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Abstract: Platooning technology, which reduces fuel consumption by decreasing aerodynamic drag,
is emerging as a key solution for enhancing road efficiency and environmental sustainability in
logistics. Conventional vehicle-to-vehicle communication has limitations when forming platoons
across multiple trucking companies. To overcome these limitations, a hub-based platooning system
has been proposed, enabling coordinated vehicle platoons through hubs distributed along highways.
This study develops a mathematical model to optimize platoon formation at hubs, considering the
reality that uncertainty in vehicle arrival times can be resolved as vehicles approach the hub and
use vehicle-to-hub communication. The model applies robust optimization techniques to consider
worst-case vehicle arrival scenarios and examine how the range of data exchange points—where
exact arrival times become known—affects platoon efficiency. Numerical experiments demonstrate
that if the range of data exchange points is sufficiently wide, optimal efficiency can be achieved
even under uncertainty. Sensitivity analysis also confirms that reducing uncertainty enhances energy
savings efficiency. This study provides practical insights into forming vehicle platoons in uncertain
environments, contributing to the economic and environmental benefits of the logistics industry.
Future studies could extend the model to multiple hubs and consider stochastic disruptions, such as
communication failures.

Keywords: hub; platooning; energy savings; mathematical model; robust optimization; uncertainty;
data exchange points; vehicle-to-hub communication

MSC: 90B06

1. Introduction

Platooning technology, which involves the grouping of multiple vehicles to enhance
fuel efficiency and optimize road usage through coordinated driving, has garnered consid-
erable attention in the fields of transportation and logistics [1]. By minimizing aerodynamic
drag through the synchronized movement of a lead vehicle and its trailing vehicles, pla-
tooning significantly reduces fuel consumption [2]. This reduction in air resistance not only
contributes to energy savings but also promotes environmental sustainability. Moreover,
the economic advantages, such as lower operational costs, make platooning an attractive
option for logistics companies. Additionally, traffic management authorities view this
technology as a promising solution for improving road traffic efficiency. Consequently,
platooning is emerging as an innovative approach to address both economic and environ-
mental challenges in modern transportation systems [3].

Previous research on platooning has predominantly focused on cooperative driving
facilitated by vehicle-to-vehicle (V2V) communication. For instance, Lee et al. [4] demon-
strated the fuel-saving potential of platooning among heterogeneous vehicles, while Chen
et al. [5] observed similar benefits when combining automated and human-driven vehicles.
These studies emphasize the role of direct communication between vehicles to maximize
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fuel efficiency through platooning. A drone-based decentralized platooning system using
ultra-wideband technology has been proposed, addressing the latency and scalability issues
of V2V communication [6]. In addition to V2V communication, there have been several
studies on control systems, such as Li et al. [7], who proposed a solution for controlling
platoons under denial-of-service attacks, and Villenas et al. [8], who implemented a control
system for string stability of platoons. However, these systems are insufficient to enable co-
ordinated planning across multiple trucking companies. Greater efficiency can be achieved
through cooperation between companies, as this increases the opportunities to form larger
and more efficient platoons.

To address these limitations, hub-based platooning systems have recently been pro-
posed as a more structured approach to platoon management [9]. Unlike traditional V2V
communication, hub-based systems facilitate information exchange between vehicles and
a central hub. In this system, vehicles provide the hub with key information—such as
estimated arrival times, required departure times to meet delivery deadlines, and vehicle
types—before their arrival. The hub then processes these data to form optimal platooning
configurations, thereby enhancing energy savings for all participating vehicles.

Hub-based platooning is particularly advantageous when fleets from multiple logistics
companies utilize the same hub [10]. The hub can synchronize arrival schedules and
operating times for vehicles from different companies, maximizing the collective benefits
of platooning while improving overall logistical and traffic management efficiency [11].
This system not only increases the likelihood that individual vehicles will join a platoon
but also enables hubs to predict and organize platooning groups based on vehicle arrival
times and routes.

This study seeks to optimize the hub-based platooning system by investigating how
hubs can effectively manage vehicle information to form optimal platoon groups, even
under conditions of uncertainty. A mathematical model is developed to simulate the hub-
based platooning system, and various scenarios are analyzed to assess the efficiency of
platoon formation. Additionally, a decision-making framework is proposed to help hubs
optimize platooning in the face of uncertain information, ensuring the system’s robustness
and operational efficiency.

This paper is organized as follows: In Section 2, previous studies on vehicle platooning
are reviewed. In Section 3, the problem description, notation, mathematical model, and
robust optimization are presented. In Section 4, the numerical experiments are presented to
verify the optimal solution when the uncertainty of the arrival times of vehicles entering
the hub varies or when the extent to which the arrival times of vehicles are known exactly
(range of data exchange points) varies. Finally, in Section 5, the results and insights of this
study are presented as conclusions.

2. Literature Review

Vehicle platooning has been widely studied due to its benefits such as reduced energy
consumption and improved traffic throughput [12]. Many studies have demonstrated
the effectiveness of vehicle platooning in reducing energy consumption. Hussein and
Rakha [13] developed a model for homogeneous vehicles that captures the effect of vehicle
position within a platoon and the distance gap between vehicles on the drag coefficient.
This model was developed for light-duty vehicles (LDVs), buses, and heavy-duty trucks
(HDTs). It was found that fuel savings for LDVs, buses, and HDTs were up to 5%, 17%,
and 12%. Yang et al. [14] simulated the energy efficiency of passenger car platooning based
on the DrivAer model. The vehicle driving equations were used to deduce a vehicle fuel
efficiency model based on aerodynamic drag coefficients. The average fuel-saving rate for
vehicles in the platoon was about 4-8%. Jo and Kim [15] aimed to analyze the aerodynamic
interaction between vehicles forming a platoon by varying the platoon formation conditions.
A total of four HDVs were driving in a platoon at 100 km/h while varying the distance
gap between the vehicles. Compared to HDVs traveling alone, the stagnation pressure in
front of the following vehicle and the drag forces generated by the leading and following
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vehicles were reduced by 51%, 56%, and 52%, respectively. Tsugawa et al. [16] analyzed the
energy savings depending on the distance gap between vehicles in a platooning experiment
of three or four heavy-duty trucks. Typically, when the trucks were fully loaded and
traveling at 80km/h, the average fuel savings were 8% for a 10 m gap and 15% for a 4 m
gap. Noruzoliaee et al. [17] found that truck platooning leads to annual cost savings of
USD 868 million and a reduction in road infrastructure investment needs of USD 4.8 billion.

With the proven energy savings of vehicle platooning, many studies have been con-
ducted to find ways to optimize the energy savings. Pi et al. [18] reviewed the literature on
energy savings in vehicle platooning and analyzed two methods of energy savings. The
principle of energy saving based on aerodynamics is to reduce the air resistance of vehicles
by shortening the distance between vehicles. The principle of energy saving based on
speed optimization is to make the engine/motor operate more efficiently by optimizing the
acceleration and deceleration behavior of the vehicle. Liu et al. [19] developed a simulation–
optimization framework to address the challenge of quantifying energy savings from
vehicle platooning. The energy consumption model utilized a hybrid prediction formula
for reducing aerodynamic drag in multi-vehicle formations. Numerical experiment results
showed that focusing on forming as many platoons as possible and longer platoon lengths
maximizes energy savings. Lee et al. [4] presented a platooning strategy that is optimal
for energy saving for heterogeneous electric vehicles on a single route. A mathematical
model-based optimization technique was used to determine the number of vehicles forming
a platoon and the position of each vehicle type in the platoon. Since the type of neighboring
vehicles affects the energy savings of each vehicle, it was found that a platoon configuration
with a bell-shaped pattern is effective for energy savings. These studies examined how
platoons should be formed and operated with V2V communication to maximize energy
savings in vehicle platoons. However, since each vehicle has different origins, destinations,
departure times, arrival times, vehicle owners, and so on, it is necessary to study who,
where, and how to organize the vehicle platoon.

Hub-based platooning is a useful solution to the aforementioned issues. In hub-based
platooning, vehicle platooning is performed at strategically placed platooning hubs along
the highway network. In this case, the hubs distributed across the highway network act
as platoon service providers (PSPs). A PSP is the entity that facilitates and manages the
formation and operation of platoons. If vehicles with different origins and destinations
overlap in their departure times from a hub, a PSP forms a platoon of these vehicles and
moves them to a different hub. Larsen et al. [9] presented a model for optimizing truck
platooning formed at hubs. The problem was solved using local search heuristics based on
dynamic programming, and the result showed a 4-5% cost savings. However, they assumed
that trucks’ arrival times at hubs follow a uniform random distribution in a specific time
interval. As trucks arrive near the hub, the PSP knows almost exactly when trucks will
arrive at the hub from vehicle-to-hub (V2H) communication, but this is not considered.
Johansson et al. [20] studied optimal hub-based platoon formation in hubs deployed along
a highway. They divided into decentralized, distributed, and centralized policies based
on the level of information exchange between hubs and conducted a simulation study
on three hubs in northern Sweden to compare the results for each policy. The profits of
the centralized policy were found to be 8% and 4.5% higher than the decentralized and
distributed policies, respectively. However, they focused on hubs having prior knowledge
of truck arrivals through hub-to-hub (H2H) communication and overlooked information
exchange through V2H communication. Even if there is information exchange via H2H
communication, the exact time of arrival is unlikely to be known until the vehicle is near
the hub.

As mentioned earlier, previous research in vehicle platooning has examined how to
maximize energy savings by adjusting the speed and the distance gap between vehicles
forming a platoon through V2V communication [4,18,19]. This means that they focused
on how to operate the formed platoon. However, the challenge is how to form a platoon
when the vehicles have different origins, destinations, departure times, arrival times, and
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company affiliations. To address this problem, many studies have been conducted on
hub-based platooning. For a PSP at a hub to plan vehicle platooning, the arrival times
of vehicles entering the hub are important. Since it is difficult to perfectly predict traffic
conditions, the arrival times of vehicles are subject to uncertainty. However, if a vehicle
has reached the neighborhood of the hub, its arrival time can be known with certainty.
Previous research on hub-based platooning overlooks this arrival time uncertainty and the
extent to which the arrival time can be known precisely [9,20]. Larsen et al. [9] assumed
that the arrival of a truck to a hub follows a uniform random distribution in time intervals.
However, if the truck is close to the hub, the arrival time, which was uncertain, will
become deterministic. Johansson et al. [20] dealt with inter-hub communication through
decentralized, distributed, and centralized policies. However, even if the hub receives
information about the truck that departed from the previous hub, the arrival information
of the truck may vary due to the distance between the hubs. After all, communication
between the vehicle and the hub must be considered.

Robust optimization is a modeling methodology combined with computational tools
to handle optimization problems where the data are uncertain and known to belong to
a set of uncertainty sets [21]. Cao et al. [22] studied the scheduling of electric vehicle
aggregators. Uncertainty in the upstream grid price was modeled using robust optimiza-
tion techniques. The proposed technique enabled robust scheduling of electric vehicle
aggregators. Rahbari et al. [23] aimed to develop a model of the canned food supply chain
under uncertain conditions such as pandemics. They suggested the need to use a robust
optimization approach to solve the uncertainty problem. Shen et al. [24] dealt with energy
system optimization under uncertainty. They presented a robust optimization model by
introducing a set of uncertainties into the deterministic optimization model. Despite higher
energy consumption in robust optimization, the proposed method balances energy costs
and robustness. As such, robust optimization is often used to reflect uncertainty.

This study aims to investigate the optimal hub-based platooning for energy savings
by varying the range of data exchange points, i.e., the extent to which the arrival time of a
vehicle is known precisely, in the presence of such uncertainty. To conduct the study under
uncertainty, robust optimization is applied.

3. Model Development
3.1. Problem Description

A hub acting as a PSP forms vehicle platooning to maximize energy savings by
assuming that each vehicle visiting the hub has different trucking companies, origins,
destinations, vehicle sizes, estimated arrival time at the hub, and the latest possible time it
should leave the hub. The energy savings from vehicle platooning come from reducing
air resistance by having vehicles travel in platoons, keeping them closely spaced. When
the arrival time of a vehicle at a hub is uncertain and the exact arrival time is only known
when the vehicle enters within a certain range around the hub, which is a PSP, this enables
us to analyze how to form vehicle platooning to maximize energy savings. The trucking
company of the vehicles visiting the hub, the size of the vehicles, their estimated arrival
time at the hub, and the latest possible time they should leave the hub are already known
to the hub. Of the known information, the estimated arrival time at the hub is uncertain
because it depends on traffic conditions. However, if the vehicle is within a certain range
around the hub, i.e., within the data exchange range, the exact arrival time of the vehicle can
be known. The origins and destinations of vehicles are ignored because traveling between
hubs that are located in the middle of various origins and destinations is considered. In
this work, the aim is to develop an operational strategy to form efficient vehicle platooning
that maximizes energy savings, under situations where the arrival time of a vehicle to a
hub is uncertain, but this uncertainty disappears when the vehicle enters within the range
of data exchange points around the hub. The problem description is illustrated in Figure 1.
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Figure 1. Problem description.

One of the optimization techniques, ‘robust optimization’, is used to derive the results.
Robust optimization is one of the optimization techniques that can be applied when making
conservative decisions. It is mainly used to derive results conservatively by assuming the
worst case when there is uncertainty in the model or parameters. Robust optimization
is divided into the constraint robustness problem and the objective robustness problem
depending on whether the uncertainty exists in the constraint or the objective function. In
this study, the uncertainty of vehicle arrival time, which is a parameter included in the
constraint, presents a constraint robustness problem.

3.2. Notations

In this study, a mathematical model-based optimization technique is applied to derive
an optimal operating system for forming vehicle platooning. A notation to represent the
decision variables, parameters, and the index set used in the developed mathematical
model is defined as shown in Table 1.

Table 1. Decision variables, parameters, and index sets.

Decision Variables
zp : The time when platoon p leaves the hub
kp,i : 1 if vehicle i is allocated to platoon p, otherwise 0
xp,o,i : 1 if vehicle i is allocated to position o in platoon p, otherwise 0
yp,o,i,i′ : 1 if vehicle i and i′ is allocated to position o and o + 1, respectively, in platoon p, otherwise 0
Parameters
senter

i : Estimated arrival time of vehicle i
sout

i : Latest possible time vehicle i should leave from the hub

f si,i′ : Energy saving of vehicle i′ during unit time T, when vehicle i is located in front of it in the
platoon [W]

rsi,i′ : Energy saving of vehicle i during unit time T, when vehicle i′ is located in back of it in the
platoon [W]

vti : Type of the vehicle i
massi : Mass of the vehicle i [kg]
Ai : Frontal area of the vehicle i [m2]
µrr : Constant of the rolling resistance
g : Gravity acceleration [m/s2]
ρ : Air density [kg/m3]

Cd : Aerodynamic drag coefficient

r : Time interval to know exactly when a vehicle will arrive through V2H
(i.e., range of data exchange points)

tp : Time point that determines which platoon should leave the hub
M : Big number
Index sets

I : Set of vehicles
T : Set of time
P : Set of platoons
O : Set of position in a platoon
U : Set of uncertainty in the arrival time of the vehicle at the hub
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3.3. Mathematical Model

Equation (1) is an objective function that maximizes the energy savings during unit
time caused by vehicle platooning. When two vehicles are consecutively positioned in the
same platoon, the energy savings of the rear vehicle due to the front vehicle and the energy
savings of the front vehicle due to the rear vehicle are summed.

Maximize
P

∑
p=1

O−1

∑
o=1

I

∑
i=1

I

∑
i′=1

yp,o,i,i′ ·
(

f si,i′ + rsi,i′
)

(1)

Equations (2)–(6) are used to calculate the energy savings of the rear vehicle due to
the front vehicle and the energy savings of the front vehicle due to the rear vehicle for
two consecutively positioned vehicles in the same platoon [4]. Equation (2) represents
the energy consumption of a vehicle at time t in a situation without vehicle platooning.
Equations (3) and (4) represent the energy consumption of the rear vehicle and the front
vehicle at time t in a situation where the two vehicles are positioned consecutively in the
same platoon. Equations (2)–(4) represent energy consumption at a specific point in time t.
Therefore, integrating Equation (2) indicates the energy consumption during unit time T
in the absence of vehicle platooning, and integrating Equations (3) and (4) indicates the
energy consumption of the rear vehicle and the front vehicle during unit time T in the
presence of vehicle platooning. Equations (5) and (6) represent the energy savings of the
rear vehicle due to the front vehicle during unit time T and the energy savings of the front
vehicle due to the rear vehicle during unit time T for two vehicles positioned consecutively
in the same platoon.

Pi(t) =
[
(µrr·massi·g) + (0.5·ρ·Ai·Cd·v(t)2) + (massi·g·sin(φ(t)))

+(1.05·massi·a(t))]·v(t) ∀i ∈ I
(2)

f Pi,i′(t) =
[
(µrr·massi′ ·g) + f ei,i′ ·(0.5·ρ·Ai′ ·Cd·v(t)2)

+(massi′ ·g·sin(φ(t))) + (1.05·massi′ ·a(t))]
· v(t) ∀i, i′ ∈ I

(3)

rPi,i′(t) =
[
(µrr·massi·g) + rei,i′ ·(0.5·ρ·Ai·Cd·v(t)2)

+(massi·g·sin(φ(t))) + (1.05·massi·a(t))]
· v(t) ∀i, i′ ∈ I

(4)

f si,i′ =
∫ T

0
Pi′(t)dt −

∫ T

0
f P i,i′(t)dt ∀i, i′ ∈ I (5)

rsi,i′ =
∫ T

0
Pi(t)dt −

∫ T

0
rPi,i′(t)dt ∀i, i′ ∈ I (6)

Equations (7)–(9) constrain vehicles, platoons, and positions in the platoon from being
duplicated. Equation (7) indicates that each vehicle can only be allocated to one platoon.
Equation (8) indicates that each vehicle can only be allocated to one position in one platoon.
Equation (9) represents that only one vehicle can be allocated to a specific position in a
specific platoon.

P

∑
p=1

kp,i ≤ 1 ∀i ∈ I (7)

P

∑
p=1

O

∑
o=1

xp,o,i ≤ 1 ∀i ∈ I (8)

I

∑
i=1

xp,o,i ≤ 1 ∀p ∈ P, ∀o ∈ O (9)
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Equations (10) and (11) constrain the departure order of the platoon and the order in
which positions are allocated in the platoon. Equation (10) indicates that the platoon leaves
the hub in order. For example, the second platoon must leave the hub earlier than the third
platoon. Equation (11) represents that a vehicle must be allocated to the front position in
the platoon before a vehicle can be allocated to the back position. For example, if a vehicle
is not assigned to the fourth position in a certain platoon, it will not be assigned to the next
positions in that platoon, which are the fifth, sixth, and seventh positions.

zp ≥ zp−1 ∀p ∈ {2, . . . , P} (10)

I

∑
i=1

xp,o+1,i ≤
I

∑
i=1

xp,o,i ∀p ∈ P, ∀o ∈ {1, . . . , O − 1} (11)

Equations (12) and (13) represent the relationship between the decision variables.

yp,o,i,i′ ≤
xp,o,i + xp,o+1,i′

2
∀p ∈ P, ∀o ∈ {1, . . . , O − 1}, ∀i, i′ ∈ I (12)

O

∑
o=1

xp,o,i = kp,i ∀p ∈ P, ∀i ∈ I (13)

Equations (14) and (15) show the time relationship between a platoon and the vehicles
allocated to it. Equation (14) represents that a platoon can depart after the estimated arrival
time of the vehicles allocated to it. Equation (15) represents that a platoon must depart
earlier than the latest possible time that the vehicles allocated to it should leave the hub.

zp ≥ kp,i·senter
i ∀p ∈ P, ∀i ∈ I (14)

zp ≤ M·
(
1 − kp,i

)
+ sout

i ∀p ∈ P, ∀i ∈ I (15)

Equations (1)–(15) are formulas that form the vehicle platooning when there is no
uncertainty in the arrival time of the vehicle at the hub. Equation (16) represents the
relationship between the departure time of a platoon and the arrival time of a vehicle, when
there is uncertainty in the arrival time of the vehicle allocated to the platoon. If the expected
arrival time of a vehicle is greater than the sum of the time point that determines which pla-
toon should leave the hub and the range of data exchange points (i.e., senter

i > tp + r), then
Equation (16) applies because the vehicle is still outside the range of data exchange points.
In the opposite case (i.e., senter

i ≤ tp + r), the vehicle is inside the range of data exchange
points and the arrival time of the vehicle is known exactly, in which case Equation (14) is
applied.

zp ≥ kp,i·
(
senter

i + u
)

∀p ∈ P, ∀i ∈ I, ∀u ∈ U (16)

4. Numerical Experiment
4.1. Parameter Settings

A total of 10 vehicles are scheduled to visit a hub during a specific time period of the
day. Vehicles 1–5 belong to trucking company A, and vehicles 6–10 belong to trucking
company B. Without the hub acting as a PSP, these 10 vehicles would only form platoons
with vehicles belonging to the same trucking company. But here, the hub, which is the PSP,
coordinates their relationship. Regardless of the trucking company the vehicles belong
to, they are all grouped together to form platoons. The values of the parameters µrr, g,
ρ, and Cd used to find energy savings are taken from existing studies [4]. The rolling
resistance coefficient, which represents the typical value of a car tire on asphalt, and the
air density, approximated to the sea-level value in the international standard atmosphere,
were both referenced from the study by Ko and Jang [25]. The type of vehicle, expected
arrival time, and the latest possible time it should leave were set arbitrarily. Uncertainty is
represented by the index set U. Specifically, in Cases 1 and 2 of the numerical experiments,



Mathematics 2024, 12, 3841 8 of 13

the uncertainty is set to ±4. In the sensitivity analysis, the results are compared as the
uncertainty varies from ±0 to ±6. Uncertainty represents the maximum deviation of
vehicle arrival time, and the uncertainty of arrival time is considered using a fixed value.
The values of the system parameters and index sets can be found in Tables 2 and 3.

Table 2. System parameters.

Symbol Value

senter
i {0, 6, 8, 12, 16, 4, 10, 12, 12, 18}
sout

i {6, 12, 14, 18, 22, 10, 16, 18, 18, 24}

vti
{s, l, m, m, l, m, m, m, l, s}

(s: small size; m: mid-size; l: large size)
µrr 0.02
g 9.81
ρ 1

Cd 1.2
M 1,000,000

Table 3. Index sets.

Symbol Value

I {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
T {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}
P {1, 2, 3, 4, 5}
O {1, 2, 3, 4, 5, 6, 7, 8}
U {−4, −3, −2, −1, 0, 1, 2, 3, 4}

Depending on the type of vehicle, i.e., its size, massi, Ai, f si,i′ , and rsi,i′ are set [4], and
the values of these parameters can be seen in Tables 4 and 5.

Table 4. Parameters based on the type of vehicle.

Symbol
Value

vti = s vti = m vti = l

massi 1000 2500 5000
Ai 3.03 4.33 6.23

Table 5. Parameters based on the type of vehicles in front and rear that form the platoon.

Symbol
Value

vti’ = s vti’ = m vti’ = l

f si,i′
vti = s 7,541,333 9,229,653 11,208,889
vti = m 8,618,667 10,767,929 13,450,667
vti = l 9,696,000 12,306,204 15,692,444

rsi,i′
vti = s 3,232,000 3,770,667 4,309,333
vti = m 3,845,689 4,614,827 5,383,964
vti = l 4,483,556 5,604,444 6,725,333

4.2. Results: Case 1

In this study, robust optimization is utilized to derive the results. By applying robust
optimization, the uncertainty in the estimated arrival time of vehicles at the hub is consid-
ered, and vehicle platooning is formed by assuming the worst-case scenario. The python
(v3.9.7) software used is Anaconda3 with version 4.10.3.

Vehicle platooning for 10 vehicles scheduled to visit the hub is not determined at
once. This is because the uncertainty varies depending on when the decision is made. In
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this study, the order in which vehicle platooning is determined is as follows: First, the
vehicle that should leave the hub the earliest among all vehicles is the basis for when the
vehicle platooning decision is made. Vehicle 1 has the earliest departure time, with sout

i = 6.
Second, the hub decides which vehicle to allocate to the platoon that should leave the hub at
time t = 6 (= tp). If the range of data exchange points r is 1, the arrival time of the vehicle
with senter

i ≤ tp + r = 7 can be known exactly, while the arrival times of the remaining
vehicles are still uncertain. At this time, vehicles 1, 2, and 6 form a platoon and leave the
hub. Third, among the remaining vehicles, except vehicles 1, 2, and 6 that left the hub, the
vehicle that should leave the hub the earliest is the basis for when the vehicle platooning
decision is made. Among the remaining vehicles, vehicle 3 has the earliest departure time,
with sout

i = 14. Fourth, the hub decides which vehicle to allocate to the platoon that should
leave the hub at time t = 14. This method is repeated until all vehicles have left the hub.

The results of changing the range of data exchange points in a situation where the
uncertainty of the vehicle’s arrival time at the hub is ±4 are shown in Table 6. An uncertainty
of ±4 means that, for example, although the expected arrival time of vehicle 4 is senter

i = 12,
it has a possibility of arriving at any time in the time range [12 − 4, 12 + 4]. If there is
no uncertainty in the arrival times of the vehicles, then vehicles 1 and 6 form a platoon
to leave the hub at time t = 6, vehicles 2, 3, 7, and 9 form a platoon to leave the hub at
time t = 12, and vehicles 4, 5, 8, and 10 form a platoon to leave the hub at time t = 18,
resulting in the maximum energy savings. When there is uncertainty in the arrival time
of the vehicles, the optimal result is obtained in the case of the range of data exchange
points r ≥ 6. It was expected that the narrower the range of data exchange points, the
greater the uncertainty and the more inefficient the result, but the results of the numerical
experiment are different. As the range of data exchange points narrowed from 5 to 0, the
total energy savings increased. This is likely because vehicle platooning is not a single
decision, but rather a series of decisions. It seems that this is because earlier decisions made
under uncertainty affect later decisions.

Table 6. The result of vehicle platooning with an uncertainty of ±4 in the vehicle’s arrival time at the hub.

Data Exchange Point Platooning Company A’s
Energy Savings

Company B’s
Energy Savings

Total
Energy Savings

r = 0 1, 2, 6/3, 4, 7, 8, 9/5, 10 64,635,342 51,822,541 116,457,883
r = 1 1, 2, 6/3, 4, 7, 8, 9/5, 10 64,635,342 51,822,541 116,457,883
r = 2 1/2, 3, 6/4, 5, 7, 8, 9/10 56,921,279 54,369,812 111,291,091
r = 3 1/2, 3, 6/4, 5, 7, 8, 9/10 56,921,279 54,369,812 111,291,091
r = 4 1/6/2, 3, 4, 7, 8, 9/5, 10 46,767,645 58,679,145 105,446,790
r = 5 1/6/2, 3, 4, 7, 8, 9/5, 10 46,767,645 58,679,145 105,446,790
r ≥ 6 1, 6/2, 3, 7, 9/4, 5, 8, 10 60,691,046 61,217,029 121,908,075

4.3. Results: Case 2

In Case 1, it was found that energy savings are maximized when the range of data
exchange points is above a certain value. However, the results of Case 1 showed that when
the range of data exchange points was narrower than a certain value, the total energy
savings increased as the range of data exchange points narrowed. This result may not be
typical, so an additional numerical experiment is conducted. In Case 2, vehicle 6’s expected
arrival time at the hub and the latest possible departure time from the hub are increased by
two units each. The other parameters are the same as in Case 1.

The results of Case 2 are shown in Table 7. It can be reconfirmed that the energy
savings are maximized when the range of data exchange points is wider than a certain value.
In addition, unlike the results of Case 1, the total energy savings when the range of data
exchange points is wider (6 ≤ r ≤ 11) is larger than when the range is narrower (0 ≤ r ≤ 5).
In other words, energy savings are maximized when the range of data exchange points
is wider than a certain value, but the relationship between the range of data exchange
points and total energy savings is not constant when the range is smaller than a certain
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value. In Case 1, the optimal result is obtained when r ≥ 6, while in Case 2, the optimal
result is obtained when r ≥ 12. The range of data exchange points that lead to the optimal
result is different for each case. However, it can be seen that even if the result is not
optimal, it is possible to achieve a near-optimal result if the range of data exchange points
is wide enough.

Table 7. The result of vehicle platooning when only the expected arrival and latest possible departure
time information for vehicle 6 is changed.

Data Exchange Point Platooning Company A’s
Energy Savings

Company B’s
Energy Savings

Total
Energy Savings

r = 0 1, 2, 6/3, 4, 7, 8, 9/5, 10 64,635,342 51,822,541 116,457,883
r = 1 1, 2, 6/3, 4, 7, 8, 9/5, 10 64,635,342 51,822,541 116,457,883
r = 2 1/3, 6/2, 4, 7, 8, 9/5, 10 54,041,635 51,405,155 105,446,790
r = 3 1/3, 6/2, 4, 7, 8, 9/5, 10 54,041,635 51,405,155 105,446,790
r = 4 1/3, 6/2, 4, 7, 8, 9/5, 10 54,041,635 51,405,155 105,446,790
r = 5 1/3, 6/2, 4, 7, 8, 9/5, 10 54,041,635 51,405,155 105,446,790
r = 6 1, 6/2, 3, 7, 9/4,5, 8, 10 60,691,046 61,217,029 121,908,075
r = 7 1, 6/2, 3, 7, 9/4,5, 8, 10 60,691,046 61,217,029 121,908,075
r = 8 1, 6/2, 3, 7, 9/4,5, 8, 10 60,691,046 61,217,029 121,908,075
r = 9 1, 6/2, 3, 7, 9/4,5, 8, 10 60,691,046 61,217,029 121,908,075

r = 10 1, 6/2, 3, 7, 9/4, 5, 8, 10 60,691,046 61,217,029 121,908,075
r = 11 1, 6/2, 3, 7, 9/4, 5, 8, 10 60,691,046 61,217,029 121,908,075
r ≥ 12 1/2, 3, 6, 7/4, 5, 8, 9, 10 56,921,279 67,370,132 124,291,411

4.4. Results: Sensitivity Analysis

In Cases 1 and 2, the numerical experiments focused on the impact of changing
the range of data exchange points. In this section, the focus is on the uncertainty of the
estimated arrival time of the vehicle at the hub, rather than the range of data exchange
points. The total energy savings are examined by changing the uncertainty of the arrival
time while keeping the range of data exchange points fixed. This is to investigate the
relationship between information uncertainty and total energy savings. The results of the
sensitivity analysis are shown in Table 8. With the range of data exchange points fixed at
two in Case 1, the result of vehicle platooning is compared while increasing the uncertainty
of the estimated arrival time of the vehicle at the hub from zero. The total energy savings
decrease as the uncertainty increases. For example, it is possible to see the difference by
comparing the case with the uncertainty of 0 and ±1. Vehicle 1 should be the first to leave
the hub, and its time is t = 6. Therefore, the first platoon is determined at t = 6. In the case
with the uncertainty of 0, the hub knows the exact arrival times of all the vehicles, so it
forms a platoon with vehicles 1 and 6 and sends them out as a result of maximizing energy
savings. However, when uncertainty is ±1, the hub only knows the exact arrival times of
vehicles 1, 2, 3, and 5, those with estimated arrival times senter

i ≤ 8, because the platoon
decision time is t = 6 and the range of data exchange points is r = 2. The remaining
vehicles have a possibility of arriving 1 unit time later than their estimated arrival time.
As a result of this uncertainty and to maximize energy savings, unlike the case with no
uncertainty, the hub forms a platoon with vehicles 1, 2, and 6 and sends them out. This
decision also affects the next platooning decision after the first one. In other words, it is
found that increasing the uncertainty of the vehicle’s expected arrival time at the hub is a
major factor in the inefficiency of vehicle platooning for energy savings.
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Table 8. Sensitivity analysis for uncertainty in Case 1 with the range of data exchange points r = 2.

Uncertainty Platooning Company A’s
Energy Savings

Company B’s
Energy Savings

Total
Energy Savings

±0 1, 6/2, 3, 7, 9/4, 5, 8, 10 60,691,046 61,217,029 121,908,075
±1 1, 2, 6/3, 4, 7, 8, 9/5, 10 64,635,342 51,822,541 116,457,883
±2 1, 2, 6/3, 4, 7, 8, 9/5, 10 64,635,342 51,822,541 116,457,883
±3 1/2, 3, 6/4, 5, 7, 8, 9/10 56,921,279 54,369,812 111,291,091
±4 1/2, 3, 6/4, 5, 7, 8, 9/10 56,921,279 54,369,812 111,291,091
±5 1/2, 3, 6/4, 5, 7, 8, 9/10 56,921,279 54,369,812 111,291,091
±6 1/6/2, 3, 4, 7, 8, 9/5, 10 46,767,645 58,679,145 105,446,790

5. Conclusions

In this study, hub-based platooning is examined to efficiently form and operate a
platoon considering the uncertainty of vehicles’ expected arrival times at a hub. Hub-based
platooning is one of the appropriate methods for vehicle platooning with vehicles that have
different trucking companies, origins, destinations, departure times, and arrival times. Two
cases of numerical experiments and sensitivity analysis were performed. The results of
vehicle platooning were derived by changing the extent to which vehicles’ arrival times are
known precisely, i.e., the range of data exchange points, and by changing the uncertainty of
vehicles’ estimated arrival times at hubs. The results showed that when the range of data
exchange points is wide enough, it is possible to achieve optimal results for energy savings
even with uncertainty. It was also found that reducing the uncertainty of a vehicle’s arrival
time is efficient for energy savings. It was found that when the range of data exchange
points is not sufficiently wide, this can lead to ineffective energy-saving vehicle platooning.
The results suggest that the first decision made with only partial information can influence
subsequent decisions, making them less energy-efficient than if the range of data exchange
points were narrower.

The implications of this study are as follows: First, it considers the uncertainty of
vehicles’ arrival times at hubs, while considering the reality that this uncertainty disappears
over time, i.e., as vehicles get closer to hubs. Although there has been research on hub-
based platooning before, previous research examined either a dichotomous situation where
arrival time information is known or unknown through communication, or a situation
where the arrival times are uniformly distributed over a range of times. Second, the impact
of changes in the range of data exchange points and the uncertainty of the vehicle’s arrival
time at the hub on hub-based vehicle platooning was investigated. It is most important to
accurately predict a vehicle’s estimated arrival time at the hub. The smaller the range of
estimated arrival times, i.e., the less uncertainty there is, the more energy-efficient vehicle
platooning can be organized. When it is difficult to improve prediction accuracy, the focus
should be on expanding the range of data exchange points, i.e., the range over which the
vehicle’s arrival time is known exactly via V2H. If the range of data exchange points is
sufficiently wide, optimal results can be achieved, and even if it is not, near-optimal results
can be achieved. The results of this study can provide a basis for what factors need to
be considered in the future when autonomous driving technology is developed to realize
vehicle platooning in practice. Third, the main findings can be used in the following ways
in real-life logistics scenarios: By collecting vehicle arrival time data in real-time from
logistics hubs and optimizing the vehicle platooning, energy consumption can be reduced,
and operating costs can be lowered. Strategies to expand the range of data exchange or
improve the accuracy of arrival time prediction can reduce uncertainty and enable more
efficient vehicle platooning. Applying the proposed model to the entire hub network will
maximize energy savings in large-scale logistics systems.

The limitations of this study are, first, that the model was simplified by considering
only one hub and a few vehicles. This was to analyze the principles of the proposed tech-
nique more clearly by reducing the complexity of the model. In future research, we plan to
examine operational efficiency by considering multiple hubs and many vehicles. Second,
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stochastic situations were not considered. Stochastic situations such as V2H communication
failure are likely to occur. These situations are expected to have a significant impact on
vehicle platooning, so it is important to understand their impact. Third, applying robust
optimization led to results that were overly conservative. Since robust optimization makes
decisions based on the worst-case scenario, the efficiency of vehicle platooning may appear
lower than it actually is. The methods to resolve this include distributed optimization,
stochastic optimization, and hybrid robust–stochastic approaches. Distributed optimiza-
tion has the advantage of performing optimization independently at each hub or vehicle
unit and making dynamic decisions using real-time data. Stochastic optimization is an
approach based on modeling uncertainty as a probability distribution to optimize average
performance. The hybrid robust–stochastic approach is a mixed model that reflects both
extreme and common cases. In our future work, we aim to make robust optimization less
restrictive by applying methods to reduce its conservatism. Fourth, robust optimization
typically addresses uncertainty by focusing on a predefined range rather than relying on
probabilistic assumptions. In this study, the range of uncertainty was considered to effec-
tively model worst-case scenarios, aligning with the core concept of robust optimization.
Future research will explore advanced methodologies that integrate robust optimization
with probabilistic techniques, such as distributionally robust optimization, to enhance
the realism of uncertainty modeling. This would allow us to reflect uncertainty more
realistically by incorporating probabilistic models, while still maintaining the robustness
inherent in robust optimization.
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