Statistical Modeling to Improve Time Series Forecasting Using Machine Learning, Time Series, and Hybrid Models: A Case Study of Bitcoin Price Forecasting
Abstract
:1. Introduction
2. Material and Methods
2.1. Time Series Models
2.1.1. Auto-Regressive Model (AR)
2.1.2. Non-Parametric Auto-Regressive Model (NP-AR)
2.1.3. Auto-Regressive Integrated Moving-Average Model (ARIMA)
2.1.4. Simple Exponential Smoothing Model (SES)
2.2. Machine Learning (ML) Models
2.2.1. Extreme-Learning-Machine Model (ELM)
2.2.2. Multi-Layer Perceptron Model (MLP)
2.2.3. Neural Network Auto-Regression Model (NN-AR)
2.2.4. Extreme-Gradient Boost Model (XG-Boost)
2.2.5. Hybrid Model (Equal Weighting)
2.2.6. Key Performance Indicators (KPIs)
3. Forecasting Results and Interpretations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koo, E.; Kim, G. Centralized decomposition approach in LSTM for Bitcoin price prediction. Expert Syst. Appl. 2024, 237, 121401. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, X.; Qi, H.; Li, N.; Mi, C. Near miss prediction in commercial aviation through a combined model of grey neural network. Expert Syst. Appl. 2024, 255, 124690. [Google Scholar] [CrossRef]
- Rodrigues, P.C.; Awe, O.O.; Pimentel, J.S.; Mahmoudvand, R. Modelling the behaviour of currency exchange rates with singular spectrum analysis and artificial neural networks. Stats 2020, 3, 137–157. [Google Scholar] [CrossRef]
- Gohwong, S.G. The state of the art of cryptocurrencies. Asian Adm. Manag. Rev. 2018, 1. [Google Scholar]
- Iftikhar, H.; Zafar, A.; Turpo-Chaparro, J.E.; Canas Rodrigues, P.; López-Gonzales, J.L. Forecasting day-ahead brent crude oil prices using hybrid combinations of time series models. Mathematics 2023, 11, 3548. [Google Scholar] [CrossRef]
- Velde, F. Bitcoin: A Primer; Federal Reserve Bank of Chicago: Chicago, IL, USA, 2013. [Google Scholar]
- Li, X.; Whinston, A.B. Analyzing cryptocurrencies. Inf. Syst. Front. 2020, 22, 17–22. [Google Scholar] [CrossRef]
- John, K.; O’Hara, M.; Saleh, F. Bitcoin and beyond. Annu. Rev. Financ. Econ. 2022, 14, 95–115. [Google Scholar] [CrossRef]
- Iftikhar, H.; Khan, M.; Turpo-Chaparro, J.E.; Rodrigues, P.C.; Lopez-Gonzales, J.L. Forecasting stock prices using a novel filtering-combination technique: Application to the Pakistan stock exchange. AIMS Math. 2024, 9, 3264–3289. [Google Scholar] [CrossRef]
- Luo, J.; Zhao, C.; Chen, Q.; Li, G. Using deep belief network to construct the agricultural information system based on Internet of Things. J. Supercomput. 2022, 78, 379–405. [Google Scholar] [CrossRef]
- Fauzi, M.A.; Paiman, N.; Othman, Z. Bitcoin and cryptocurrency: Challenges, opportunities and future works. J. Asian Financ. Econ. Bus. 2020, 7, 695–704. [Google Scholar] [CrossRef]
- Farell, R. An analysis of the cryptocurrency industry. Whart. Res. Sch. 2015, 130, 1–23. [Google Scholar]
- Chiu, J.; Koeppl, T.V. The economics of cryptocurrency: Bitcoin and beyond. Can. J. Econ. Can. D’économique 2022, 55, 1762–1798. [Google Scholar] [CrossRef]
- Xu, K.; Chen, L.; Patenaude, J.M.; Wang, S. Rhine: A regime-switching model with nonlinear representation for discovering and forecasting regimes in financial markets. In Proceedings of the 2024 SIAM International Conference on Data Mining (SDM), Houston, TX, USA, 18–20 April 2024; pp. 526–534. [Google Scholar]
- Karasu, S.; Altan, A.; Saraç, Z.; Hacioğlu, R. Prediction of Bitcoin prices with machine learning methods using time series data. In Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4. [Google Scholar]
- McNally, S.; Roche, J.; Caton, S. Predicting the price of bitcoin using machine learning. In Proceedings of the 2018 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Cambridge, UK, 21–23 March 2018; pp. 339–343. [Google Scholar]
- Ibrahim, A.; Kashef, R.; Corrigan, L. Predicting market movement direction for bitcoin: A comparison of time series modeling methods. Comput. Electr. Eng. 2021, 89, 106905. [Google Scholar] [CrossRef]
- Lian, Y.M.; Chen, J.L.; Cheng, H.C. Predicting bitcoin prices via machine learning and time series models. J. Appl. Financ. Bank. 2022, 12, 25–43. [Google Scholar]
- Maleki, N.; Nikoubin, A.; Rabbani, M.; Zeinali, Y. Bitcoin price prediction based on other cryptocurrencies using machine learning and time series analysis. Sci. Iran. 2023, 30, 285–301. [Google Scholar] [CrossRef]
- Tripathy, N.; Hota, S.; Mishra, D. Performance analysis of bitcoin forecasting using deep learning techniques. Indones. J. Electr. Eng. Comput. Sci. 2023, 31, 1515–1522. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Z.; Ma, Y.; Qu, L. A novel cryptocurrency price time series hybrid prediction model via machine learning with MATLAB/Simulink. J. Supercomput. 2023, 79, 15358–15389. [Google Scholar] [CrossRef]
- Rao, K.R.; Prasad, M.L.; Kumar, G.R.; Natchadalingam, R.; Hussain, M.M.; Reddy, P.C.S. Time-Series Cryptocurrency Forecasting Using Ensemble Deep Learning. In Proceedings of the 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT), Kollam, India, 10–11 August 2023; pp. 1446–1451. [Google Scholar]
- Chen, J. Analysis of bitcoin price prediction using machine learning. J. Risk Financ. Manag. 2023, 16, 51. [Google Scholar] [CrossRef]
- He, K.; Yang, Q.; Ji, L.; Pan, J.; Zou, Y. Financial time series forecasting with the deep learning ensemble model. Mathematics 2023, 11, 1054. [Google Scholar] [CrossRef]
- Liu, S.; Wu, K.; Jiang, C.; Huang, B.; Ma, D. Financial time-series forecasting: Towards synergizing performance and interpretability within a hybrid machine learning approach. arXiv 2023, arXiv:2401.00534. [Google Scholar]
- Cheng, J.; Tiwari, S.; Khaled, D.; Mahendru, M.; Shahzad, U. Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models. Technol. Forecast. Soc. Chang. 2024, 198, 122938. [Google Scholar] [CrossRef]
- Qureshi, M.; Khan, A.; Daniyal, M.; Tawiah, K.; Mehmood, Z. A comparative analysis of traditional SARIMA and machine learning models for CPI data modelling in Pakistan. Appl. Comput. Intell. Soft Comput. 2023, 2023, 3236617. [Google Scholar] [CrossRef]
- Nair, M.; Marie, M.I.; Abd-Elmegid, L.A. Prediction of Cryptocurrency Price using Time Series Data and Deep Learning Algorithms. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 338–347. [Google Scholar] [CrossRef]
- Pabuçcu, H.; Ongan, S.; Ongan, A. Forecasting the movements of Bitcoin prices: An application of machine learning algorithms. arXiv 2023, arXiv:2303.04642. [Google Scholar] [CrossRef]
- Khosravi, M.; Ghazani, M.M. Novel insights into the modeling financial time-series through machine learning methods: Evidence from the cryptocurrency market. Expert Syst. Appl. 2023, 234, 121012. [Google Scholar] [CrossRef]
- Ampountolas, A. Comparative analysis of machine learning, hybrid, and deep learning forecasting models: Evidence from European financial markets and bitcoins. Forecasting 2023, 5, 472–486. [Google Scholar] [CrossRef]
- He, Q.; Xia, P.; Hu, C.; Li, B. Public Information, Actual Intervention and Inflation Expectations. Transform. Bus. Econ. 2022, 21, 644. [Google Scholar]
- Murray, K.; Rossi, A.; Carraro, D.; Visentin, A. On forecasting cryptocurrency prices: A comparison of machine learning, deep learning, and ensembles. Forecasting 2023, 5, 196–209. [Google Scholar] [CrossRef]
- Noviandy, T.R.; Maulana, A.; Idroes, G.M.; Suhendra, R.; Adam, M.; Rusyana, A.; Sofyan, H. Deep learning-based bitcoin price forecasting using neural prophet. Ekon. J. Econ. 2023, 1, 19–25. [Google Scholar] [CrossRef]
- Iftikhar, H.; Khan, M.; Żywiołek, J.; Khan, M.; López-Gonzales, J.L. Modeling and Forecasting Carbon Dioxide Emission in Pakistan Using a Hybrid Combination of Regression and Time Series Models. Heliyon 2024, 10, e33148. [Google Scholar] [CrossRef]
- Mardjo, A.; Choksuchat, C. HyBiLSTM: Multivariate Bitcoin Price Forecasting using Hybrid Time Series Models with Bidirectional LSTM. IEEE Access 2024, 12, 50792–50808. [Google Scholar] [CrossRef]
- Berger, T.; Koubová, J. Forecasting Bitcoin returns: Econometric time series analysis vs. machine learning. J. Forecast. 2024, 43, 2904–2916. [Google Scholar] [CrossRef]
- Šestanović, T. A Comprehensive Approach to Bitcoin Forecasting Using Neural Networks. Ekon. Pregl. 2024, 75, 62–85. [Google Scholar] [CrossRef]
- Alizadegan, H.; Radmehr, A.; Ilani, M.A. Forecasting Bitcoin Prices: A Comparative Study of Machine Learning and Deep Learning Algorithms. Res. Square 2024. [Google Scholar] [CrossRef]
- Fadhil, H.M.; Makhool, N.Q. Forecasting Cryptocurrency Market Trends with Machine Learning and Deep Learning. In Proceedings of the BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2024; Volume 97, p. 00053. [Google Scholar]
- Gonzales, S.M.; Iftikhar, H.; López-Gonzales, J.L. Analysis and forecasting of electricity prices using an improved time series ensemble approach: An application to the Peruvian electricity market. Aims Math. 2024, 9, 21952–21971. [Google Scholar] [CrossRef]
- Tang, X.; Song, Y.; Jiao, X.; Sun, Y. On forecasting realized volatility for bitcoin based on deep learning PSO–GRU model. Comput. Econ. 2024, 63, 2011–2033. [Google Scholar] [CrossRef]
- Carbo-Bustinza, N.; Iftikhar, H.; Belmonte, M.; Cabello-Torres, R.J.; De La Cruz, A.R.H.; López-Gonzales, J.L. Short-term forecasting of Ozone concentration in metropolitan Lima using hybrid combinations of time series models. Appl. Sci. 2023, 13, 10514. [Google Scholar] [CrossRef]
- Garg, S.; Anupriya. Autoregressive integrated moving average model based prediction of bitcoin close price. In Proceedings of the 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 13–14 December 2018; pp. 473–478. [Google Scholar]
- Shah, I.; Iftikhar, H.; Ali, S. Modeling and forecasting electricity demand and prices: A comparison of alternative approaches. J. Math. 2022, 2022, 3581037. [Google Scholar] [CrossRef]
- López-Gonzales, J.L.; Castro Souza, R.; Leite Coelho da Silva, F.; Carbo-Bustinza, N.; Ibacache-Pulgar, G.; Calili, R.F. Simulation of the energy efficiency auction prices via the markov chain monte carlo method. Energies 2020, 13, 4544. [Google Scholar] [CrossRef]
- Iftikhar, H.; Turpo-Chaparro, J.E.; Canas Rodrigues, P.; López-Gonzales, J.L. Forecasting day-ahead electricity prices for the Italian electricity market using a new decomposition—Combination technique. Energies 2023, 16, 6669. [Google Scholar] [CrossRef]
- Qureshi, M.; Ahmed, N. Forecasting Cryptocurrencies using the Classical Time Series Approach. KASBIT Bus. J. 2022, 15, 15–27. [Google Scholar]
- Song, L.; Chen, S.; Meng, Z.; Sun, M.; Shang, X. FMSA-SC: A Fine-grained Multimodal Sentiment Analysis Dataset based on Stock Comment Videos. IEEE Trans. Multimed. 2024, 26, 7294–7306. [Google Scholar] [CrossRef]
- Qureshi, M.; Ahmad, N.; Ullah, S.; ul Mustafa, A.R. Forecasting real exchange rate (REER) using artificial intelligence and time series models. Heliyon 2023, 9, e16335. [Google Scholar] [CrossRef]
- Chang, X.; Gao, H.; Li, W. Discontinuous distribution of test statistics around significance thresholds in empirical accounting studies. J. Account. Res. 2023. [Google Scholar] [CrossRef]
- Huang, G.B.; Wang, D.H.; Lan, Y. Extreme learning machines: A survey. Int. J. Mach. Learn. Cybern. 2011, 2, 107–122. [Google Scholar] [CrossRef]
- Zhu, C. An adaptive agent decision model based on deep reinforcement learning and autonomous learning. J. Logist. Inform. Serv. Sci. 2023, 10, 107–118. [Google Scholar]
- Pinkus, A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8, 143–195. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Q.; Su, R.; Tang, R.; Liu, Z.; He, X.; Yang, J. Click-through rate prediction using transfer learning with fine-tuned parameters. Inf. Sci. 2022, 612, 188–200. [Google Scholar] [CrossRef]
- Sako, K.; Mpinda, B.N.; Rodrigues, P.C. Neural networks for financial time series forecasting. Entropy 2022, 24, 657. [Google Scholar] [CrossRef]
- Sulandari, W.; Subanar, S.; Lee, M.H.; Rodrigues, P.C. Time series forecasting using singular spectrum analysis, fuzzy systems and neural networks. MethodsX 2020, 7, 101015. [Google Scholar] [CrossRef]
- Iftikhar, H.; Zywiołek, J.; López-Gonzales, J.L.; Albalawi, O. Electricity consumption forecasting using a novel homogeneous and heterogeneous ensemble learning. Front. Energy Res. 2024, 12, 1442502. [Google Scholar] [CrossRef]
- Al Hawi, L.; Sharqawi, S.; Al-Haija, Q.A.; Qusef, A. Empirical evaluation of machine learning performance in forecasting cryptocurrencies. J. Adv. Inf. Technol. 2023, 14, 639–646. [Google Scholar] [CrossRef]
- Iftikhar, H.; Turpo-Chaparro, J.E.; Canas Rodrigues, P.; López-Gonzales, J.L. Day-Ahead Electricity Demand Forecasting Using a Novel Decomposition Combination Method. Energies 2023, 16, 6675. [Google Scholar] [CrossRef]
- Shah, I.; Lisi, F. Forecasting of electricity price through a functional prediction of sale and purchase curves. J. Forecast. 2020, 39, 242–259. [Google Scholar] [CrossRef]
- Iftikhar, H.; Bibi, N.; Canas Rodrigues, P.; López-Gonzales, J.L. Multiple novel decomposition techniques for time series forecasting: Application to monthly forecasting of electricity consumption in Pakistan. Energies 2023, 16, 2579. [Google Scholar] [CrossRef]
- Costantini, M.; Cuaresma, J.C.; Hlouskova, J. Forecasting errors, directional accuracy and profitability of currency trading: The case of EUR/USD exchange rate. J. Forecast. 2016, 35, 652–668. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [Google Scholar] [CrossRef]
- Qureshi, M.; Daniyal, M.; Tawiah, K. Comparative Evaluation of the Multilayer Perceptron Approach with Conventional ARIMA in Modeling and Prediction of COVID-19 Daily Death Cases. J. Healthc. Eng. 2022, 2022, 4864920. [Google Scholar] [CrossRef]
S. No | Error | Equations |
---|---|---|
i | ||
ii | ||
iii | ||
iv | ||
v | ||
vi |
Statistic | Values |
---|---|
Sample Size (n) | 390 |
Min | 25,162.65 |
25% | 40,368.76 |
50% | 57,387.97 |
75% | 64,234.18 |
Max | 73,083.50 |
Mean | 51,812.17 |
S.D | 14,574.24 |
Skewness | −0.41 |
Kurtosis | 1.78 |
ADF-Test Level (0) | 0.71 |
ADF-Test Level (1) | 0.01 |
MAPE | MAE | RMSE | Correlation | SMAPE | MDA | |
---|---|---|---|---|---|---|
AR | 0.2416 | 145.9313 | 195.1101 | 0.9984 | 0.2580 | 0.9700 |
NP-AR | 0.5801 | 354.9212 | 401.4765 | 0.9983 | 0.5379 | 1.0000 |
ARIMA | 0.2426 | 150.0234 | 199.8098 | 0.9979 | 0.2692 | 0.9600 |
SES | 0.3730 | 246.7761 | 306.4533 | 0.9977 | 0.4180 | 0.9500 |
NNAR | 0.5730 | 348.5911 | 388.1201 | 0.9983 | 0.5656 | 1.0000 |
MLP | 0.6681 | 400.2624 | 446.3543 | 0.9986 | 0.6809 | 1.0000 |
ELM | 0.3723 | 240.1560 | 328.0201 | 0.9989 | 0.3488 | 0.9900 |
XG-boost | 1.6317 | 987.7198 | 1299.4456 | 0.9425 | 1.7882 | 0.7000 |
Hybrid | 0.2411 | 136.0214 | 184.2901 | 0.9989 | 0.2313 | 0.9800 |
MAPE | MAE | RMSE | Correlation | SMAPE | MDA | |
---|---|---|---|---|---|---|
AR | 0.2416 | 146.3113 | 199.2608 | 0.9986 | 0.2470 | 0.9481 |
NP-AR | 0.5201 | 308.9151 | 344.5681 | 0.9996 | 0.5269 | 1.0000 |
ARIMA | 0.2526 | 153.0345 | 206.6616 | 0.9985 | 0.2592 | 0.9351 |
SES | 0.3730 | 252.4403 | 306.5377 | 0.9987 | 0.4070 | 0.9610 |
NNAR | 0.5530 | 328.8220 | 363.1769 | 0.9993 | 0.5546 | 1.0000 |
MLP | 0.6781 | 402.4721 | 442.3189 | 0.9996 | 0.6708 | 1.0000 |
ELM | 0.3423 | 216.1259 | 291.4463 | 0.9999 | 0.3387 | 1.0000 |
XG-boost | 1.7793 | 1070.7159 | 1351.0790 | 0.9425 | 1.7081 | 0.6623 |
Hybrid | 0.2241 | 134.7952 | 182.7972 | 0.9988 | 0.2293 | 0.9740 |
MAPE | MAE | RMSE | Correlation | SMAPE | MDA | |
---|---|---|---|---|---|---|
AR | 0.2066 | 122.8504 | 162.3767 | 0.9984 | 0.2066 | 0.9737 |
NP-AR | 0.5005 | 293.8465 | 317.9673 | 0.9997 | 0.5008 | 1.0000 |
ARIMA | 0.1877 | 111.7080 | 147.2674 | 0.9987 | 0.1878 | 0.9737 |
SES | 0.3401 | 227.5421 | 281.0904 | 0.9987 | 0.3709 | 0.9737 |
NNAR | 0.5790 | 340.7026 | 359.9551 | 0.9995 | 0.5687 | 1.0000 |
MLP | 0.6982 | 411.0493 | 433.1569 | 0.9997 | 0.6885 | 1.0000 |
ELM | 0.2345 | 141.8653 | 178.7457 | 0.9999 | 0.2284 | 1.0000 |
XG-boost | 1.5898 | 934.7921 | 1244.8303 | 0.9157 | 1.5192 | 0.5789 |
Hybrid | 0.1882 | 112.0043 | 147.6284 | 0.9987 | 0.1888 | 0.9737 |
AR | NP-AR | ARIMA | SES | NNAR | MLP | ELM | XG-Boost | Hybrid | |
---|---|---|---|---|---|---|---|---|---|
AR | 0 | 1 | 0.92 | 0 | 1 | 1 | 1 | 1 | 1 |
NP-AR | 0 | 0 | 0 | 0 | 0.03 | 1 | 0.02 | 1 | 0 |
ARIMA | 0.08 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
SES | 0 | 1 | 0 | 0 | 1 | 1 | 0.83 | 1 | 0 |
NNAR | 0 | 0.97 | 0 | 0 | 0 | 1 | 0.04 | 1 | 0 |
MLP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
ELM | 0 | 0.98 | 0 | 0 | 0.96 | 1 | 0 | 1 | 0.26 |
XG-boost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Hybrid | 0 | 1 | 0 | 0 | 1 | 1 | 0.74 | 1 | 0 |
AR | NP-AR | ARIMA | SES | NNAR | MLP | ELM | XG-Boost | Hybrid | |
---|---|---|---|---|---|---|---|---|---|
AR | 0 | 1 | 0.94 | 0 | 1 | 1 | 0.99 | 1 | 1 |
NP-AR | 0 | 0 | 0 | 0 | 1 | 1 | 0.07 | 1 | 0.04 |
ARIMA | 0.06 | 1 | 0 | 0.01 | 1 | 1 | 0.99 | 1 | 1 |
SES | 1 | 1 | 0.99 | 0 | 1 | 1 | 1 | 1 | 1 |
NNAR | 0 | 0 | 0 | 0 | 0 | 1 | 0.02 | 1 | 0 |
MLP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
ELM | 0.01 | 0.93 | 0.01 | 0 | 0.98 | 1 | 0 | 1 | 0.66 |
XG-boost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Hybrid | 0 | 0.96 | 0 | 0 | 1 | 1 | 0.34 | 1 | 0 |
AR | NP-AR | ARIMA | SES | NNAR | MLP | ELM | XG-Boost | Hybrid | |
---|---|---|---|---|---|---|---|---|---|
AR | 0 | 1 | 0 | 0 | 1 | 1 | 0.72 | 1 | 0.99 |
NP-AR | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0.12 |
ARIMA | 1 | 1 | 0 | 1 | 1 | 1 | 0.88 | 1 | 1 |
SES | 1 | 1 | 0 | 0 | 1 | 1 | 0.88 | 1 | 1 |
NNAR | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.99 | 0 |
MLP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.99 | 0 |
ELM | 0.28 | 1 | 0.12 | 0.12 | 1 | 1 | 0 | 1 | 0.98 |
XG-boost | 0 | 0 | 0 | 0 | 0.01 | 0.01 | 0 | 0 | 0 |
Hybrid | 0.01 | 0.88 | 0 | 0 | 1 | 1 | 0.02 | 1 | 0 |
Date | With 30% Models | With 20% Models | With 10% Models | Observed Values |
---|---|---|---|---|
25/09/2024 | 63,933.79 | 63,932.13 | 63,926.07 | 63,143.14 |
26/09/2024 | 63,931.45 | 63,895.78 | 63,971.86 | 65,181.02 |
27/09/2024 | 63,935.87 | 63,922.60 | 63,977.60 | 65,790.66 |
28/09/2024 | 63,969.28 | 63,971.81 | 63,967.33 | 65,887.65 |
29/09/2024 | 63,967.35 | 63,925.77 | 63,972.97 | 65,635.30 |
30/09/2024 | 63,922.74 | 63,975.30 | 63,985.41 | 63,329.50 |
01/10/2024 | 63,933.83 | 63,920.44 | 63,968.44 | 60,837.01 |
02/10/2024 | 63,974.16 | 63,973.62 | 63,975.61 | 60,632.79 |
03/10/2024 | 63,980.35 | 63,972.56 | 63,970.42 | 60,759.40 |
04/10/2024 | 63,966.97 | 63,989.06 | 63,982.17 | 62,067.48 |
05/10/2024 | 63,968.02 | 63,923.40 | 63,934.41 | 62,089.95 |
06/10/2024 | 63,986.10 | 63,968.04 | 63,935.22 | 62,818.95 |
07/10/2024 | 63,974.36 | 63,977.52 | 63,965.84 | 62,236.66 |
08/10/2024 | 63,932.70 | 63,978.15 | 63,976.76 | 62,131.97 |
09/10/2024 | 63,930.86 | 63,976.93 | 63,935.19 | 60,582.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qureshi, M.; Iftikhar, H.; Rodrigues, P.C.; Rehman, M.Z.; Salar, S.A.A. Statistical Modeling to Improve Time Series Forecasting Using Machine Learning, Time Series, and Hybrid Models: A Case Study of Bitcoin Price Forecasting. Mathematics 2024, 12, 3666. https://doi.org/10.3390/math12233666
Qureshi M, Iftikhar H, Rodrigues PC, Rehman MZ, Salar SAA. Statistical Modeling to Improve Time Series Forecasting Using Machine Learning, Time Series, and Hybrid Models: A Case Study of Bitcoin Price Forecasting. Mathematics. 2024; 12(23):3666. https://doi.org/10.3390/math12233666
Chicago/Turabian StyleQureshi, Moiz, Hasnain Iftikhar, Paulo Canas Rodrigues, Mohd Ziaur Rehman, and S. A. Atif Salar. 2024. "Statistical Modeling to Improve Time Series Forecasting Using Machine Learning, Time Series, and Hybrid Models: A Case Study of Bitcoin Price Forecasting" Mathematics 12, no. 23: 3666. https://doi.org/10.3390/math12233666
APA StyleQureshi, M., Iftikhar, H., Rodrigues, P. C., Rehman, M. Z., & Salar, S. A. A. (2024). Statistical Modeling to Improve Time Series Forecasting Using Machine Learning, Time Series, and Hybrid Models: A Case Study of Bitcoin Price Forecasting. Mathematics, 12(23), 3666. https://doi.org/10.3390/math12233666