x, u)]dν − σ[ν, x, u]dB(ν),

Equation (50) implies,

As,τ(x) = Es

{ ∫ τ

s
exp(−rν)π(ν, x(ν), u(ν))dν + h[ν + ∆ν, x(ν) + ∆x(ν)]dλ(ν)

}
. (51)

Itô’s Lemma implies,

εAs,τ(x) = Es

{
ε exp(−rs)π(s, x(s), u(s)) + εh[s, x(s)]dλ(s) + εhs[s, x(s)]dλ(s)

+ εhx[s, x(s)]µ[s, x(s), u(s), σ2(s, x(s), u(s))]dλ(s)

+ εhx[s, x(s)]σ[s, x(s), u(s)]dλ(s)dB(s)

+ 1
2 ε(σ[s, x(s), u(s)])2hxx[s, x(s)]dλ(s) + o(ε)

}
, (52)

where hs = ∂
∂s h, hx = ∂

∂x h and hxx = ∂2

∂(x)2 h, and we use the condition [dx(s)]2 ≈ ε with
dx(s) ≈ εµ[s, x(s), u(s), σ2(s, x(s), u(s))] + σ[s, x(s), u(s)]dB(s).

We use Itô Lemma and a similar approximation to approximate the integral. With ε ↓ 0,
dividing throughout by ε and taking the conditional expectation yields,

εAs,τ(x) = Es

{
ε exp(−rs)π(s, x(s), u(s)) + εh[s, x(s)]dλ(s) + εhs[s, x(s)]dλ(s)

+ εhx[s, x(s)]µ[s, x(s), u(s), σ2(s, x(s), u(s))]dλ(s)

+ 1
2 εσ2[s, x(s), u(s)]hxx[s, x(s)]dλ(s) + o(1)

}
, (53)

since Es[dB(s)] = 0 and Es[o(ε)]/ε → 0 for all ε ↓ 0. For ε ↓ 0, denote a transition
probability at s as Ψs(x). Hence, using Equation (48), the transition function yields

Ψs,τ(x) =
1
Li

ϵ

∫
R

exp
{
− ε
[

exp(−rs)π(s, x(s), u(s)) + h[s, x(s)]dλ(s)

+ hs[s, x(s)]dλ(s) + hx[s, x(s)]µ[s, x(s), u(s), σ2(s, x(s), u(s))]dλ(s)

+ 1
2 (σ[s, x(s), u(s)])2hxx[s, x(s)]dλ(s)

]}
Ψs(x)dx(s) + o(ε1/2). (54)

Since ε ↓ 0, first-order Taylor series expansion on the left-hand side of Equation (54)
yields
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Ψs(x) + ε
∂Ψs(x)

∂s
+ o(ε) =

1
Lε

∫
R

exp
{
− ε
[

exp(−rs)π(s, x(s), u(s)) + h[s, x(s)]dλ(s)

+ hs[s, x(s)]dλ(s) + hx[s, x(s)]µ[s, x(s), u(s), σ2(s, x(s), u(s))]dλ(s)

+ 1
2 (σ[s, x(s), u(s)])2hxx[s, x(s)]dλ(s)

]}
Ψs(x)dx(s) + o(ε1/2). (55)

For any given s and τ define x(s) − x(τ) := ξ such that x(s) = x(τ) + ξ [32]. For the
instance where ξ is not around zero, for a positive number η < ∞ assume |ξ| ≤

√
ηε

x(s) such

that for ε ↓ 0, ξ attains smaller values and the goal dynamics 0 < x(s) ≤ ηε/(ξ)2. Thus,

Ψs(x) + ε
∂Ψs(x)

∂s
=

1
Lϵ

∫
R

[
Ψs(x) + ξ

∂Ψis(x)
∂x

+ o(ϵ)
]

× exp
{
− ε
[

exp(−rs)π(s, x(s), u(s)) + h[s, x(s)]dλ(s)

+ hx[s, x(s)]µ[s, x(s), u(s), σ2(s, x(s), u(s))]dλ(s)

+ 1
2 (σ[s, x(s), u(s)])2hxx[s, x(s)]dλ(s)

]}
dξ + o(ε1/2).

Before solving for a Gaussian integral of each term of the right-hand side of the above
Equation, define a C2 function

f [s, ξ, λ(s), u(s)] = exp(−rs)π(s, x(s) + ξ, u(s)) + h[s, x(s) + ξ]dλ(s) + hs[s, x(s) + ξ]dλ(s)

+ hx[s, x(s) + ξ]µ[s, x(s) + ξ, u(s), σ2(s, x(s) + ξ, u(s))]dλ(s)

+ 1
2 σ2[s, x(s) + ξ, u(s)]hxx[s, x(s) + ξ]dλ(s) + o(1).

Hence,

Ψs(x) + ε
∂Ψs(x)

∂s
= Ψs(x)

1
Lϵ

∫
R

exp{−ε f [s, ξ, λ(s), u(s)]}dξ

+
∂Ψs(x)

∂x
1
Lϵ

∫
R

ξ exp{−ε f [s, ξ, λ(s), u(s)]}dξ + o(ε1/2). (56)

After taking ε ↓ 0, ∆u ↓ 0 and a Taylor series expansion with respect to x of
f [s, ξ, λ(s), u(s)] yields,

f [s, ξ, λ(s), u(s)] = f [s, x(τ), λ(s), u(s)] + fx[s, x(τ), λ(s), γ, u(s)][ξ − x(τ)]

+ 1
2 fxx[s, x(τ), λ(s), u(s)][ξ − x(τ)]2 + o(ε).

Define y := ξ − x(τ) so that dξ = dy. The first integral on the right-hand side of Equa-
tion (56) yields∫

R
exp

{
− ε f [s, ξ, λ(s), u(s)]}dξ

= exp
{
− ε f [s, x(τ), λ(s), u(s)]

}
∫
R

exp
{
− ε

[
fx[s, x(τ), λ(s), u(s)]y + 1

2 fxx[s, x(τ), λ(s), u(s)]y2
]}

dy. (57)

Assuming a = 1
2 fxx[s, x(τ), λ(s), u(s)] and b = fx[s, x(τ), λ(s), u(s)] the argument of the

exponential function in Equation (57) becomes,

a(y)2 + by = a
[
(y)2 +

b
a

y
]
≈ a

(
y +

b
2a

)2
− (b)2

4(a)2 , (58)
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as a > 0 and a → 0. We are using the fact that for a very small positive value of a, a2 ≈ a.
Therefore,

exp
{
− ε f [s, x(τ), λ(s), u(s)]

} ∫
R

exp
{
− ε[a(y)2 + by]

}
dy

= exp
{

ε

[
b2

4a2 − f [s, x(τ), λ(s), u(s)]
]} ∫

R
exp

{
−
[

εa
(

y +
b

2a

)2
]}

dy

=

√
π

εa
exp

{
ε

[
b2

4a2 − f [s, x(τ), λ(s), u(s)]
]}

, (59)

and

Ψs(x)
1
Lε

∫
R

exp
{
− ε f [s, ξ, λ(s), u(s)]}dξ

= Ψs(x)
1
Lε

√
π

εa
exp

{
ε

[
b2

4a2 − f [s, x(τ), λ(s), u(s)]
]}

. (60)

Substituting ξ = x(τ) + y into the second integrand of the right-hand side of Equation (56)
yields ∫

R
ξ exp[−ε{ f [s, ξ, λ(s), u(s)]}]dξ

= exp{−ε f [s, x(τ), λ(s), u(s)]}
∫
R
[x(τ) + y] exp

[
−ε
[

ay2 + by
]]

dy

= exp
{

ε

[
b2

4a2 − f [s, x(τ), λ(s), u(s)]
]}[

x(τ)
√

π

εa

+
∫
R

y exp

{
−ε

[
a
(

y +
b

2a

)2
]}

dy
]

. (61)

Substituting k = y + b/(2a) in Equation (61) yields,

exp
{

ε

[
b2

4a2 − f [s, x(τ), λ(s), u(s)]
]}[

x(τ)
√

π

εa
+
∫
R

(
k − b

2a

)
exp[−aεk2]dk

]
= exp

{
ε

[
b2

4a2 − f [s, x(τ), λ(s), u(s)]
]}[

x(τ)− b
2a

]√
π

εa
. (62)

Hence,

1
Lε

∂Ψs(x)
∂x

∫
R

ξ exp[−ε f [s, ξ, λ(s), u(s)]]dξ

=
1
Lε

∂Ψs(x)
∂x

exp
{

ε

[
b2

4a2 − f [s, x(τ), λ(s), u(s)]
]}[

x(τ)− b
2a

]√
π

εa
. (63)

Plugging in Equations (60) and (63) into Equation (56) implies,

Ψs(x) + ε
∂Ψs(x)

∂s

=
1
Lε

√
π

εa
Ψs(x) exp

{
ε

[
b2

4a2 − f [s, x(τ), λ(s), u(s)]
]}

+
1
Lε

∂Ψs(x)
∂x

√
π

εa
exp

{
ε

[
b2

4a2 − f [s, x(τ), λ(s), u(s)]
]}[

x(τ)− b
2a

]
+ o(ε1/2). (64)
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Let f be in Schwartz space. This leads to derivatives that are rapidly falling and furthermore,
assuming 0 < |b| ≤ ηε, 0 < |a| ≤ 1

2 [1 − (ξ)−2]−1 and x(s)− x(τ) = ξ yields,

x(τ)− b
2a

= x(s)− ξ − b
2a

= x(s)− b
2a

, ∀ ξ ↓ 0,

such that ∣∣∣∣x(s)− b
2a

∣∣∣∣ = ∣∣∣∣ ηε

(ξ)2 − ηε

[
1 − 1

(ξ)2

]∣∣∣∣ ≤ ηε.

Therefore, the Wick rotated Schrödinger-type Equation for the player is,

∂Ψs(x)
∂s

=

[
b2

4a2 − f [s, x(τ), λ(s), u(s)]
]

Ψs(x). (65)

Differentiating Equation (65) with respect to stubbornness yields{
2 fx

fxx

[
fxx fxu − fx fxxu

( fxx)2

]
− fu

}
Ψs(x) = 0, (66)

where fx = ∂
∂x f , fxx = ∂2

∂(x)2 f , fxu = ∂2

∂x∂u f and fxxu = ∂3

∂(x)2∂u f = 0. Thus, optimal
feedback stubbornness of a player in stochastic goal dynamics is represented as u∗(s, x)
and is found by setting Equation (66) equal to zero. Hence, u∗(s, x) is the solution of the
following Equation

fu( fxx)
2 = 2 fx fxu. (67)

This completes the proof.

Remark 1. The central idea of Proposition 2 is to choose h appropriately. Therefore, one natural
candidate should be a function of the integrating factor of the stochastic goal dynamics represented
in Equation (1).

To demonstrate the preceding proposition, we present a detailed example to identify
an optimal stubbornness under this environment. Consider a player has to maximize the
expected payoff expressed in Equation (44)

J(u) := E0

{∫ t

0
exp(−rs)

{[
θ +

3

∑
i=1

αi

]
x(s)− c(u(s))2

(r − µ̄)
√

x(s)

}
ds + ω exp(−rt)

√
x(t)

∣∣∣∣F0

}
, (68)

subject to the goal dynamics represented by a BPPSDE

dx(s) =
[

a
√

x(s)− σ2x(s)− u(s)
]

ds + [σ1 − σ2x(s)]dW(s), (69)

where a is a constant, σ1 and σ2 are constant volatilities, and the diffusion component is
[σ1 − σ2x(s)]. We are going to implement Proposition 2 to determine the optimal stubborn-
ness. By this problem
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f (s, x, u) = exp(−rs)

{[
θ +

3

∑
i=1

αi

]
x(s)− c(u(s))2

(r − µ̄)
√

x(s)

}
+ ω exp(−rt)

√
x(t)

+ h(s, x)dλ(s) +
[

∂h(s,x)
∂s dλ(s) + dλ(s)

ds h(s, x)
]
+ ∂h(s,x)

∂x

[
a
√

x(s)− σ2x(s)− u(s)
]

dλ(s)

+
1
2
[σ1 − σ2x(s)]2 ∂2h(s,x)

∂(x)2 dλ(s). (70)

In Equation (70), we treat the terminal condition as a constant; hence, define
ω exp(−rt)

√
x(t) = M̄. The diffusion part [σ1 − σ2x(s)] of the SDE (69) suggests that

we can simplify the equation by focusing on this part. One common approach is to consider
an exponential integrating factor to counterbalance the −σ2x(s) term in both the drift
and diffusion terms. Therefore, the integrating factor h(s, x) = exp(σ2x(s)). Therefore,
Equation (70) yields

f (s, x, u) = exp(−rs)

{[
θ +

3

∑
i=1

αi

]
x(s)− c(u(s))2

(r − µ̄)
√

x(s)

}
+ ¯M

+ exp(σ2x(s))dλ(s) + dλ(s)
ds exp(σ2x(s)) + σ2 exp(σ2x(s))

[
a
√

x(s)− σ2x(s)− u(s)
]

dλ(s)

+
1
2
[σ1 − σ2x(s)]2(σ2)

2 exp(σ2x(s)). (71)

Hence,
∂

∂u
f (s, x, u) = − exp(−rs)

2cu(s)
(r − µ̄)

√
x(s)

− σ2 exp(σ2x(s))dλ(s), (72)

∂ f (s, x, u)
∂x(s)

= exp(−rs)

{[
θ +

3

∑
i=1

αi

]
− c(u(s))2

2(r − µ̄)x(s)3/2

}

+ σ2 exp(σ2x(s))
[

dλ(s) +
dλ(s)

ds
+

(
a

2
√

x(s)
− σ2

)
dλ(s)

+ σ2

[
a
√

x(s)− σ2x(s)− u(s)
]

dλ(s)
]
− [σ1 − σ2x(s)](σ2)

3 exp(σ2x(s))

+
1
2
[σ1 − σ2x(s)]2(σ2)

3 exp(σ2x(s)), (73)

∂2 f (s, x, u)
∂x(s)2 = exp(−rs)

15c(u(s))2

4(r − µ̄)x(s)5/2 + (σ2)
2 exp(σ2x(s))dλ(s) + (σ2)

2 dλ(s)
ds

exp(σ2x(s))

+ (σ2)
2 exp(σ2x(s))

(
a

2
√

x(s)
− σ2

)
dλ(s)− σ2 exp(σ2x(s))

3a
4x(s)5/2 dλ(s)

+ (σ2)
3 exp(σ2x(s))

[
a
√

x(s)− σ2x(s)− u(s)
]

dλ(s)

+ (σ2)
2 exp(σ2x(s))

a
2
√

x(s)
dλ(s)− (σ2)

2 exp(σ2x(s))
a

4x(s)3/2 dλ(s)

+ (σ2)
4 exp(σ2x(s))− [σ1 − σ2x(s)](σ2)

5 exp(σ2x(s))

+
1
2
[σ1 − σ2x(s)]2(σ2)

4 exp(σ2x(s)), (74)
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and
∂2 f (s, x, u)

∂x∂u
= − c exp(−rs)u(s)

(r − µ̄)x(s)3/2 . (75)

Equation (66) yields,

(
− exp(−rs)

2cu(s)
(r − µ̄)

√
x(s)

− A1

)

×
(

exp(−rs)
15c(u(s))2

4(r − µ̄)x(s)5/2 − (σ2)
3 exp(σ2x(s))u(s)dλ(s) + A3

)2

= 2
(
− exp(−rs)

c(u(s))2

2(r − µ̄)x(s)3/2 − (σ2)
2 exp(σ2x(s))u(s)dλ(s) + A2

)(
− c exp(−rs)u(s)

(r − µ̄)x(s)3/2

)
, (76)

where

A1 = σ2 exp(σ2x(s))dλ(s),

A2 = exp(−rs)

[
θ +

3

∑
i=1

αi

]
+ σ2 exp(σ2x(s))

[
dλ(s) +

dλ(s)
ds

+

(
a

2
√

x(s)
− σ2

)
dλ(s)

+ σ2

[
a
√

x(s)− σ2x(s)
]

dλ(s)
]
− [σ1 − σ2x(s)](σ2)

3 exp(σ2x(s))

+
1
2
[σ1 − σ2x(s)]2(σ2)

3 exp(σ2x(s)),

A3 = (σ2)
2 exp(σ2x(s))dλ(s) + (σ2)

2 dλ(s)
ds

exp(σ2x(s))

+ (σ2)
2 exp(σ2x(s))

(
a

2
√

x(s)
− σ2

)
dλ(s)− σ2 exp(σ2x(s))

3a
4x(s)5/2 dλ(s)

+ (σ2)
3 exp(σ2x(s))

[
a
√

x(s)− σ2x(s)
]

dλ(s)

+ (σ2)
2 exp(σ2x(s))

a
2
√

x(s)
dλ(s)− (σ2)

2 exp(σ2x(s))
a

4x(s)3/2 dλ(s)

+ (σ2)
4 exp(σ2x(s))− [σ1 − σ2x(s)](σ2)

5 exp(σ2x(s))

+
1
2
[σ1 − σ2x(s)]2(σ2)

4 exp(σ2x(s)).

Given the complexity of the terms (including exponents and products), the equation
may result in a high-degree polynomial in u(s), and an explicit solution of stubborn-
ness requires further simplification or assumptions to reduce the degree of the poly-
nomial. Assume the effect of dλ(s) is very small (i.e., dλ(s) → 0). This would re-
move A1, (σ2)

3 exp(σ2x(s))u(s)dλ(s), and (σ2)
2 exp(σ2x(s))u(s)dλ(s) from Equation (76).

Equation (76) implies

(
− exp(−rs)

2cu(s)
(r − µ̄)

√
x(s)

)(
exp(−rs)

15c(u(s))2

4(r − µ̄)x(s)5/2 + A3

)2

= 2
(
− exp(−rs)

c(u(s))2

2(r − µ̄)x(s)3/2 + A2

)(
− c exp(−rs)u(s)

(r − µ̄)x(s)3/2

)
. (77)

Simplifying the left and the right-hand sides of Equation (77), we obtain

− exp(−2rs)
2cu(s)

(r − µ̄)
√

x(s)

(
15c(u(s))2

4(r − µ̄)x(s)5/2 + A3

)2

,
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and

exp(−2rs)
c2u(s)3

(r − µ̄)2x(s)3 − 2A2
c exp(−rs)u(s)
(r − µ̄)x(s)3/2 ,

respectively. Therefore, equating both sides and dividing by exp(−2rs) yields,

− 2cu(s)
(r − µ̄)

√
x(s)

(
15c(u(s))2

4(r − µ̄)x(s)5/2 + A3

)2

=
c2u(s)3

(r − µ̄)2x(s)3 − 2A2
cu(s) exp(−3rs)
(r − µ̄)x(s)3/2

− 2cu(s)
(r − µ̄)

√
x(s)

(
15c(u(s))2

4(r − µ̄)x(s)5/2 + A3

)2

− c2u(s)3

(r − µ̄)2x(s)3 + 2A2
cu(s) exp(−3rs)
(r − µ̄)x(s)3/2 = 0

u(s)

(
− 2c
(r − µ̄)

√
x(s)

(
15c(u(s))2

4(r − µ̄)x(s)5/2 + A3

)2

− c2u(s)2

(r − µ̄)2x(s)3 + 2A2
c exp(−3rs)
(r − µ̄)x(s)3/2

)
= 0. (78)

This gives one solution u(s) = 0, and we need to find the non-trivial solution by solving:

− 2c
(r − µ̄)

√
x(s)

(
15c(u(s))2

4(r − µ̄)x(s)5/2 + A3

)2

− c2u(s)2

(r − µ̄)2x(s)3 + 2A2
c exp(−3rs)
(r − µ̄)x(s)3/2 = 0.

The above equation is quadratic in u(s). Let k1 = − 2c
(r−µ̄)

√
x(s)

, k2 = 15c
4(r−µ̄)x(s)5/2 , k3 =

c2

(r−µ̄)2x(s)3 , and k4 = 2A2
c exp(−3rs)
(r−µ̄)x(s)3/2 . We express the equation as k1k2u(s)4 + (2k1k2 A3 −

k3)u(s)2 + (k1 A2
3 + k4) = 0. Define z(s) := u(s)2. The quadratic formula implies

z∗(s) =
1
2

[
1

k1k2
(k3 − 2k1k2)±

[
1

(k1k2)2 (k3 − 2k1k2)
2 − 4

k1k2

(
k1 A2

3 − k4

)]1/2
]

.

Therefore, the optimal stubbornness is,

u∗(s) = ±
{

1
2

[
1

k1k2
(k3 − 2k1k2)±

[
1

(k1k2)2 (k3 − 2k1k2)
2 − 4

k1k2

(
k1 A2

3 − k4

)]1/2
]}1/2

.

Since we assume the stubbornness is a non-negative function, we ignore the negative
squared-root part.

4. Conclusions
Over the past decade, research on modeling scores in soccer games has increasingly

focused on dynamics to explain changes in team strengths over time. A crucial aspect
of this involves evaluating the performance of all team players. Consequently, a game-
theoretic approach to determining optimal stubbornness has become essential. To compute
this optimal stubbornness, we begin by constructing a stochastic Lagrangian based on
the payoff function and the BPPSDE. We then apply a Euclidean path integral approach,
derived from the Feynman action function [33], over small continuous time intervals.
Through Taylor series expansion and Gaussian integral solutions, we derive a Wick-rotated
Schrödinger-type equation. The analytical solution for optimal stubbornness is obtained by
taking the first derivative with respect to stubbornness. This method simplifies challenges
associated with the value function in the Hamiltonian–Jacobi–Bellman (HJB) equation.
Moreover, under the BPPSDE framework, the path integral control approach performs
more effectively than the HJB equation.

Considering the significant impact of stubbornness research on predicting match
outcomes—not only for the betting industry but also for soccer clubs and analytics
teams—there is a strong motivation for researchers to explore this field. We believe many
game theorists who are also soccer enthusiasts would welcome seeing this Moneyball effect
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extend into soccer. Ultimately, these concepts could be applied beyond soccer to any sport
where score predictions rely on strength dynamics [34].
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Appendix A
Proposition A1. A stochastic differential equation can be represented as a Feynman path integration.

Proof. For the simplistic case, consider the Feynman action function has the form

S(x) = −
[∫ t

0
{π(s, x(s), u(s)) + λ g(s, x(s), ẋ(s))} ds

]
.

All the symbols have the same meaning as described in the main text. In this context, we
assume that the penalization function λg(s, x(s), ẋ(s)) is a proxy of an SDE, and the payoff
function is stable and can be added to the drift part of the stochastic differential equation.
Let the penalization function be of the form

dx
ds

= A(s, x(s), u(s)) + σ(s, x(s), u(s)) Ws.

Including a payoff function yields

dx
ds

= π(s, x(s), u(s)) + A(s, x(s), u(s)) + σ(s, x(s), u(s)) Ws

i.e.
dx
ds

= µ(s, x(s), u(s)) + σ(s, x(s), u(s)) Ws (A1)

where µ(s, x(s), u(s)) = π(s, x(s), u(s))+ A(s, x(s), u(s)). Therefore, after using condition (A1),
our new general Langevin form becomes,

dx
ds

= µ(s, x(s), u(s)) + σ(s, x(s), u(s))Ws. (A2)

Equation (A2) can be written as,

dx = µ(s, x(s), u(s)) ds + σ(s, x(s), u(s)) dWs. (A3)

We further assume that the functions µ(s, x(s), u(s)) and σ(s, x(s), u(s)) obey all the prop-
erties of Ito’s stochastic differential equation. We want to derive a probability density
function (PDF) for a soccer player’s goal dynamics at time s [i.e., x(s)]. The decentralized
form of Equation (A3) with the small Ito interpretation of small time step h is

xj+1 − xj = µj h + σj ωj
√

h, ∀j ∈ {0, 1, . . . , n}, (A4)

where the initial time is zero, xj = x(0 + jh), T = nh, µj = µ(0 + jh, xj), σj = σ(0 + jh, xj),
ωj is a normally distributed discrete random variable with ⟨wj⟩ = 0 and ⟨wiwj⟩ = ∆j,k.
Chow (2015) [35] defines ∆j,k as the Kronecker delta function.
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The conditional PDF of goal dynamics can be written as,

Ψ(x|ω) =
n

∏
j=0

δ(xj+1 − xj − µjh − σjωj
√

h) (A5)

The probability in Equation (A5) is nothing but the delta Dirac function constrained on
the stochastic differential equation. We know the Fourier transformation of delta Dirac
function is,

δ(bj) =
1

2π

∫
R

exp{−iLjbj} dbj (A6)

where −i is the complex number. After putting the stochastic differential Equation (A4)
into Lj, we obtain,

Ψ(x|ω) =
∫
R

n

∏
j=0

1
2π

e−i ∑j bj(xj+1−xj−µjh−σjωj
√

h) dbj. (A7)

Chow (2015) [35] suggests that the zero mean unit-variance Gaussian white noise density
function can be written as

Ψ(ωj) =
1√
2π

e−(1/2)ω2
j (A8)

Combining Equations (A7) and (A8), we obtain,

Ψ(0, t, x0, xt) =
∫
R

Ψ(x|ω)
n

∏
j=0

Ψ(ωj) dωj

=
∫
R

n

∏
j=0

1
2π

e−i ∑j bj(xj+1−xj−µjh) dbj ×
∫
R

n

∏
j=0

1√
2π

e−ibjσjωj
√

h e−(1/2)ω2
j dωj

=
∫
R

n

∏
j=0

1
2π

e
−∑j (ibj)

((
xj+1−xj

h −µj

)
h
)
+∑j (1/2)2 σ2

j (ibj)
2h

dbj (A9)

Since h → 0, n → ∞ such that T = nh, Equation (A9) yields

Ψ(0, t, x0, xt) =
∫
R

e−
∫ t

0 [x̃(s)(ẋ(s)−µ(s,x(s),u(s)))− 1
2 x̃(s)2σ(s,x(s),u(s))] ds Dx (A10)

with a newly defined complex variable ibj → x̃. Chow et al. (2015) [35] imply that although
they use continuum notation for covariance, x(s) does not need to be differentiable and
they interpret the action function by discreet definition. In the power of the exponential
integrand in Equation (A10), there are two parts, one is real and another is imaginary.
Furthermore, x̃(s)(ẋ(s) − µ(s, x(s), u(s, m))) is the only imaginary part as ibj → x̃(s).
In our proposed integral, we do not have any imaginary part. Therefore, we take the
absolute value of it to obtain the magnitude of this complex number. Therefore,

x̃(s)(ẋ(s)− µ(s, x(s), u(s))) =
√

x̃(s)2(ẋ(s)− µ(s, x(s), u(s)))2

=
√

x̃(s)2(ẋ(s)− µ(s, x(s), u(s)))

= |x̃(s)(ẋ(s)− µ(s, x(s), u(s)))| (A11)
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Condition (A11) implies

S(x) = −
∫ t

0

[√
x̃(s)2(ẋ(s)− µ(s, x(s), u(s)))− 1

2
x̃(s)2σ(s, x(s), u(s))

]
ds (A12)

The action function defined in Equation (A12) is the integration of the Lagrangian, which
includes the dynamics of the system. This function and the function defined as

S(x) = −
∫ t

0
[π(s, x(s), u(s)) + λ g(s, x(s), ẋ(s), u(s))] ds

are the same. Throughout this paper, one of the main objectives is to find a solution of
a dynamic payoff function with an SDE as the penalization function. In this context, the
stochastic part appears only from the penalization function and λ is a parameter.

Proposition A2. The Gaussian integral value of
∫
R exp

{
− q

ϵ(1+β)t ξ2 + λϵ
(1+β)t ξ

}
dξ is

exp
{

λ2ϵ3

4q(1+β)t

}√
ϵπ(1+β)t

q .

Proof. Define α1 := 2qϵ−1(1 + β)−t and α2 := λϵ(1 + β)−t. Now we are interested in

∫
R

exp
{
−1

2
α1ξ2 + α2ξ

}
dξ.

After factoring out, we obtain,

−1
2

α1ξ2 + α2ξ = −1
2

α1

(
ξ2 − 2α2

α1
ξ +

α2
2

α2
1
−

α2
2

α2
1

)

= −1
2

α1

(
ξ − α2

α1

)2
+

α2
2

2α1
(A13)

After plugging in the result obtained in (A13) into the integral, we obtain

∫
R

exp
{
−1

2
α1ξ2 + α2ξ

}
dξ =

∫
R

exp

{
α2

2
2α1

}
exp

{
−1

2
α1

(
ξ − α2

α1

)2
}

dξ

= exp

{
α2

2
2α1

} ∫
R

exp

{
−1

2
α1

(
ξ − α2

α1

)2
}

dξ

= exp

{
α2

2
2α1

} ∫
R

exp
{
−1

2
α1 ξ2

}
dξ

= exp

{
α2

2
2α1

} √
2π

α1
(A14)

After using the values of α1 and α2 we obtain,

∫
R

exp
{
− q

ϵ(1 + β)t ξ2 +
λϵ

(1 + β)t ξ

}
dξ = exp

{
λ2ϵ3

4q(1 + β)t

}√
ϵπ(1 + β)t

q
. (A15)

Let us consider the SDE (1).

Lemma A1. Consider the stochastic differential equation,
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dx = µ{s, x(s), u(s), σ2[s, x(s), u(s)]} ds + {σ1(s, x(s), u(s))− σ2[s, x(s), u(s)]} dWs, (A16)

where µ, u, σ1 and σ2 are real valued functions, and ϕ∗[s, x(s), u(s)] : [0, t]×R× [0, 1] → R is a
continuous and at least twice differentiable in x and u function that is at least one time differentiable
with respect to s . Then

dϕ∗[s, x(s), u(s)] =
{

∂ϕ∗[s, x(s), u(s)]
∂s

+
∂ϕ∗[s, x(s), u(s)]

∂x
µ{s, x(s), u(s), σ2[s, x(s), u(s)]}

+
1
2

∂2ϕ∗[s, x(s), u(s)]
∂x2 {σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]}2

}
ds

+
∂ϕ∗[s, x(s), u(s)]

∂x
σ1[s, x(s), u(s)]dWs

− ∂ϕ∗[s, x(s), u(s)]
∂x

σ2[s, x(s), u(s)] dWs.

Proof. The general Itô formula (∅ksendal 2003, Theorem 4.2.1) [31] implies

dϕ∗[s, x(s), u(s)]

=
∂ϕ∗[s, x(s), u(s)]

∂s
ds +

∂ϕ∗[s, x(s), u(s)]
∂x

dx(s) +
∂ϕ∗[s, x(s), u(s)]

∂u
du(s)

+
1
2

∂2ϕ∗[s, x(s), u(s)]
∂x2 dx2(s) +

1
2

∂2ϕ∗[s, x(s), u(s)]
∂x∂u

dx(s)du(s)

+
1
2

∂2ϕ∗[s, x(s), u(s)]
∂x∂u

dx(s)du(s) +
1
2

∂2ϕ∗[s, x(s), u(s)]
∂u2 du2(s) (A17)

Let us assume the stubbornness is somewhat neutral over time such that du(s) = 0.
The stubbornness neutrality means a player is consistent with their stubbornness, if there is
any inconsistency then, they would not be able to make the team. Therefore, Equation (A17)
becomes,

dϕ∗[s, x(s), u(s)] =
∂ϕ∗[s, x(s), u(s)]

∂s
ds +

∂ϕ∗[s, x(s), u(s)]
∂x

dx(s) +
1
2

∂2ϕ∗[s, x(s), u(s)]
∂x2 dx2(s) (A18)

Substituting the stochastic differential equation given in Equation (A16) into Equation (A17)
yields,

dϕ∗[s, x(s), u(s)]

=
∂ϕ∗[s, x(s), u(s)]

∂s
ds

+
∂ϕ∗[s, x(s), u(s)]

∂x

{
µ{s, x(s), u(s), σ2[s, x(s), u(s)]} ds

+ {σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]} dWs

}
+

1
2

∂2ϕ∗[s, x(s), u(s)]
∂x2

{
µ{s, x(s), u(s), σ2[s, x(s), u(s)]} ds

+ {σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]} dWs

}2

. (A19)
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Therefore,

dϕ∗[s, x(s), u(s)]

=
∂ϕ∗[s, x(s), u(s)]

∂s
ds +

∂ϕ∗[s, x(s), u(s)]
∂x

µ{s, x(s), u(s), σ2[s, x(s), u(s)]} ds

+
∂ϕ∗[s, x(s), u(s)]

∂x
{σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]} dWs

+
1
2

∂2ϕ∗[s, x(s), u(s)]
∂x2 µ2{s, x(s), u(s), σ2[s, x(s), u(s)]} ds2

+
1
2

∂2ϕ∗[s, x(s), u(s)]
∂x2 {σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]}2 dW2

s

+
∂2ϕ∗[s, x(s), u(s)]

∂x2 µ{s, x(s), u(s), σ2[s, x(s), u(s)]}

{σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]} ds dWs. (A20)

The differential rules from Itô’s formula imply ds2 = dsdWs = 0 and dW2
s = ds.

Equation (A20) yields,

dϕ∗[s, x(s), u(s)]

=
∂ϕ∗[s, x(s), u(s)]

∂s
ds +

∂ϕ∗[s, x(s), u(s)]
∂x

µ{s, x(s), u(s), σ2[s, x(s), u(s)]} ds

+
1
2

∂2ϕ∗[s, x(s), u(s)]
∂x2 {σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]}2 ds

+
∂ϕ∗[s, x(s), u(s)]

∂x
{σ1[s, x(s), u(s)]− σ2[s, x(s), u(s)]} dWs, (A21)

giving the result.

Proposition A3 (Burkholder–Davis–Gundy inequality). Let {M}s = {ϕ∗(s, x(s), u(s)),
σ2(s, x(s), u(s))} be a continuous local martingale such that M0 = 0 and s ∈ [0, t]. There exist
two constants ζρ and ζ such that,

ζρ

[
E
∫ ℵk

0
||ϕ∗(s, x(s), u(s))||2H2

||σ̂(s, x(s), u(s))||2H∗
2

] δ
2

≤ E
∣∣∣∣ sup

s≤ℵk

∫ t

0
(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s))) dWs

∣∣∣∣δ

≤ ζ

[
E
∫ ℵk

0
||ϕ∗(s, x(s), u(s))||2H2

||σ̂(s, x(s), u(s))||2H∗
2

] δ
2

(A22)

where δ ∈ [0, ∞) and ζρ and ζ are independent of t > 0 and {M}s∈[0,t]. Furthermore, when δ = 1
then we obtain,

ζρ

[
E
∫ ℵk

0
||ϕ∗(s, x(s), u(s))||2H2

||σ̂(s, x(s), u(s))||2H∗
2

] 1
2

≤ E
∣∣∣∣ sup

s≤ℵk

∫ t

0
(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s))) dWs

∣∣∣∣
≤ ζ

[
E
∫ ℵk

0
||ϕ∗(s, x(s), u(s))||2H2

||σ̂(s, x(s), u(s))||2H∗
2

] 1
2
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Proof. Suppose, {M}s∈[0,t] = {ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s))} is a continuous local mar-
tingale and ⟨M⟩s∈[0,t] = ||ϕ∗(s, x(s), u(s))||2H2

||σ̂(s, x(s), u(s))||2H∗
2
. Let us define δ1 > 2

and κ ∈ (0, 1). Itô formula used in Krylov (1981) [22] on {M}s∈[0,t] implies

d |Ms∈[0,t]|δ1

= δ1 |Ms∈[0,t]|δ1−1 sgn(Ms∈[0,t]) dMs∈[0,t] +
1
2

δ1(δ1 − 1)|Ms∈[0,t]|δ1−2 d⟨Ms∈[0,t]⟩

= δ1 sgn(Ms∈[0,t])| Ms∈[0,t]|δ1−1 dMs∈[0,t] +
1
2

δ1(δ1 − 1)|Ms∈[0,t]|δ1−2 d⟨Ms∈[0,t]⟩. (A23)

For every bounded stopping time υ, Doob’s stopping theorem yields

E
{
|Mυ∈[0,t]|δ1 |F0

}
≤ 1

2
δ1(δ1 − 1) E

{ ∫ υ

0
|Ms∈[0,t]|δ1−2 d⟨Ms∈[0,t]⟩

∣∣∣∣F0

}
. (A24)

Finally, Lenglart’s domination inequality [36] implies

E
[(

sup
s∈(0,t)

|Ms∈[0,t]|δ1

)κ]
≤ 2 − κ

1 − κ

(
1
2

δ1(δ1 − 1)
)κ

E
[( ∫ t

0
|Ms∈[0,t]|δ1−2 d⟨Ms∈[0,t]⟩|F0

)κ]
. (A25)

Now in inequality (A25), if we find out the bound of the expectation part, then we can
obtain the upper bound of this entire inequality. Therefore,

E
[( ∫ t

0
|Ms∈[0,t]|δ1−2 d⟨Ms∈[0,t]⟩|F0

)κ]
≤ E

[(
sup

s∈[0,t]
|Ms∈[0,t]|

)κ(δ1−2)( ∫ t

0
d⟨Ms∈[0,t]⟩|F0

)κ]

≤ E
[(

sup
s∈[0,t]

|Ms∈[0,t]|
)κδ1]1− 2

δ1
E
[
⟨Mt⟩

κδ1
2

] 2
δ1

. (A26)

After using the result of the inequality (A26) in (A25), we obtain the upper bound of the
expectation as

E
[(

sup
s∈[0,t]

|Ms∈[0,t]|δ1

)κ]

≤ 2 − κ

1 − κ

(
1
2

δ1(δ1 − 1)
)κ

E
[(

sup
s∈[0,t]

|Ms∈[0,t]|
)κδ1]1− 2

δ1
E
[
⟨Mt⟩

κδ1
2

] 2
δ1

. (A27)

Now as δ = δ1κ, for s ≤ ℵk ∈ [0, t] we obtain,

E
[

sup
s≤ℵk

|Ms∈[0,t]|δ
]
≤ ζE

[
⟨Mt⟩

δ
2

]

=⇒ E
∣∣∣∣ sup

s≤ℵk

∫ t

0
(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s))) dWs

∣∣∣∣δ

≤ ζ

[
E
∫ ℵk

0
||ϕ∗(s, x(s), u(s))||2H2

||σ̂(s, x(s), u(s))||2H∗
2

] δ
2

. (A28)
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Furthermore, when δ = 1, we have

E
∣∣∣∣ sup

s≤ℵk

∫ t

0
(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s))) dWs

∣∣∣∣
≤ ζ

[
E
∫ ℵk

0
||ϕ∗(s, x(s), u(s))||2H2

||σ̂(s, x(s), u(s))||2H∗
2

] 1
2

. (A29)

Therefore, inequality (A29) shows the right inequality of the proposition. Oksendal
(2013) [31] implies

M2
s∈[0,t] = ⟨Ms∈[0,t]⟩+ 2

∫ t

0
Ms∈[0,t] dMs∈[0,t]. (A30)

Thus,

E
[
⟨Mt⟩

δ
2
]
≤ ζρ

(
E
[(

sup
s∈[0,t]

|Ms∈[0,t]|
)δ
]
+ E

[
sup

s∈[0,t]

∣∣∣∣ ∫ t

0
Ms∈[0,t] dMs∈[0,t]

∣∣∣∣ δ
2
])

. (A31)

Similarly,

E
[

sup
s≤ℵk

∣∣∣∣ ∫ s

0
Mq∈[0,t] dMq∈[0,t]

∣∣∣∣ δ
2
]
≤ Cδ E

[( ∫ ℵk

0
M2

q∈[0,t] d⟨Mq∈[0,t]⟩
) δ

4
]

≤ Cδ E
[(

sup
s≤ℵk

∣∣Mq∈[0,t]
∣∣ δ

2 ⟨Mℵk
⟩

δ
4

)]

≤ Cδ E
[(

sup
s≤ℵk

∣∣Mq∈[0,t]
∣∣)δ] 1

2

E
[
⟨Mℵk

⟩
] 1

2

. (A32)

Therefore,

E
[
⟨Mℵk

⟩
1
2

]
≤ ζρ

(
E
[(

sup
s∈[0,t]

Ms∈[0,t]|Ms∈[0,t]|
)δ
]

+ Cδ E
[(

sup
s≤ℵk

∣∣Mq∈[0,t]
∣∣)δ] 1

2

E
[
⟨Mℵk

⟩
] 1

2
)

. (A33)

If we carefully look at inequality (A33), we find out that it is in the form of m2 ≤ ζρ(n2 +

Cδ mn), which further implies ζρm2 ≤ n2 [ as 2mn ≤ 1
ϵ m2 + ϵn2], for any chosen ϵ. Hence,

ζρ

[
E
∫ ℵk

0
||ϕ∗(s, x(s), u(s))||2H2

||σ̂(s, x(s), u(s))||2H∗
2

] δ
2

≤ E
∣∣∣∣ sup

s≤ℵk

∫ t

0
(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s))) dWs

∣∣∣∣δ, (A34)

with δ = 1 we obtain,

ζρ

[
E
∫ ℵk

0
||ϕ∗(s, x(s), u(s))||2H2

||σ̂(s, x(s), u(s))||2H∗
2

] 1
2

≤ E
∣∣∣∣ sup

s≤ℵk

∫ t

0
(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s))) dWs

∣∣∣∣. (A35)
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Inequalities (A35) and (A29) imply

ζρ

[
E
∫ ℵk

0
||ϕ∗(s, x(s), u(s))||2H2

||σ̂(s, x(s), u(s))||2H∗
2

] 1
2

≤ E
∣∣∣∣ sup

s≤ℵk

∫ t

0
(ϕ∗(s, x(s), u(s)), σ2(s, x(s), u(s))) dWs

∣∣∣∣
≤ ζ

[
E
∫ ℵk

0
||ϕ∗(s, x(s), u(s))||2H2

||σ̂(s, x(s), u(s))||2H∗
2

] 1
2

. (A36)

This completes the proof.

Proposition A4 (Grownwall inequality). Let us assume H1 is a Banach space such that there
exists an open subset Sb such that Sb ⊂ H1. Suppose, there exists two continuous functions such
that f1, f2 : [α, β]× Sb → H1 and m1, m2 : [α, β] → Sb satisfy the initial value problems

m′
1(s) = f1(s, m1(s)), m1(α) = m10,

m′
2(s) = f2(s, m2(s)), m2(α) = m20.

There exists a constant ζ such that,

|| f2(s, e2)− f2(s, e1)|| ≤ ζ ||e2 − e1||,

and a continuous function ℧ : [α, β] → [0, ∞) so that

|| f1(s, m1(s))− f2(s, m1(s))|| ≤ ℧(s).

Then

||m1(t)− m2(t)|| ≤ eζ|t−α| ||m10 − m20||+ eζ|t−α|
∫ t

α
e−ζ|s−α| ℧(s) ds,

where s ∈ [α, β].

Proof. For any C1 function f : [α, β] 7→ H1, we know d
ds || f (s)|| ≤ || f ′(s)||. Consider

m1(.), m2(.) : [α, β]2 → H2
1. Then,

d
ds

||m1(s)− m2(s)|| ≤ ||m′
1(s)− m′

2(s)||

= || f1(s, m1(s))− f2(s, m2(s))||
≤ || f1(s, m1(s))− f2(s, m2(s))||+ || f2(s, m1(s))− f2(s, m2(s))||
≤ ℧(s) + ζ||m1(s)− m2(s)||, (A37)

where ℧(s) : [α, β] → [0, ∞), and it is assumed that || f1(s, m1(s))− f2(s, m2(s))|| ≤ ℧(s).
After rearranging the inequality (A37), we obtain,

d
ds

||m1(s)− m2(s)|| − ζ||m1(s)− m2(s)|| ≤ ℧(s). (A38)

After multiplying the integrating factor e−ζ s in both sides of the inequality (A38), we
obtain,

d
ds

(
e−ζs||m1(s)− m2(s)||

)
≤ e−ζs ℧(s). (A39)
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Therefore, the integral form becomes,

∫ t

α

[
d
ds

(
e−ζs||m1(s)− m2(s)||

)]
ds ≤

∫ t

α
e−ζs ℧(s)ds

e−ζt||m1(t)− m2(t)|| − e−ζα||m10 − m20|| ≤
∫ t

α
e−ζs ℧(s)ds. (A40)

Inequality (A40) and the argument in the proposition are the same. This completes the
proof.

Corollary A1. Let us assume H1 is a Banach space such that there exists an open subset Sb such
that Sb ⊂ H1. Suppose there exists a continuous function such that f1 : [α, β]× Sb → H1 and
m1, m2 : [α, β] → Sb satisfy the initial value problems

m′
1(s) = f1(s, m1(s)), m1(α) = m10,

m′
2(s) = f2(s, m2(s)), m2(α) = m20.

There exists a constant ζ ∈ [0, ∞) such that,

|| f2(s, e2)− f2(s, e1)|| ≤ ζ ||e2 − e1||.

Then

||m1(t)− m2(t)|| ≤ eζ|t−α| ||m10 − m20||, (A41)

for all t ∈ [α, β].

Proof. In Proposition A4, assume that f1(.) = f2(.). Since for any continuous function
℧(s) : [α, β] 7→ [0, ∞), Proposition A4 implies that || f1(s, m1(s))− f2(s, m1(s))|| ≤ ℧(s).
As f1 and f2 are the same, then ℧(s) ≡ 0 for all s ∈ [α, β]. Therefore, the second right-hand
term of the inequality

||m1(t)− m2(t)|| ≤ eζ|t−α| ||m10 − m20||+ eζ|t−α|
∫ t

α
e−ζ|s−α| ℧(s) ds

vanishes and we remain with,

||m1(t)− m2(t)|| ≤ eζ|t−α| ||m10 − m20||. (A42)

This completes the proof.
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