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Abstract: Today, permutation tests represent a powerful and increasingly widespread tool of statistical
inference for hypothesis-testing problems. To the best of our knowledge, a review of the application
of permutation tests for complex data in practical data analysis for hypothesis testing is missing.
In particular, it is essential to review the application of permutation tests in two-sample or multi-
sample problems and in regression analysis. The aim of this paper is to consider the main scientific
contributions on the subject of permutation methods for hypothesis testing in the mentioned fields.
Notes on their use to address the problem of missing data and, in particular, right-censored data, will
also be included. This review also tries to highlight the limits and advantages of the works cited with
a critical eye and also to provide practical indications to researchers and practitioners who need to
identify flexible and distribution-free solutions for the most disparate hypothesis-testing problems.
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1. Introduction to Permutation Tests

In many fields, the application of permutation tests in statistical inference has been
increasing. For instance, many papers deal with the application of permutation tests in
ecology, neurosciences, biostatistics, engineering, economics, and other disciplines [1–6].
However, in 1936, Fisher introduced the permutation test to a problem concerning paired
agricultural data collected by Charles Darwin [7]. Since then, the permutation approach has
become a valid solution for testing problems when the parametric methods are not powerful,
feasible, or suitable due to the violations of the assumptions [8–12]. Permutation tests are
flexible, powerful, and robust; hence, they are becoming very popular in several empirical
disciplines, especially for complex data structures [13–29]. For instance, in multivariate
permutation tests, the dependence structure of response variables is implicitly considered
without modeling it or assuming a specific family for the joint probability distribution.

In 1959, Scheffé provided the following formal and concise definition of the permuta-
tion test [30]:

“Permutation tests for a hypothesis exist whenever the joint distribution of the
observations under the hypothesis has a certain kind of symmetry, namely when
a set of permutations of the observations leave the distribution the same (the
distributions are invariant under a group of permutations).”

In many cases, the permutation test is mainly based on the equality of distributions
under the null hypothesis. Although the permutation test is carried out through a sort
of re-sampling method similar to bootstrapping, unlike the bootstrap test, it is based on
a sampling process that takes place by conditioning on the observed dataset [5,31,32].
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For this reason, regarding permutation tests, we speak of conditioned inference. In other
words, given the observed sample data, to estimate the null permutation distribution of
the test statistic, the observations are randomly re-assigned to the samples to the units or,
equivalently, resampled without replacement many times. Conversely, the nonparametric
bootstrap is based on resampling with replacement. Extensive simulation results in pre-
vious studies revealed that, in general, the permutation tests are more powerful than the
bootstrap counterparts [32–36].

Thanks to the improvement in computers’ power and speed, computational limita-
tions of permutation tests have been reduced [37]. Several R packages and source codes
developed in the R programming environment have been dedicated to permutation tests.
Traditional software, such as SPSS, STATA, and others, have also added an option for
permutation testing. Some examples of R packages for permutation tests are lmperm [38],
coin [39], and flip [40]. Some useful R packages and source codes for the application of
permutation tests are described in [4,31].

Permutation tests are distribution-free. Let us assume that the ith observation xi is a
realization of the random variable Xi with i = 1, 2, . . . , n. Typically, parametric approaches
assume that the random variables X1, X2, . . . , Xn are independent and identically dis-
tributed (IID). It is well known that, in the permutation approach, the strong IID condition
is not necessary as well, and it is replaced by the milder condition of exchangeability [41,42].
For example, let us consider the univariate two-sample test on the means of two popu-
lations, where the null hypothesis H0 of equality of the two population distributions is
tested against the alternative hypothesis H1 that µ1, the mean of the first population is not
equal to (or it is greater than) µ2, the mean of the second population. Let us assume that
we have randomly selected a sample from each population (classical two-independent-
sample problem). Without a loss of generality, let us also assume that the first n1 observed
sample data (arranged in the first n1 rows of the dataset) refer to the sample selected from
the first population, and the other n2 observed data (arranged in the last n2 rows of the
dataset) refer to the sample selected from the second population, where n1 and n2 are the
sample sizes, with n = n1 + n2. If the null hypothesis is true, the two populations have the
same underlying distribution, and the sequence of observed data x1 . . . , xn has the same

probability of occurrence of any other of the
(

n
n1

)
sequences obtained by permuting the

observations to reassign the data to sample 1 and sample 2. Thus, the null distribution of
the test statistic (for example, the difference between the sample means in the one-sided
test and its absolute value in the two-sided test) can be obtained by considering all the
permutations corresponding to data reassignments (or equivalently, a random sample of
them) and the value of the test statistic computed for each permuted dataset. The p-value
of the permutation test is the proportion of permutation values that are equal to or more
extreme than the observed one, i.e., the one corresponding to the original non-permuted
dataset. According to the classic decision rule, the null hypothesis is rejected in favor of
the alternative hypothesis if the p-value is less than or equal to the significance level of the
test. Good focused on the exchangeability condition and provided formal properties and
examples [43].

Other conditions and properties of permutation tests, such as unbiasedness and
consistency, were investigated by several authors (see, for instance, [44,45]). From a practical
point of view, such properties are very important. In fact, the former ensures that the
probability of rejecting the null hypothesis when it is false is greater than the probability of
rejecting it when it is true (type I error). Formally,

P[Tn1,n2 ∈ Rα|H1, X] ≥ α

where Tn1,n2 is the test statistic, α is the significance level, Rα is the rejection region, H1 is the
alternative hypothesis, and X is the observed dataset. The latter implies that the probability



Mathematics 2024, 12, 2617 3 of 29

of rejecting the null hypothesis when it is false increases with sample sizes and tends to
one when the sample sizes diverge. Equivalently,

P[Tn1,n2 ∈ Rα|H1, X]
min(n1,n2)→∞→ 1.

On the other hand, Konietschke et al. [46] argued that permutation tests can also be applied
to non-exchangeable data. In particular, they considered tests for dependent samples,
the Studentized test statistic, and different permutation strategies and proved that all
these strategies lead to asymptotically valid tests, which are more powerful than the
parametric t-test.

Exchangeability is a simple and weak condition. It is reasonable in many frameworks
typical of both experimental and observational studies. For instance, in experimental de-
signs, the random allocation of subjects to treatments is sufficient to justify this assumption.
Furthermore, depending on the goal of analysis, and on the study design, different types of
exchangeablilities are introduced by [43]: preserving transforms, asymptotic, partial, and
weak exchangeability. Exchangeability and conditioning on sample data imply an impor-
tant invariance property [43,45]. In fact, under exchangeability, the joint distribution of the
observations (random variables) is invariant under reassignments of the subscripts. As a
result, sufficient statistics can be computed with respect to the permutation distribution.

In the permutation test, the decision to reject or not the null hypothesis is based on the
p-value obtained from the null permutation distribution. Anderson studied the univariate
and multivariate permutation analysis of variance for one-way, multifactor, and complex
designs by proposing asymptotic permutation p-values as an alternative to the permutation
p-values [6,47]. Such asymptotic p-values are computed by approximating the permutation
distribution of the test statistic with a linear combination of chi-square random variables.
She suggests using the asymptotic p-values in particular when the number of possible
permutations is low. The proposed test statistic is a function of the matrix of distances
between couples of units. As a distance, several different types of dissimilarity measures
may be used. Such a test is applicable to balanced designs, and its performance depends
on the considered type of distance. Moreover, the author notes that exact permutation tests
on the interaction effects in multifactorial problems are challenging. For such a problem,
approximate permutation tests may be applied [12,17]. In this framework, the application of
restricted and synchronized permutations provides appropriate and valid solutions [48,49].

Excluding asymptotic solutions, the p-values of the permutation tests are computed
empirically and conditionally on the observed sample data. In the literature, especially
when the number of possible permutations is large, for the computation of p-values, the
conditional Monte Carlo method, according to the permutation principle, is very frequently
used [48,50–55]. In other words, to determine the null permutation distribution and com-
pute the p-values, instead of calculating the exact p-values by taking into account the set of
all possible permutations (exact test), a random sample of permutations is drawn. Often, a
number of conditional Monte Carlo permutations of 1000 should be sufficient to have a
good approximation of the null permutation distribution and obtain p-values very close
to the exact ones [56,57]. Some authors use 10,000 permutations [31,58]. This approach is
particularly important because, as the sample sizes increase, the cardinality of the permu-
tation space, and thus the total number of possible permutations, increases rapidly and
can be very large, even for relatively small sample sizes. For example, going back to the
two-independent-sample test mentioned above, when n = 20 and n1 = n2 = 10, the num-

ber of permutations of the exact test is
(

20
10

)
= 184, 756, and computing the approximated

p-value by generating 10,000 random permutations is more computationally convenient.
In [59], a simulation study to determine the appropriate number of permutations

to obtain well-approximated p-values was proposed. It was found that the number of
permutations required for estimating the power of the permutation test and the p-values for
practical data analysis depends on the level of significance. For instance, 1000 and 5000 per-
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mutations are sufficient for estimating power performance and p-values, respectively, for
practical data analysis at a nominal level of 0.5. The permutation distributions of the test
statistic obtained from all possible permutations, and with the conditional Monte Carlo
method, asymptotically provide the same conclusion.

The permutation testing principle for two-sample or multi-sample tests, strictly con-
nected with the concept of conditional inference, was defined by Pesarin in [5] (p. 8)
as follows:

“If two experiments, taking values on the same sample space and respectively
with underlying distributions P1 and P2, both members of P , give the same
dataset X, then the two inferences conditional on X and obtained by using the
same test statistic must be the same, provided that the exchangeability of data
with respect to groups is satisfied in the null hypothesis. Consequently, if two ex-
periments, with underlying distributions P1 and P2, give respectively X1 and X2,
with X1 ̸= X2, then the two conditional inferences may be different.”

Another approach to the definition of permutation tests is proposed by [9] (p.633).
According to this approach, permutations are seen as groups of transformations that pre-
serve the null distribution of the test statistic [60] (pp. 3–4). Let X be the dataset and Ω the
sample space. The finite set of transformations g : Ω → Ω , denoted by G, is a group if
the following properties hold: (1) G includes the identity transformation; (2) for every
transformation in G, the inverse is also in G, i.e., g ∈ G ⇒ g−1 ∈ G ; (3) the composition of
every pair of transformations in G is also in G, i.e., g1and g2 ∈ G ⇒ g1 ◦ g2 ∈ G . A more
detailed discussion of this approach is provided in Section 2.

This paper considers a review of permutation tests for comparative studies and linear
regression models. The paper is structured as follows. Section 2 is dedicated to permutation
tests for independent samples. The case of dependent samples is presented in Section 3.
In Section 4, permutation solutions for regression models are presented. Section 5 covers
the topic of permutation approaches for missing data. Finally, Section 6 comprises some
final remarks.

2. Permutation Tests for Independent Samples

For tests of hypotheses concerning comparisons of independent samples in terms of
location; scale; proportion; or other aspects of the distribution, numerical, categorical, or
binary outcomes, the standard parametric approach might not be suitable in the presence
of skewed distributions, large kurtosis, non-normal distributions, unequal variances, small
sample sizes, missing data, and other situations. For such problems, a nonparametric
solution is a valid and, in some cases, inevitable alternative. Within the category of non-
parametric methods, permutation tests are often preferable for their flexibility, robustness,
and power.

In general, the test statistic may be defined so as to reject the null hypothesis in favor
of the alternative for large values. Let B denote the total number of permutations (either
the exact number of reassignments or the number of random permutations), t∗(b)n1,n2 is the

value of the test statistic in the bth permutation, and t(0)n1,n2 is the observed value of the test
statistic. The p-value of the permutation test is

p =
∑B

b=1 Ib

(
t(0)n1,n2

)
B

where

Ib

(
t(0)n1,n2

)
=

{
1 if t∗(b)n1,n2 ≥ t(0)n1,n2

0 otherwise
.

Sometimes, the values 0.5 and 1 are added in the numerator and in the denominator,
respectively, to make p strictly between 0 and 1. In the case of the two-sample test on means
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mentioned above, a suitable test statistic is the difference between sample means; hence,
the observed value of the test statistic is

t(0)n1,n2 =
∑n1

i=1 xi

n1
−

∑n
i=n1+1 xi

n2
or t(0)n1,n2 =

∣∣∣∣∣∑n1
i=1 xi

n1
−

∑n
i=n1+1 xi

n2

∣∣∣∣∣,
depending on whether the test is one-sided or two-sided respectively. Similarly, the bth
permutation value of the test statistic is

t∗(b)n1,n2 =
∑n1

i=1 x∗(b)i
n1

−
∑n

i=n1+1 x∗(b)i
n2

or t∗(b)n1,n2 =

∣∣∣∣∣∣∑n1
i=1 x∗(b)i

n1
−

∑n
i=n1+1 x∗(b)i

n2

∣∣∣∣∣∣,
where x∗(b)i is the ith value of the variable under study in the bth permutation.

In the multivariate case, with a number k ≥ 2 of variables under study, instead of
the elements of the vector (x1, x2, . . . , xn)

′, the rows of the dataset X must be permuted in
order to reassign the profiles of values observed on the statistical units to the two samples.
Taking into account the definition of permutations as groups of transformations [9,60],
the bth dataset permutation can be defined as a transformation of X, which is a n× k matrix,
obtained as a premultiplication of X by a suitable n × n matrix Γ(b). Formally,

X∗(b) = Γ(b)X

with b = 1, 2, . . . , B. To simplify the notation, let us remove the superscript (b). Each
element of Γ =

[
γji

]
is either zero or one. In each column and each row of Γ, only one

element is equal to one. Specifically, if in the permutation the ith row of X takes the place
of the jth row of X∗, then

γjr =

{
1 if r = i
0 otherwise.

Such an approach also applies in the univariate case, when k = 1. The test statistics of
the multivariate permutation tests depend on the specific problems and the hypotheses
under test.

2.1. Two-Sample Location and/or Scale Problems

In two-sample location/scale problems, when the assumption of normality is vio-
lated, the permutation test is a suitable solution [61–65]. The standard Student’s t-test for
univariate responses and its multivariate extension, the Hotelling T2 test, cannot provide
reliable results when this assumption is not satisfied. Furthermore, when the alternative
hypothesis is directional, there is no parametric solution to test the shift in location between
two samples for multivariate response variables [4,66]. In other words, when there is a
directional (positive or negative) treatment effect or a shift in the location parameter in
the alternative hypothesis, the classic parametric Hotelling T2 test, valid for the two-sided
alternative hypothesis, has no counterpart for the one-tailed problem. The permutation
approach provides an effective method for solving such a problem.

Permutation tests for two-sample problems, when the treatment effect is fixed, have
been extensively investigated in the literature (see, for example, [4,67–69]). However, differ-
ent solutions need to be applied when the treatment effect is not constant (heterogeneous
treatment effects). For such a problem, a suitable solution, based on the permutation
approach, is proposed by [70]. In this work, a permutation test for heterogeneous treat-
ment effects when a nuisance parameter is present was introduced. This approach uses a
martingale-transformed test statistic to determine asymptotic critical values for a pivotal
statistic. Simulation results revealed that the method of [70] controls the type I error rate.

Similarly, many authors recommended the use of pivotal statistics in permutation
tests [1,6,58]. However, since the permutation test is distribution-free, a pivotal quantity as
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a test statistic is neither a necessary nor a sufficient condition for the application. However,
some permutation tests also provide reliable results using pivotal test statistics.

The traditional parametric approach can not apply in the presence of mixed multivari-
ate variables. On the other hand, the nonparametric condition of dependent permutation
tests allows us to deal with different types of response variables (numeric and categori-
cal) [31]. In fact, assuming that each response variable corresponds to a partial test, the
general problem can be solved through a suitable combination of the p-values of the partial
tests, regardless of the nature of the variables of the single partial tests [31].

The traditional parametric approach does not provide solutions for testing location
and scale parameters jointly [4]. In other words, if the researcher is interested in jointly
examining the treatment effects in the first and the second moment, that is, the change in
both mean and variance, the traditional parametric test cannot face such a problem. In
contrast, the permutation approach solves such a complex problem. For instance, Pesarin
and Salmaso, in [31], used a multi-aspect permutation solution to jointly test a shift in
location parameter and a change in variability between two populations in both univariate
and multivariate problems. They tested the significance of location and scale parameters
using the difference of means and difference of the sum of squares as a statistic for the test
on location and scale, respectively, and then combined the p-values of the two partial tests.
In addition, a multi-aspect permutation test for the first and second moment in a problem
of shape analysis is presented in [71].

Moreover, Mielke and Berry, in 1994, proposed an interesting study for a completely
randomized experimental design to jointly test a shift in location parameter and change
in scale parameter for two samples [37]. Their method to test the significance of location
and scale parameters is somehow different from that of [31]. They considered an omnibus
statistic for the general problem, whereas Pesarin and Salmaso considered different test
statistics for the different aspects and, as said, a final combination of p-values for the
overall problem [31]. The three proposed omnibus permutation tests were the Euclidean
commensuration, the Hotelling commensuration, and the permutation version of the
Bartlett–Nanda–Pillai trace test [72–74]. A simulation study under various distributions
was carried out to compare the proposed tests with the parametric Bartlett–Nanda–Pillai
trace test. The simulation results revealed that the Euclidean commensuration permutation
test was the most performant, irrespective of the considered distributions for a bivariate
response. The power of the tests was not good for the other distance. In other words, the
power performance of these methods depends on the choice of the distance metric. In
addition, the Hotelling commensuration permutation test was not stable due to the loss of
degrees of freedom.

A comparative study on location for numeric variables when we have unequal un-
known variances of the populations, the so-called Behrens–Fisher problem, is proposed
by [75]. Janssen, in 1997, proposed an asymptotic test [62] based on the permutation
version of the Welch test [76], which is an extension of Pitman’s permutation test for the
Behrens–Fisher problem on the equality of two population means [11]. Although the per-
mutation approach provides an exact test under the IID assumption in the null hypothesis,
the Janssen method based on the Studentized statistic does not require the IID assump-
tion to obtain an asymptotic test. In the paper, this method was applied to a composite
null hypothesis against one-sided alternatives. The simulation results revealed that the
permutation test is more powerful than the Welch test [77] for skewed distributions. The
limitation of this method is that it is not stable for an unbalanced design.

According to [31], Studentized and non-Studentized test statistics are permutationally
equivalent due to the conditioning on the sample data and invariance property, and they
provide approximately similar results. Eliminating the denominator of the Studentized
permutation test statistic may improve the computational aspect of this solution. Further-
more, other authors solved the Behrens–Fisher problem nonparametrically by using the
permutation approach [75,78–80].
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2.2. Multi-Sample Problems for Numeric Data

In addition to a vast literature on two-sample permutation tests, there are many scien-
tific contributions (theoretical and applied) on the univariate and multivariate multi-sample
extensions, such as the permutation analysis of variance (ANOVA) and the permutation
multivariate analysis of variance (MANOVA) [34,35,68,69,81–84]. The standard parametric
F test for the ANOVA requires equal variances, normality, continuous response, and IID
observations. Similar assumptions are also required for the multivariate extension, i.e., the
so-called MANOVA. In addition, even if the assumptions of (M)ANOVA are satisfied, there
are some conditions in which the classical (M)ANOVA cannot be applied [72,85,86]. In
such a problem, the permutation solution is possible, appropriate, and performant.

Similar to what happens in the two-sample multivariate location problem, the loss of
degrees of freedom in the presence of a large number of response variables, especially with
small sample sizes, is quite common in MANOVA. In this case, the parametric tests, as well
as the nonparametric rank-based tests, cannot be applied when the number of variables
exceeds the sample sizes [87]. In such a situation, the nonparametric solution based on the
permutation approach is the unique possible choice. Permutation (M)ANOVA provides
accurate and reliable (powerful) results [68]. In fact, for these problems on the difference
between the means of three or more groups, the permutation test under the null hypothesis
yields a type I error rate that respects the predetermined level of significance α and rejects
the null hypothesis when the alternative is true with high probability. In this framework,
permutation tests are exact, unbiased, and consistent [5].

In general, under the null hypothesis, to obtain the null distribution of the test statistic,
the permutations of the statistical units for the one-way (M)ANOVA are carried out by
exchanging the row vectors of the observations between treatment groups or factor levels
irrespective of the outcome variable(s) [35,68,81]. However, the permutation principle for
the two-way (M)ANOVA, or general factorial design, requires some restrictions to test the
main effect of only one of the two factors. For this reason, researchers used synchronized
permutations to permute row vectors of the observations between levels of one factor by
keeping the other factors as blocks [4,49,88].

In addition, the synchronization process could be constrained or unconstrained [89,90].
In the case of constrained synchronized permutations, if we have an unbalanced design, the
smallest sample size determines the number of units to be exchanged within treatment lev-
els, and the position of the units must be fixed. Meanwhile, in unconstrained synchronized
permutations, the position of the units doesn’t matter when permuting the observations
(see [91] for a detailed explanation).

In [91], a synchronized permutation test for unbalanced two-factor ANOVA with
two levels was developed. Since the error terms are not exchangeable between the two fac-
tors under the null hypothesis, the authors used the synchronized permutation principle.
However, the error terms are exchangeable within the levels of one factor by considering the
other factor as a block to obtain an approximately exact p-value. They used the weighted
sum of observations within each cell as a permutation test statistic to test the significance
of factors’ main effects and interaction effects. The conditional Monte Carlo simulations
revealed that the power performance of the permutation test is somehow influenced by the
permutation mechanism (constrained or unconstrained) and the weights of the test statistic.
For instance, the constrained synchronized permutation mechanisms reduced the power
of the permutation test. In addition, the test was conservative for restricted weighted and
constrained synchronized permutation mechanisms. However, they proved that the power
of the test using the constrained synchronized permutations is unstable for small sample
sizes in the case of unbalanced designs.

The choice of the best test statistic, i.e., the one that allows obtaining the most powerful
permutation test among these exact tests under H0 for a given system of hypotheses, is one
of the challenging problems [87]. In permutation MANOVA, different test statistics have
been considered—for example, distance-based and specific (M)ANOVA statistics based on
deviances. Thus, comparing the type I error rate and the power of the tests based on those
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test statistics is crucial for selecting the appropriate statistics and improving the power
performance of the permutation test. In line with this, there is an interesting comparative
study about the powers of distance-based statistics and variable-based statistics in a multi-
sample problem [92]. The statistics were classified as distance-based when the average
distance of pairs of units or dissimilarity measures were used and variable-based statistics
when summary statistics such as Wilks lambda, likelihood ratio type, and ANOVA F
type statistic were considered. A distance-based statistic requires the transformation or
standardization of the original data. On the other hand, a variable-based statistic is usually
conceived in relation to the assumption of normality. The test statistics used in permutation
tests do not require neither standardization nor the assumption of a specific underlying
probability distribution. In general, with permutation tests, variable-based statistics are
often preferable to distance-based ones. As far as the distance-based statistic is concerned,
standardization and transformation of the original variables might impact the power of
the test [92]. In addition to the type of transformation, another choice for distance-based
statistics is that of the metric to be used. The most commonly used distances are the
Euclidean, Bray–Curtis, and Manhattan [93].

According to the simulation study conducted by Warton and Hudson in 2004, the
effect on the power of the preliminary transformation of the original data is particularly
pronounced when the Bray–Curtis dissimilarity measure is used in the presence of unbal-
anced designs [92]. Other comparative studies on the permutation tests for ANOVA were
proposed using different test statistics such as F or ANOVA-type statistics (ATS) [94], Wald
type statistic (WTS) [35], Fisher–Pitman statistic [95], Studentized statistic [34,35,70], and
distance-based statistics [68]. Although the Wald-type statistic is useful for comparing the
means of multivariate outcomes among groups, it requires the computation of the sample
covariance matrix. Furthermore, the convergence of its distribution to the asymptotic χ2

law is slow [96]. Smaga, in 2020, introduced a modified form of the Wald-type statistic
using a weight diagonal matrix, providing a test with good asymptotic and finite sample
properties [34] (pp. 245–254). Regarding the use of distance metrics, the Euclidean distance-
based test statistic seems more performant than other distance-based statistics [68,97]. A
limitation of such statistics is that they cannot be applied to categorical responses. In 2001,
Peres-Neto and Olden extended the application of distance-based permutation statistics to
categorical outcomes in a permutation (M)ANOVA framework [42].

A permutation solution for the MANOVA problem based on eigenvalues by partition-
ing the total variability into the different contributions of the single factors was proposed
by [68,97]. However, the eigenvalues obtained from the distance matrix sometimes are
negative. The negative eigenvalues imply difficulty in interpreting the results, and some
authors corrected it by adding a constant to the sum of squares [98]. McArdle and Ander-
son, in 2001, proposed a permutation version of the Euclidean-based statistic in hypothesis
testing of MANOVA or MANCOVA [97]. Their solution was based on the partition of
the total variability or dissimilarity because the pseudo F-statistic could be derived from
the Euclidean distance matrix to test the significance of the factors. They carried out a
simulation study to assess the accuracy of the proposed method, called distance-based
redundancy analysis (dB-RDA), which does not require any correction to have positive
Eigenvalues. Their method was compared with three competitors, including a test based
on the Bray–Curtis distance; the approach of distance-based redundancy analysis; and
axes analysis for testing fixed, random, and mixed effects. The simulation results showed
that the test has a type I error rate approximately equal to the significance level α for the
fixed-effect model, even if it is conservative for random and mixed linear models, especially
for small sample sizes and a lognormal distribution. However, in general, the proposed
distance-based redundancy analysis (dB-RDA) provided a well-approximated type I error
rate. The simulation study may be extended to check the good power performance under
an alternative hypothesis.

In one-way ANOVA design, when the assumptions of the F test are violated, a per-
mutation version of the Fisher–Pitman test can be used for testing the equality of location
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parameters among the groups [95]. The advantage of the Fisher–Pitman test lies in the
way the permutation test statistic is computed. Since the total number of observations N,
the number of groups S, and the total sample mean Y are permutationally constant due
to the invariance property under exchangeability, the ANOVA F test could be simplified
with the Fisher–Pitman permutation test statistic or the weighted sum of squares of the
within-group sample means Yg:

T =
S

∑
g=1

ngY2
g

Such a test statistic has computational advantages and provides efficient permutation
testing procedures. In the balanced sample designs, the weights represented by the sample
sizes can be eliminated.

Smaga, in his work of 2020, proposed a solution for the multivariate Behrens–Fisher
problem of a two-way MANOVA [34]. He used the ANOVA-type statistic (ATS) to test the
equality of population mean vectors under heteroscedastic error variances. The asymptotic
null distribution of ATS is a mixture of central chi-square distributions. This method is
robust against skewed distributions, unequal variances, and nested factorial designs. It
was proved that the permutation version of ATS is consistent. However, although the ATS
works well for finite sample sizes and small groups, it is affected by the number of groups,
suggesting the standardized form. In addition, they derived the confidence region for the
interval estimation of mean vectors. Moreover, it was proved to be more powerful than
its competitor WTS and the bootstrap method, regardless of the distributions’ variance
structure, sample sizes, and skewness.

Similarly, Anderson, in 2001, developed a family of permutation tests on the equality
of treatment effects with multivariate outcomes [6]. The proposed solution used the squared
Euclidean distance as a test statistic. This method is useful for jointly testing the significance
of both factors’ main effects and interaction effects. Moreover, she developed permutation
solutions for general factorial designs and complex models such as nested or hierarchical
models based on a distance measure as a test statistic. One advantage of this test is that
it considers the possible dependence among the components of multivariate outcomes
in multifactorial designs, which is problematic to cope with using traditional parametric
MANOVA. Nonetheless, attention must be paid when testing the interaction effects since
error terms are not always exchangeable under the null hypothesis to obtain exact p-values.
In addition, the distance-based statistic requires the transformation of the data. In this
case, the interpretation of the results may change according to the data transformation.
Moreover, if the number of groups is more than two, a further assessment may be carried
out, to identify which pairs of means are significantly different, through permutation t-tests
for pairwise comparison.

In a work published in 2015, Pauly et al. extended the application of permutation
tests to general factorial designs with two or more factors, nested and hierarchical design
in the presence of heteroscedasticity [35]. The Wald-type parametric test cannot provide
a valid result for the heteroscedastic case and in the case of small sample sizes. Indeed,
the distribution of the Wald-type test hardly approximates the chi-square distribution
with small sample sizes. Furthermore, when the number of factors and levels in factorial
designs are large the Wald-type test cannot efficiently cope with the test of hypotheses on
treatment effects. In contrast, the proposed Wald-type permutation test statistic works well
under small sample sizes, heteroscedastic errors, and large number of factors. In addition,
the authors considered the standardized Wald-type statistic using the estimated variance
obtained from permuted data. However, the computation of the error variance may slow
down the execution of the permutation test, and it needs simplification. Finally, they proved
that the permutation distribution of the Wald-type test statistic, which is conditional on
the sample data, weakly converges in probability to the central chi-square distribution.
Moreover, their simulation study revealed that the chi-square test, the parametric ANOVA,
and the Wald-type parametric test provide a liberal type I error, especially under small
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sample sizes and skewed error distributions. Conversely, the Wald-type permutation
test, under H0, respects the nominal α level regardless of the sample size, the covariance
structure, and the distribution skewness, except for log-normal distribution with unequal
variances, where the test shows slight inaccuracy.

2.3. Small Sample Multivariate Problems

Although the literature about solutions for multivariate tests with the number of
variables greater than the number of observations is not rich, some authors have addressed
the problem [31,63,64,99]. In two-sample or multi-sample tests, when sample sizes are
smaller than the number of response variables, the classic parametric solutions, such
as the Hotelling T2 test, cannot be used due to the loss of degrees of freedom. In this
case, permutation solutions are possible [31]. For these tests, the so-called finite-sample
consistency is satisfied. This property implies that, under some conditions, the power of
the test in the alternative hypothesis H1 increases with the number of variables irrespective
of the finite sample sizes.

Furthermore, the authors of [64] proposed an invariant inter-point distance method
using the permutation principle to compare the location parameters for multivariate two-
sample problems in the presence of high dimensional response variables with fixed small
sample sizes. They carried out a simulation study to compare the power behavior of the
permutation test with other nonparametric tests (such as the multivariate generalization of
the run test [100], the nearest neighbor [101], and the Rosenbaum test [102] under normal
and Laplace distributions. They found that the permutation test is more powerful than
the competitors, whose power tends to zero when the dimension of the response variable
diverges. The power of the permutation test based on the inter-point distance tends to
one when the number of components of the multivariate response variable increases,
keeping the sample sizes fixed. The simulations proved that the permutation test is
consistent and powerful when the number of responses is diverges, with small fixed
sample sizes, under the Behrens–Fisher problem as well. However, their method assumed
the uniformly bounded forth moments and weak correlation among the components of the
response variables.

A recent development to improve the power behavior of a multivariate version of
the two-sample permutation test, the so-called combination-based permutation test, was
proposed by [87]. The main property of the combination-based permutation tests is that
they condense the statistical information of all response variables into one statistic, and they
implicitly take into account the dependence structure between response variables without
assuming a specific joint probability distribution and without modeling such a dependence.

Another contribution to the multivariate testing problems with a large number of re-
sponse variables is [42]. Through Monte Carlo simulations, the authors also found that the
power behavior of the Hotelling T2 and the rank-based test decrease as the number of vari-
ables increases with fixed sample sizes, while the power of combination-based permutation
tests increases monotonically as the number of responses under the alternative hypothesis
increases with fixed sample sizes. The power of the combination-based permutation test
was good for small shifts in the population means as well.

2.4. Tests for Categorical Data

Testing problems for categorical data, especially in the multivariate case, are not
easy to solve. With multidimensional variables, a crucial and complex aspect concerns
the dependence structure of the response components. For this reason, a distribution-
free approach for such testing problems in the presence of multivariate variables with
dependent components is useful and important.

Permutation solutions for multivariate stochastic ordering have been investigated
by [103–106]. Statistical ordering is typical of various complex problems such as tests
for restricted (directional) alternatives [10], multiple comparisons [107], and ranking of
populations [103]. For instance, [108] applied multivariate permutation tests to compare
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two populations in the presence of a multivariate categorical response. She focused on the
so-called case–control study and used the odds ratio as the test statistic. If we consider
the contingency table where rows correspond to treatments and columns to response
categories (or vice versa), permutations make the joint absolute frequencies of the table
change, keeping the marginal absolute frequencies constant. Investigating the treatment
effect is equivalent to testing the association between responses and treatments. Unlike the
classic chi-square test, in the permutation test, there are no restrictions on the minimum
frequency value in the single cells. In [108] it was proved that the permutation test is robust,
even for small sample sizes and, in some cases, small frequencies.

In practice, parametric tests such as the likelihood ratio test are not appropriate for
testing the stochastic dominance for ordered categorical variables. On the other hand,
an interesting application of permutation tests for univariate and multivariate ordered
categorical variables under restricted alternatives was proposed by [105]. This method is
based on transforming the categorical variables into numeric variables according to the
rank transformation. The global null hypothesis consists of the treated and control group
equality in distribution. First, H0 is broken down into k − 1 partial null hypotheses, where
k is the number of categories of the ordinal variable. Then, partial permutation test statistics
based on the difference of sample moments are used to test the sub-null hypotheses of
equality of the first k − 1 moments. Finally, the authors used simulated data from an ordinal
multinomial distribution with four categories using the GenOrd R package to investigate the
power behavior of the permutation test (Fisher and Liptak combining function) compared
to the competitors’ rank-based Wilcoxon test and the Brunnel–Munzel test. The simulations
showed good power behavior under both null and alternative hypotheses. Under the
alternative hypothesis, the permutation test based on the sample moments after the score
transformation was the most powerful. The power of such a permutation test was proved
to be affected by the score transformation. For example, symmetric or asymmetric scores
can lead to different results. When the nature of the response variables is ordinal, for
example, in Likert-scale questionnaires, tests for group comparisons can be carried out
by replacing the ordered categories with numeric scores [67]. The Wilks lambda-type
permutation statistic, based on rank transformation of units, was proven to be performant
for both symmetric and skewed data. In the simulation study, the proposed solution was
compared to the traditional MONAOVA test, based on Wilks lambda, the nonparametric
Wilks, structural equation models for MANOVA tests, the test based on spatial signs with
inner centering and outer centering, and others. Except for the structural equation models
for MANOVA tests, all the tests respected the nominal α level under H0.

One interesting problem with categorical data is to determine the ranking of several
groups based on some characteristics. For instance, in a biomedical study, several groups
of patients may be sorted based on ordinal categorical outcomes with respect to different
dose levels. Hence, such a ranking problem can be broken down into several stochastic
dominance pairwise comparison metric-free permutation tests for comparing and ranking
multivariate populations. A solution based on the permutation approach was proposed by
the authors of [103]. When the null hypothesis of equality of the multivariate populations
is rejected, the need arises to determine which groups show significant differences to find
the final ranking. A post hoc comparison is the solution for such a kind of problem. The
Anderson–Darling-type statistic for the permutation pairwise comparisons was proposed.
Simulations of multivariate ordinal categorical data were carried out to investigate the
ranking of populations for the different number of groups, small sample sizes, and different
skewed and normal distributions. The simulation results revealed that the estimate of
correct ranking is close to the true one under the homogeneity assumptions, irrespective
of the sample size and choice of error distributions. In addition, the bias was lower under
the null hypothesis. Moreover, such a permutation solution for stochastic dominance and
ranking can apply to mixed-response variables.
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3. Permutation Tests for Dependent Samples

This section is dedicated to permutation approaches for comparative studies with
dependent samples. Among them, we consider the permutation (M)ANOVA for longi-
tudinal data and two-sample or multi-sample tests for paired data or repeated measures.
We start with the simplest tests, and then we extend the review to more complex designs.
It is well known that the typical parametric solution for the two-sample test on location
for dependent samples, the so-called paired t-test, is not appropriate for small samples
and non-normal data. When the underlying distribution is unspecified, the nonparametric
approach based on the Wilcoxon signed-rank test is a valid alternative for such a prob-
lem. Nonetheless, the nonparametric rank test requires continuous distribution, so the
probability that ties occur, i.e., to observe two identical data, is zero [4]. The re-sampling
methods, in particular, permutation tests, do not require continuity; therefore, they are
more flexible [71,109].

Let us consider the classic univariate two-sample test on the means of numeric vari-
ables for dependent samples and let (x11, x21, . . . , xn1)

′ and (x12, x22, . . . , xn2)
′ be the vectors

of values of the response observed in the first and second sample respectively. For example,
they could be the values of an outcome of interest observed before and after the treatment
on a sample of n patients in a medical study. A suitable test statistic in such a problem is
based on the sample mean of the differences, and the observed value of the test statistic is

t(0)n =
∑n

i=1(xi1 − xi2)

n
=

∑n
i=1 di

n
or t(0)n =

∣∣∣∣∑n
i=1(xi1 − xi2)

n

∣∣∣∣ = ∣∣∣∣∑n
i=1 di

n

∣∣∣∣
depending whether the alternative hypothesis is H1 : µ1 > µ2 or H1 : µ1 ̸= µ2, where µ1 and
µ2 are the means of the first and second population, respectively, i.e., the mean of the
outcome before and after the treatment in the medical example.

Under the null hypothesis of equality of the means, the within-unit exchangeability
holds. In the medical example, this means that, for the i th patient, conditional on the
observed values xi1 and xi2, the probability that the former is the values observed before
the treatment and the latter is the one observed after the treatment is ½, the same as the
probability that the chronological order of observation of the two values (assignment to
sample 1 and sample 2) is the opposite, and this is true for all i = 1, 2, . . . , n. Thus, for
each i, xi1 and xi2 are exchangeable. The null permutation distribution of the test statistic
can be obtained by permuting the pairs (xi1, xi2) in all possible ways on the n individuals
and independently from one individual to another.

In the exact test, there are 2n possible permutations. Hence, when n ≥ 10 and
consequently 2n ≥ 1024, the approach of random permutations, with B = 1000, is computa-
tionally convenient. Random permutations of the pairs (xi1, xi2) are equivalent to random
attributions of the signs of the differences di (i = 1, 2, . . . , n). Thus, a random permutation
on the ith individual or unit is equivalent to the realization of the random variable Si,
which takes either the value 1 or the value −1 with the same probability 0.5. It is worth
noting that Si can be defined as a function of a Bernoulli random variable and that there is
independence across individuals. Formally,

∀i Zi ∼ Be(0.5) and Si = 2Zi − 1 with Z1, Z2, . . . , Zn independent

The b th permutation value of the test statistic is

t∗(b)n =
∑n

i=1 d∗(b)i
n

=
∑n

i=1 s∗(b)i di

n
or t∗(b)n =

∣∣∣∣∣∑n
i=1 d∗(b)i

n

∣∣∣∣∣ =
∣∣∣∣∣∑n

i=1 s∗(b)i di

n

∣∣∣∣∣,
where s∗(b)1 , s∗(b)2 , . . . , s∗(b)n are determinations of S1, S2, . . . , Sn respectively, i.e., the n signs
randomly generated in the bth permutation. The multivariate extension of the null permuta-
tion distribution, assuming that there are k response variables, can be obtained by replacing
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in the formulas the values d1, d2, . . . , dn with the k-dimensional vectors d1, d2, . . . , dn. The
computation of the p-values follows the same rule presented above for the independent-
sample case.

Konietschke and Pauly [46] studied the permutation solution for paired data and
compared it with the nonparametric Bootstrap test and the parametric paired t-test in
the case of small sample sizes and skewed distributions. Under the null hypothesis, in
the paired sample problem, the observations are exchangeable within the statistical units.
Indeed, the permutation inference requires a mild condition of exchangeability under the
null hypothesis [43,45]. However, in some problems, the permutation test can be applied
under some conditions, even if the data are not exchangeable, because exchangeability
holds approximately or asymptotically. See, for example, the permutation approach for
paired samples studied by [46,110,111]. For example, Konietschke and Pauly [46] presented
three simple conditions in which the permutation principle works to obtain an asymptotic
p-value. Such conditions are the asymptotical independence of the resampling distribution
from the distribution of the data, the existence of a limit of the resampling distribution, and
the asymptotic equality between the distribution of the test statistic and the conditional
resampling distribution [71,112,113]. A simulation study revealed that the standard paired
t-test controls the type I error level only in the presence of symmetric distributions. The
bootstrap method, for small sample sizes, provides a liberal type I error rate. Conversely, the
permutation test is shown to be accurate regardless of the level of dependence among paired
samples, the sample sizes, and the skewness of the distributions. Under the alternative
hypothesis, the permutation test was proved to be more powerful than the paired t-test,
especially with skewed distributions [46].

Similarly to the multi-aspect comparative study for independent samples, hypothesis
testing on mean and variance jointly considered is also a challenging area of methodolog-
ical research in the paired sample case. In fact, in addition to location shift, a change in
variability connected to the treatment might arise in paired data and could be investigated.
In this regard, Brombin and Salmaso [71] introduced the multi-aspect permutation proce-
dure for testing mean and variance with paired data. Specifically, the treatment effect on
the first and second moment of the response, in paired data problems, was investigated.
The null hypothesis consists of the equality of the moments of the pre-treatment and the
post-treatment group. The solution is based on two partial permutation tests whose statis-
tics are the between group-difference of the sample moments and on the nonparametric
combination of such partial tests [31,71]. A comparative simulation study was carried
out by [71] to investigate the performance of the proposed solution compared to those
of other competitors as a function of the dependence between the paired responses. The
competitors taken into account are Pitman’s test based on Pearson’s product-moment
correlation coefficient, the jackknife test based on the log-ratio of the sample variances, and
Spearman’s rank correlation coefficient. The simulation results proved the good power
behavior of the permutation test, especially in the preference of high correlation among
pre-treatment and post-treatment observations. Moreover, the simulation showed that the
power of the test is also good under normality and for small sample sizes.

Parametric ANOVA for repeated-measure designs also requires certain assumptions
(such as normality, constant variance, and no correlation between units) to test the mean
difference among groups. For such a problem, the permutation approach can be applied in
order to provide a robust and flexible distribution-free solution. Higgins and Noble [114]
deeply explained the split-plot analysis for repeated-measure experiments when the as-
sumption of constant correlation is satisfied. They noted that in case of a violation of
parametric ANOVA assumptions, obtaining an exact p-value is not possible, and a non-
parametric test is necessary.

However, the application of the permutation approach needs careful consideration
of what to permute. Indeed, in repeated-measure designs, “. . .The permutations should
correspond to the randomization” [114] (p. 241). In other words, for experimental designs, the
permutation is possible under the null hypothesis if the observations are exchangeable due
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to the random assignment of the treatment to units. For instance, in case–control studies of
repeated-measure designs, the row vectors of the observations are permuted among case
and control groups. However, the permutation of the measurements within statistical units
is not possible since the randomization does not apply [114]. In some repeated-measure
designs, the null hypothesis may be the equality of means for different follow-up time
points. Hence, in this case, under the null hypothesis, the observations within statistical
units are exchangeable, and permutations of data within statistical units are appropriate.
Although the applicability of permutations based on randomization is restricted to the
experimental framework, for observational studies or when there is no randomization, some
conditions, such as independence of observations, ensure exchangeability and therefore
the possibility to apply the permutation method.

In the literature, if the permutation test is exact, the probability of rejecting the null
hypothesis of no treatment effect when it is true does not exceed the pre-assigned level
of significance [12,32]. In repeated-(M)ANOVA design or general mixed models [48],
the permutation test could provide an exact or approximate p-value depending on the
exchangeability condition under the null hypothesis. They used different permutations
in repeated-measure designs to obtain exact and approximate results, such as permuting
reduced residuals and modified residuals. According to them, for a balanced design, the
reduced residuals (i.e., the residuals of the reduced model) could be permuted under the
null hypothesis if they result in zero expectation after removing the effect of confounding
factors. In other words, the observations of the residuals are permuted in a row-wise
fashion rather than permuting within individuals. They provide a necessary and sufficient
condition to define the reduced residuals for a mixed linear model or repeated measures.

In addition, in the case of the non-spherical distribution of residuals, an exact p-value is
obtained by modifying the reduced residuals and removing the correlation within subjects.
In repeated-measure design or mixed linear model, the random effect does not affect the
principle of permuting the observations. In other words, under the null hypothesis, the
outcome variable is equal to the measurement error term and the random error term. As
a result, since the random error term has zero expectation under the null hypothesis, it
does not affect the permutations. In [48], a simulation study was carried out to compare
three types of permutations (raw data, reduced residuals, and modified residuals) with the
counterpart of the F test for a repeated-measures ANOVA under different distributions.

As a result, the simulations provided an approximate type I error rate close to the
nominal α level for all permutation methods. Furthermore, the power behavior of the
permutation test based on permuting the reduced residuals, the raw data, and modified
residuals provided similar power performance regardless of non-normal distributions.
Moreover, the power behavior of the permutation test was good over the standard F test
for the repeated ANOVA, especially for non-normal distributions. However, the modified
residuals permutation method needs to estimate the eigenvalues at each permutation to
obtain an exact p-value, and it might increase the computation time.

Dealing with a comparative study with repeated measures and multivariate outcomes,
Dragset [115] highlight the importance of taking into account not only the dependency
between the components of the multivariate response but also that of the variables of
interest over time, measured through the so-called intraclass correlations. Thus, a para-
metric approach for longitudinal analysis should consider and estimate such intraclass
correlations. However, a steady correlation in follow-up studies is unlikely to hold since
observations within statistical units are highly related over time. For this reason, assuming
constant correlation within individuals seems implausible.

Friedrich et al. [116] proposed a permutation test, regardless of the time dependence,
for testing treatment effects in multivariate repeated-measures or longitudinal MANOVA
settings. The permutation procedure in their study consists of permuting the pooled data
regardless of the dependency within subjects. They considered the permutation version
of the Wald test on the difference in means between groups over time for the multivariate
longitudinal dataset. They proved that the permutation distributions of the Wald-type
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and of the Studentized Wald-type statistic are approximately the same distribution under
the null hypothesis. Furthermore, through a simulation study, they showed that their
permutation version of the Wald-type test and of the ANOVA maintained good asymptotic
power behavior, but, above all, it controlled the type I error rate under the null hypothesis
for small and moderate sample sizes. Such a property holds under various multivariate
(even non-normal) distributions and covariance structures.

4. Permutation Tests for Regression Models

In the parametric approach, inference on the regression coefficients may be problem-
atic, if not impossible, in the presence of several explanatory variables, small samples, or
violation of some assumptions about the distribution of the model errors. For example,
parametric tests on model parameters may not be performant when the assumption of
uncorrelated normal errors does not hold. Interesting solutions to face such difficulties can
be found within the methodology of maximum entropy estimation [117].

In the literature of nonparametric regression analysis, the vast majority of research
has been dedicated to estimation problems for linear models and panel or longitudinal
models when the underlying distribution of the error terms is unknown (see [118–121]
for more details). One of the most popular methods of nonparametric estimation is the
kernel smoother, which does not require the functional form of the regression model to be
known [121]. However, nonparametric regression mainly relies on detecting the bandwidth
parameter, and this is a computationally intensive problem. There is a variety of bandwidth
calculation methods, such as the rule of thumb, plug-in methods, cross-validation, and
bootstrap method [121]. Several R packages are dedicated to such a problem. They propose
techniques to reduce the computationally intensive nature of bandwidth computation.
Among the most diffused of these packages, we mention the np package [121], the kernel
smoother package [122], and the npregfast package [123]. The extension to multivariate
models might be difficult because it is demanding from the computational point of view.

The literature dedicated to permutation tests for regression models is less extensive
but very important and with notable contributions. A non-exhaustive list of contributions
on this topic includes [1,124–126]. However, some distinctions about the adopted approach
must be made. For instance, some authors used permutations of raw data [81,126,127],
while other researchers used the permutation of residuals of the full model [128,129].
Moreover, some of the researchers permuted the residuals of the reduced model and found
approximate permutation p-values [130,131]. Some permutation approaches are based on
permutations of the vector of observed values of the dependent variable, but permuting
the design matrix is more frequently considered.

The inferential results based on permuting the raw data, the residuals of the full
model, and the residuals of the reduced model provided similar conclusions, even if, for
skewed data and in the presence of outliers, the performance of the various methods may
differ [126,132]. Nonetheless, extensive simulation studies were performed to compare the
power of different permutation approaches. According to such studies, the most accurate
and reliable permutation test, which controls the type I error rate, was obtained using the
Freedman–Lane permutation method [1,125,126].

4.1. Test on the Regression Coefficients

In some practical applications, testing the significance of regression coefficients is
quite common, since the goal of the study is to detect a sub-set of effective explanatory
variables. However, in multiple linear regression analysis, the permutation solution to
such a problem is a complex task since under H0 exchangeability does not apply, unless the
effect of associated nuisance variables is eliminated.

If the test concerns all the explanatory variables, residuals are exchangeable under
the null hypothesis, and the test on the whole regression coefficients is possible. In this
case, we can obtain an exact permutation test. However, computing an exact p-value
might be difficult in the case of the significance test on partial regression coefficients. An
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approximate permutation solution is possible by estimating the nuisance parameters (non-
tested regression coefficients) and permuting the residuals of the reduced model, similar to
the Freedman–Lane approach [126].

In a multiple linear regression analysis, permutation partial tests on regression coef-
ficients have been presented by several authors [81,128,131,133–138]. Before describing
the most interesting proposals in this area, let us consider, for the moment, the easier case
of the simple linear regression model, with only one explanatory variable. The model is
as follows:

Yi = β0 + β1xi + εi

with i = 1, 2, . . . , n. The errors ε1, ε2, . . . , εn are exchangeable random variables with a null
mean and constant variance, i.e., E[εi] = 0 and Var[εi] = E

[
ε2

i
]
= σ2 ∀i. To test the null

hypothesis H0 : β1 = 0 versus the alternative hypothesis H1 : β1 ̸= 0, a suitable test statistic
is the square of the Pearson linear correlation index:

Tn =

[
∑n

i=1
(
Yi − Y

)
(xi − x)

]2

∑n
i=1

(
Yi − Y

)2
∑n

i=1(xi − x)2
,

where Y = ∑
i

Yi/n and x = ∑
i

xi/n.

Conditional on the n observed pairs of values (xi, yi), i = 1, 2, . . . n, all the possi-
ble n! matchings between the values of the dependent variable y1, y2, . . . , yn, and the
values of the predictor x1, x2, . . . , xn observed on the n statistical units are equi-probable.
Hence, the null distribution of the test statistic can be obtained by permuting the val-
ues x1, x2, . . . , xn while keeping fixed the vector (y1, y2, . . . , yn)

′ (or vice versa). The ob-
served value of the test statistic is

t(0)n =
[∑n

i=1(yi − y)(xi − x)]2

∑n
i=1(yi − y)2 ∑n

i=1(xi − x)2 ,

and the value of the test statistic in the null distribution corresponding to the bth permuta-
tion is

t∗(b)n =

[
∑n

i=1(yi − y)
(

x∗(b)i − x
)]2

∑n
i=1(yi − y)2 ∑n

i=1

(
x∗(b)i − x

)2 ,

where x∗(b)i is the value of the dependent variable matched with yi in the bth permutation
of the vector (x1, x2, . . . , xn)

′. As usual, the p-value is the proportion of permutation values
of the test statistic greater than or equal to t(0)n and, if the p-value is less than or equal to
the significance level α, the null hypothesis must be rejected in favor of the alternative
hypothesis; otherwise, H0 must be not rejected.

Let us now consider the multiple linear regression model with two explanatory variables:

Yi = β0 + β1xi1 + β2xi2 + ξi

with i = 1, 2, . . . , n, where ξ1, ξ2, . . . , ξn are exchangeable random variables such that E[ξi] = 0
and Var[ξi] = E

[
ξ2

i
]
= σ2 ∀i. The system of hypotheses of interest is{

H0 : β1 = 0
H1 : β1 ̸= 0

.

We are interested in investigating the effect of the first explanatory variable X1 on the
response Y, whereas X2 takes the role of concomitant variable. To this aim, let us consider
the residuals of the regression of Y on X2

ei = yi − c0 − c1xi2
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and the residuals of the regression of X1 on X2

ui = xi1 − δ0 − δ1xi2.

An appropriate test statistic, to control the concomitant effect of X2, is the square of the
linear correlation index between such residuals. The quantities

c1 =
∑n

i=1(yi − y)(xi2 − x2)

∑n
i=1(xi2 − x2)

2 and c0 = y − c1x2

are estimates of the coefficients γ1 and γ0, respectively, in the linear regression model
Yi = γ0 + γ1xi2 + εi, and similarly

δ1 =
∑n

i=1(xi1 − x1)(xi2 − x2)

∑n
i=1(xi2 − x2)

2 and δ0 = x1 − δ1x2 .

The observed value of the test statistic is

t(0)n =
(∑n

i=1 eiui)
2

∑n
i=1 e2

i ∑n
i=1 u2

i
.

If γ0 and γ1 were known, an exact test could be obtained by permuting e1, e2, . . . , en, and
iteratively fitting new values of the response, using such values to re-estimate as γ0 and γ1 and
using such estimates to re-compute the residuals according to the following procedure:

1. Use y1, y2, . . . , yn to compute c0 and c1 as estimates of γ0 and γ1, respectively.
2. Compute the residuals ei = yi − c0 − c1xi2 with i = 1, 2, . . . , n.

3. Permute the residuals e1, e2, . . . , en, obtaining e∗(1)1 , e∗(1)2 , . . . , e∗(1)n .
4. Compute new values of the dependent variable as a function of the permuted residu-

als ỹ(1)i = γ0 + γ1xi2 + e∗(1)i with i = 1, 2, . . . , n.

5. Use ỹ(1)1 , ỹ(1)2 , . . . , ỹ(1)n , to compute c(1)0 and c(1)1 as estimates of γ0 and γ1, respectively.

6. Compute the residuals ẽ(1)i = ỹ(1)i − c(1)0 − c(1)1 xi2 , i = 1, 2, . . . , n.
7. Repeat steps from 3 to 6 B times so that, after the bth permutation of e1, e2, . . . , en

a. You obtain the permuted residuals e∗(b)1 , e∗(b)2 , . . . , e∗(b)n ;

b. Use them, γ0 and γ1 to compute the values ỹ(b)1 , ỹ(b)2 , . . . , ỹ(b)n ;

c. Use such values to re-estimate γ0 and γ1 obtaining c(b)0 and c(b)1 ;

d. Finally, re-compute the residuals ẽ(b)i = ỹ(b)i − c(b)0 − c(b)1 xi2 , with i = 1, 2, . . . , n
and b = 1, 2, . . . , B.

The value of the test statistic in the null distribution corresponding to the bth permuta-
tion is

t(b)n =

(
∑n

i=1 ẽ(b)i ui

)2

∑n
i=1

(
ẽ(b)i

)2
∑n

i=1 u2
i

.

Since γ0 and γ1 are unknown, the exact test cannot be carried out in practice, and
alternative procedures must be applied. In a proposal by Freedman and Lane [131], at
step 4, γ0 and γ1 are replaced with c0 and c1, their estimates in the observed dataset.
Thus, according to this proposal, after the bth permutation of the values e1, e2, . . . , en, the
permuted residuals e∗(b)1 , e∗(b)2 , . . . , e∗(b)n are used to compute the values

ỹ(b)i = c0 + c1xi2 + e∗(b)i
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and these values are used to re-estimate γ0 and γ1, obtaining c(b)0 and c(b)1 . Such estimates,
in turn, are used to recalculate the residuals:

ẽ(b)i = ỹ(b)i − c(b)0 − c(b)1 xi2

The value of the test statistic in the null distribution corresponding to the bth permutation is

t(b)n =

(
∑n

i=1 ẽ(b)i ui

)2

∑n
i=1

(
ẽ(b)i

)2
∑n

i=1 u2
i

.

The method proposed by Kennedy [138] is simpler because, instead of re-computing
the values of the dependent variable and the residuals, it directly uses the permuted residu-
als e∗(b)1 , e∗(b)2 , . . . , e∗(b)n in the calculation of the test statistic. Thus, at the bth permutation,
we obtain

t(b)n =

(
∑n

i=1 e∗(b)i ui

)2

∑n
i=1

(
e∗(b)i

)2
∑n

i=1 u2
i

.

Manly [81] proposed an alternative approach that differs from that of Freedman and
Lane because it is based on the permutation of y1, y2, . . . , yn instead of the permutation
of residuals. Thus, after the bh permutation, the permuted values y∗(b)1 , y∗(b)2 , . . . , y∗(b)n are

used to compute the estimates c(b)0 , c(b)1 and the residuals

ẽ(b)i = y∗(b)i − c(b)0 − c(b)1 xi2 ,

with i = 1, 2, . . . , n. The value of the test statistic I, the null distribution corresponding to
the bth permutation, is

t(b)n =

(
∑n

i=1 ẽ(b)i ui

)2

∑n
i=1

(
ẽ(b)i

)2
∑n

i=1 u2
i

.

Another interesting method proposed by terBraak [128] is based on the permutation
of the residuals of the full model wi = yi − b0 − b1xi1 − b2xi2. After the bth permutation,
the permuted values w∗(b)

1 , w∗(b)
2 , . . . , w∗(b)

n are use to compute the new values:

ỹ(b)i = b0 + b1xi1 + b2xi2 + w∗(b)
i .

Such values are used to re-estimate the coefficients of the model, and the re-estimated
coefficients b(b)0 , b(b)1 and b(b)2 are used to re-compute the residuals

w̃(b)
i = ỹ(b)i − b(b)0 − b(b)1 xi1 − b(b)2 xi2 .

The value of the terBraak test statistic corresponding to the bth permutation is

t(b)n =

(
∑n

i=1 w̃(b)
i ui

)2

∑n
i=1

(
w̃(b)

i

)2
∑n

i=1 u2
i

.

All these methods can be easily extended to the case of more than one variable under test
and/or more than one concomitant variable. One advantage of this permutation test is that
it can also be applied to one-sided alternative hypotheses (by considering the correlation
coefficient instead of its square).
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Anderson and Robinson carried out a comparative study to investigate the perfor-
mance (power behavior) of different tests on a subset of regression coefficients in a multiple
linear regression analysis [126]. They proved that the null permutation distribution of such
a test, obtained from different permutation approaches, by permuting raw data, residuals
of the reduced model, and residuals of the full model, approximates the normal distribution
under the null hypothesis, regardless of the permutation approach. The simulation results
revealed that the Kennedy permutation method inflated the type I error rate, especially
for small sample sizes. Conversely, the Freedman–Lane permutation method provided a
rejection rate similar to α under the null hypothesis, regardless of the number of predictor
variables, the sample size, and the error distribution. However, the proposed methods only
work for linear models.

One of the most interesting applications of permutation tests in generalized linear
models concerns problems with confounding factors [125]. When the significance of
regression coefficient estimates is tested, the confounding effect of covariates must be
eliminated through a suitable permutation strategy. Hence, the test statistic is computed as
a function of the observed data of the predictors. However, since the values of the regression
coefficients of the confounding factors are unknown, the permutation solution provides
approximate results. In this framework, the design matrix is partitioned into two parts:
predictors and confounding factors. Accordingly, the vector of regression coefficients is also
partitioned. The authors explained how the exchangeability condition is satisfied under the
null hypothesis (null effects of the predictors under test) for different error term structures,
such as independent symmetric errors, exchangeable errors, and block-dependent error
terms. In the case of dependency of the error terms due to blocks, the exchangeability
could be applied by permuting units within blocks or exchanging the whole blocks (see the
formal reasoning in [125]).

The permutation test statistic could also be based on the estimated coefficients [125].
However, the authors recommended a pivotal test statistic similar to Anderson’s, such as
the F statistic, t-test statistic, Pearson’s correlation coefficient, and coefficient of determina-
tion. Furthermore, they considered an extensive simulation study to compare the power
behavior of different permutation methods with the parametric method based on the F test
under different scenarios, such as skewed distributions, balanced and unbalanced sample
sizes, equal and unequal variances, and even the presence of outliers. The permutation
approach to account for the outliers is interesting. Under the null hypothesis that the model
coefficients are zero, the Still–White and Kennedy solutions are conservative, especially
for small sample sizes. On the other hand, Freedman–Lane and Smith’s proposals seem
to perform well under the null hypothesis, respecting the nominal level α. Moreover, the
power behavior of the permutation test based on the Freedman–Lane approach under the
alternative hypothesis outperforms those of other permutation methods and the parametric
F test regardless of sample sizes, error distributions, and other conditions.

Apart from the violation of assumptions, in some cases, the parametric tests are not
feasible or not suitable in the presence of outliers, with small sample sizes, mixed error
distributions, and nonrandom sampling. To overcome these problems, the authors of [139]
proposed an R package called lmPerm, which is based on the permutation approach, for
computing the p-values of the tests on the significance of regression coefficients. This
package is also suitable for analyzing polynomial models and multivariate responses. They
noted that permuting rows of observations is possible even in the presence of interaction
effects. They carried out a simulation study to investigate the power behavior of the
permutation test based on the lmp function and the standard F test. The simulations
revealed that the F test is conservative and less powerful for small sample sizes, especially
under non-normal distributions. Regarding the outliers, the power of the parametric F
test decreases as the percentage of outliers increases and the sample size decreases. The
permutation test is performant even with a high percentage of outliers and small sample
sizes. In the case of heterogeneous variances, the two methods have the same power
performance. However, a limitation of the permutation method is that it is computationally
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intensive when an exact permutation test is considered (all permutations of the data are
taken into account). To overcome this problem, the authors of [139] proposed other methods
based on stopping the sampling upon meeting the given criteria, for example, when the
estimated standard deviation of p-values is less than 0.1. However, the estimation of
standard deviation may not be convenient for some reasons, and it is better to approximate
the permutation distributions via the conditional Monte Carlo procedure.

4.2. Tests on Models for Longitudinal Data

Due to heteroscedastic and autocorrelated errors, estimating and testing the signifi-
cance of coefficients of the panel, longitudinal, and mixed-effects models using standard
parametric methods may be problematic unless strong assumptions are introduced in
the testing procedure. In contrast, the permutation approach provides approximate but
flexible solutions for such problems [140]. However, sometimes, exact results based on
the permutation approach for autocorrelated error terms might be challenging since the
exchangeability condition may not work in this circumstance.

On the other hand, in the case of non-autocorrelated error terms, for instance, for
the general fixed-effect model, an exact permutation solution can be obtained, even in
the presence of heteroscedastic errors. Basso and Finos, in 2012, proposed an exact multi-
variate permutation solution for mixed variables within the fixed-effect framework, even
with heteroscedasticity [141]. Their permutation solution could account for the model
misspecification.

One of the advantages of the permutation tests is their robustness to the departure from
the error normality and their capacity to consider the multivariate responses’ dependence
structure. Their power behavior under different scenarios, by considering different multi-
collinearity levels, different sample sizes, different types, and intensities of dependence
between responses, with both equal or unequal variances and balanced or unbalanced
designs, has been proved through several extended simulation studies.

In the linear mixed model, one concern is the inclusion or exclusion of the random
component, which accounts for the individual heterogeneity in the longitudinal study. The
test on the random effects is crucial. In what follows, the standard parametric tests such as
the score test, Wald test, and likelihood test might not be applicable under some conditions,
for instance, with small sample sizes [142]. In addition, as Lee and Braun explained, the
parametric tests do not have some approximate distributions under the null hypothesis,
such as a chi-square distribution, since the variance component of the random effect is zero
under the null hypothesis. Moreover, the significance test of random effect coefficients,
using a parametric test, is not robust to the distribution of the random component.

However, the permutation approach can be applied to test the significance of random
effect parameters. Lee and Braun [142] proposed a permutation test statistic based on the
best linear unbiased predictions (BLUPs) and the restricted likelihood ratio test for testing
the random effect coefficients in the linear mixed model (LMM). When they are concerned
with single random-effect parameters, the problem is equivalent to testing whether the
variance component is zero or not. Under the hypothesis of null variance, they proposed
the permutation of the residuals. Investigating the significance of some random-effect
parameters, the effect of nuisance components was eliminated by taking the appropriate
weight matrix. The simulation results revealed that the permutation test based on BLUP
and the restricted likelihood ratio test respected α under the null hypothesis. In contrast,
the parametric test based on the asymptotic likelihood ratio test in some cases, especially
with small sample sizes, is anti-conservative because of the inflated type I error rate. The
power behavior under the hypothesis of non-zero variance component or non-zero random
effect revealed that the permutation test is better than the asymptotic likelihood ratio test,
regardless of error distributions and sample sizes. Nonetheless, the BLUP permutation
test statistic is not a reasonable solution when we have two or more random coefficients.
Moreover, a simultaneous testing method was proposed based on the restricted likelihood
ratio test approach that requires estimating the variance component at each permutation.
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In addition, hypothesis testing on generalized mixed-model coefficients in the case
of a multivariate response is another challenging problem within the standard parametric
approach based on the likelihood ratio test [140]. The challenge might arise due to the
dependency among the response variables. Finos and Basso [140] proposed a permutation
strategy for testing the significance of vector generalized linear mixed-model (VGLM)
parameters in the presence of factors regardless of the known multivariate distributions. In
particular, they proposed a permutation method to test the significance of the interaction ef-
fect for the family of VGLM. The proposed method can be applied for testing coefficients of
linear models, nonlinear models, generalized linear models, and generalized mixed models,
whereas the permutation solution of [126] could not be applied to VGLM parameters.

The permutation solution is flexible and applicable to any model (linear or nonlinear
model, with a continuous or binary response). For example, a combined permutation
test could test the significance of the estimates of the coefficients of both fixed effects and
random effects of a general (linear) mixed model. When testing for the interaction effects
with the permutation approach, some of the regression coefficients are nuisance parameters,
and their confounding effect can be eliminated through suitable residualization. The exact
permutation test is possible when the exchangeability condition is fulfilled where we have
two or more factors so that an approximate significance test is possible. Such a condition
is not satisfied when not all the regression coefficients are being tested. The mentioned
residualization allows obtaining approximation permutation tests. Finos and Basso, in
2014, carried out simulations for both univariate and multivariate two-sample tests, under
different distributions, to compare the power behavior of the exact permutation test, the
asymptotic permutation test, and the likelihood ratio test [140]. They found that both the
exact and asymptotic permutation tests provide rejection rates closer to α under H0 for
balanced samples. In comparison, the likelihood test is too conservative. Under H1, the
power of the permutation test is greater than that of the likelihood ratio test, regardless of
the error variance and underlying probability law.

5. Permutation Approach and Missing Data

One of the most challenging problems in statistical data analysis, and in particular in
hypothesis testing, is the missingness of observations. In particular, this is very common in
follow-up studies and, therefore, in longitudinal data, panel data, survival analysis, and
time-series data. However, the missingness issue is not rare, even in cross-sectional studies.
Missing observations can be the consequence of censored as well as truncated data [143].

In the literature, parametric solutions for missing data problems are mainly based on
the stringent assumption of missingness completely at random (MCAR) [31]. Under such a
condition, the probability of missingness is unrelated to treatments, the censoring process,
and observed values of the outcome variables [144–146]. Moreover, when the missingness
is not at random (MNAR), the parametric methods are not flexible and effective in dealing
with missing data. Meanwhile, distribution-free testing methods such as permutation tests
overcome the problem of missing data conveniently and efficiently [27,147,148].

In paired samples with missing data, the commonly used nonparametric log-rank test
might not be a general solution in some situations, such as small sample sizes. For this
situation, some researchers proposed the use of the permutation approach [147]. They used
a permutation test for a comparative study of pre-treatment and post-treatment effects for
incomplete paired data. First, they considered two test statistics computed from paired
and incomplete data using the mean differences. Then, they took the linear combination of
the two statistics to compute the overall test statistic of the permutation test. Finally, they
simulated data under normal and skewed distributions to investigate the power behavior of
the proposed permutation test by comparing it with the standard paired t-test and the Bhoj
t-test for paired and unpaired data [149]. The simulation results revealed that the parametric
paired t-test does not control the type I error rate. On the contrary, the permutation test and
the Bhoj t-test respect the nominal level and are more powerful regardless of the underlying
distribution and sample size. However, the proposed permutation method requires the
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estimation of the combination weights of the two test statistics. An alternative solution
could be based on the nonparametric combination approach [31].

The right censoring is quite common in survival analysis. For such a problem, the
permutation method is appropriate [27,150,151]. An interesting permutation test for com-
paring the survival curves of two independent samples of patients in the presence of
right-censored data was proposed by [148]. The distribution of right censoring under the
alternative hypothesis might be equal or unequal in the two or more independent samples.
If the distributions of the right censoring are equal, the censoring occurs with the same
probability in all the samples, and it can be ignorable [148]. However, unequal censoring
distributions under the alternative hypothesis may affect the reliability of the inferential
results if not taken into account. The solution proposed by [148] considers the null compos-
ite hypothesis of equality of survival curves for the time to the event and censored values.
If no is the number of observed data about the time to event and nc is the number of missing
data (right censoring) in the pooled sample, with n = no + nc, then the comparison between
the survival curves is broken down into no sub-problems, making the test multivariate.
Each sub-problem corresponds to an observed time to event ti, with i = 1, 2, . . . , no and
consists of the comparison of the joint probability of no censoring and of surviving at
time ti between the two or more samples. Given that exchangeability under H0 is satisfied,
the permutation approach can be applied, and the null distribution of the multivariate test
statistic can be obtained by randomly permuting the rows of the dataset, i.e., randomly
reassigning units to samples. To solve the overall problem, the multivariate statistic is
transformed into a univariate one through the application of a nonparametric combination.
Such a solution is valid and effective for any kind of missing data mechanism and, con-
sequently, for both equal-censoring and unequal-censoring processes [31]. To prove the
good performance of the proposed permutation method, the authors of [148] carried out
an interesting simulation study by comparing the proposed solution with the log-rank test
and the weighted Kaplan–Meier test for both equal-censoring and unequal-censoring cases.
The simulation results proved that the permutation test is exact and robust, especially for
small sample sizes. The permutation test is performant when facing the censoring issue: it
does not assume a specific underlying distribution and models the dependency structure
between the survival time and censoring.

6. Conclusions

The use of the permutation approach for testing hypotheses in many fields has been
increasing. It is a valid statistical tool for analyzing complex data when parametric tests
are not applicable or not powerful due to the violation of some assumptions. Permutation
tests also tackle the Behrens–Fisher problem. The use of pivotal statistics is neither nec-
essary nor sufficient for a permutation test. Moreover, in the permutation approach, the
mild assumption of exchangeability is a sufficient condition, making such an approach
flexible and robust. The permutation method can be applied in the paired sample case by
permuting the signs of the differences. Meanwhile, in the presence of independent samples,
the permutations should correspond to the reallocation of the dataset rows (units) to the
samples [114]. Furthermore, permutation tests can also be applied to tests of hypotheses
on the coefficients of linear models, nonlinear models, general linear models, mixed mod-
els, and general mixed models [82]. Furthermore, the permutation tests are suitable for
directional hypotheses, umbrella alternatives, location-scale problems, multivariate tests,
and other complex problems. Finally, suitable and valid solutions to testing problems with
missing data, including when the missingness process is MNAR (Missing Not At Random),
are available in the literature [11].

The evidence of the growing interest in this methodology being applied in various
empirical disciplines is confirmed by recent literature. The following references regarding
scientifically relevant works represent an important but not exhaustive list. Regarding
psychometrics and biostatistics, a recent interesting work concerning a regression analysis
to investigate mental health in the COVID-19 lockdown period is proposed in [127]. Func-



Mathematics 2024, 12, 2617 23 of 29

tional connectivity in adolescents with depression is studied in [152]. Work-related stress
and organizational well-being are the subjects of a work dedicated to multivariate analysis
of variance in the presence of big data [99]. A permutation test on the Spearman correlation
coefficient is proposed in [153] and applied to two biomedical case studies related to breast
cancer data and prostate-specific antigen values.

Permutation tests are also very popular in the field of neuroimaging. In this framework,
a permutation-based method for the analysis of partial least squares is studied in [154].
Another interesting work about neuroimaging concerns spatial-extent inference for testing
variance components is [155].

Permutation-based inference is increasingly being applied in the study of reliability in
general and in the field of structural reliability and the reliability of engineering systems
in particular [156–159]. A permutation test for a regression analysis is applied in [160] to
study the reliability of solid-state drivers of computers.

In applied economics, recent complex empirical works solved via permutation so-
lutions include [161], dedicated to a multi-sample test for non-monotonic hypotheses,
and [162], concerning one-sided hypotheses in the presence of multivariate binary data.
The case studies in both these works are focused on the circular economy. Multi-sample
comparative evaluations on customer satisfaction are addressed in [163] and in [164]. The
impact of public policy incentives on the propensity to adopt Industry 4.0 technological
innovations is faced in [165] through the use of an innovative permutation test on the
goodness-of-fit of a generalized linear model (GLM) for count data.

The number of contributions in statistics applied to sports data, a field already flour-
ishing in the United States and other countries, is also growing in Europe. Recent works
dedicated to sports analytics, in which permutation tests have been applied to basketball
data, include [166,167].

All these applications confirm the utility and relevance of the permutation approach
in the modern sciences and, consequently, its scientific impact in the real world. Despite the
undoubted usefulness and advantages that derive from the application of permutation tests,
in particular, those presented in the paper, there remain some limitations of conditional
inference and some areas of research where further developments are possible and can be
the subject of future works. For example, the computational problem has been successfully
scaled down with the practice of random permutations, thanks to the power and efficiency
of modern computers. However, some permutation procedures, in particular for big data
problems, are still computationally demanding.

Another problem with permutation tests is the choice of the significance level in the
presence of very small samples. There is a minimum α value compatible with the cardinality
of the permutation space that depends on the sample sizes. In the two-independent-
sample exact test, the minimum possible p-value, i.e., minimum proportion of values

of the test statistic greater than or equal to the observed one, is
(

n
n1

)−1

. For example,

if n = 8 and n1 = n2 = 4, then such a minimum value is(
8
4

)−1

= 70−1 = 0.0143

Therefore, setting a significance level α of 0.01 makes no sense because, in this case, the
p-value cannot be less than or equal to α.

In general, even if permutation tests are more flexible and powerful than parametric
methods, especially when the conditions for the application of the latter are not met,
and performant when the conditions are satisfied, when it happens, the parametric tests
are preferable. Another limitation of permutation tests concerns multivariate problems.
The power is a decreasing function of the correlation between the components of the
multivariate response variable. When such a correlation is high, the probability of rejecting
the null hypothesis, when it is false and must be rejected, tends to be low. As said, in
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multiple tests, typical, for example, of the combined permutation test approach, attributing
the eventual significance of the overall test to any of the partial tests requires adjusting
the partial p-values. However, the most commonly used adjustment methods are too
conservative, and most of the partial null hypotheses are not rejected, even if the original
unadjusted p-values are small. The development of new adjustment methods that solve
this problem is one of the interesting challenges in multiple permutation testing research.
Finding new combining functions more performant in terms of power or, in general, new
powerful combined permutation tests for complex problems is also an interesting, useful,
and complex line of research.

Finally, a reflection on the comparison between permutation tests and the other main
non-parametric methods for hypothesis testing, i.e., the bootstrap and rank tests, is neces-
sary. As said, the permutation and the bootstrap approach are both considered resampling
methods. In the two-independent-sample problem, a permutation, i.e., a reassignment
of units (rows of the dataset) to the samples, is equivalent to the sample without repeti-
tion n1 units from the n total units and assigning them to sample 1. In this sense, we speak
of “resampling” in the permutation approach. In the case of bootstrapping, instead of per-
muting, resampling with replacement is carried out. In each resampling, n1 units selected
with repetition from the total n units are reassigned to sample 1, and n2 units selected with
repetition from the total n are reassigned to sample 2. Hence, the null distribution of the
test statistic in permutation tests is obtained through resampling without repetition, and
in bootstrap tests is obtained through resampling with repetition. As said, permutation
tests require the condition of exchangeability to be satisfied in the null hypothesis and are
usually more powerful than their bootstrap counterparts. The permutation approach can be
used to compute confidence intervals but, to this aim, it requires more assumptions that are
not always plausible. Conversely, the boostrap method is suitable for confidence intervals;
thus, it is preferable to the permutation approach for interval estimation. Rank tests are,
in general, less flexible than permutation tests because they require more assumptions.
Furthermore, the distributions of the test statistics are tabulated for small samples. In
practical applications, approximate distributions are often used, which are valid under
asymptotic properties. Apart from the fact that for large samples, the performances of the
three approaches tend to converge if the approximation of the distribution of a rank test is
not good, the validity of the inferential results is compromised.
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