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Abstract: An important feature of Nyberg-Rueppel type digital signature algorithms is message
recovery, this signature algorithm can recover the original information from the signature directly by
the verifier in the verification phase after signing the message. However, this algorithm is currently
vulnerable to quantum attacks and its security cannot be guaranteed. Number Theory Research Unit
(NTRU) is an efficient public-key cryptosystem and is considered to be one of the best quantum-
resistant encryption schemes. This paper proposes an NTRU-like message recoverable signature
algorithm to meet the key agreement requirements in the post-quantum world. This algorithm,
designed for the Internet of Things (IoT), constructs a secure system using the Group-Based Message
Recoverable Signature Algorithm (NR-GTRU), by integrating a Group-Based NTRU-Like Public-Key
Cryptosystem (GTRU) with an efficient Nyberg-Rueppel type of NTRU digital signature algorithm
(NR-NTRU). This signature algorithm, resistant to quantum algorithm attacks, offers higher security
at the cost of a slight efficiency reduction compared to traditional NTRU signature algorithms, and
features Nyberg-Rueppel message recovery, making it well-suited for IoT applications.

Keywords: group; IoT; message recovery; NTRU; Nyberg-Rueppel
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1. Introduction

In the IoT environment, secure communication between devices can be achieved
through public key cryptographic security mechanisms. With the growing demand of IoT
devices, when subjected to security threats (e.g., trespass attack, device scanning attack,
active eavesdropping, spoofing attack, firmware attack, man-in-the-middle attack, Dis-
tributed denial of service attack (DDoS attack, etc.) in the smart device, it may still threaten
the data security, disrupt the daily life and industrial operations, and affect the confiden-
tiality, authentication, and integrity of the data. Therefore, security mechanisms based on
public key cryptography face additional challenges in IoT environments [1,2]. The rapid
development of quantum computing has triggered a series of studies showing the existence
of quantum algorithms that can fully solve encryption algorithms such as RSA [3] in poly-
nomial time. For example, Shor [4] proposed a quantum algorithm that solves large integer
factorization and the Elliptic Curve Discrete Logarithm Problem (ECDLP) in polynomial
time in a quantum computer. Among the existing encryption schemes, Stergiou [5] et al.
proposed an efficient security model for IoT and cloud computing convergence, which
is based on RSA. Similarly, Jose [6] et al. proposed an efficient IoT encryption method
based on Elliptic Curve Cipher (ECC) [7]. However, due to the encryption and decryption
complexity and security issues of these two schemes, they are no longer applicable to the
IoT. While theoretical estimates suggest that quantum computers would need at least thou-
sands of qubits to break existing codes, global tech giants are certainly working towards
this goal [8]. IBM is currently leading the way in quantum computing hardware with its
127-qubit processor [9] and plans to surpass 1000 quantum bits by 2023 [10]. The likelihood
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of having scalable quantum computers in the next decade is predicted to be very high [11].
Therefore, there is an urgent need for quantum-resistant encryption and signature schemes.

Lattice cryptography are an important branch of post-quantum cryptography. Com-
puting the Shortest Vector Problem (SVP) in a lattice is an important and difficult problem,
which is the security cornerstone of contemporary lattice cryptography. Current practical
and secure encryption/decryption lattice systems and digital signature lattice cryptosys-
tems are basically designed based on the above problem. On the one hand, the lattice
cryptography has the above difficult problem as the security foundation of the theoretical
statute; on the other hand, the lattice cryptography has moderate consumption of space and
time resources. Further, based on the lattice cryptography, it is possible to design attribute
encryption, homomorphic encryption and other advanced cryptographic application al-
gorithms. Therefore, lattice cryptography are widely recognised as the most promising
branch of post-quantum cryptography. Among the lattice cryptography, the NTRU public
key encryption system has been widely studied by scholars because of the simplicity of the
algorithm, fast computation speed, and small storage space occupied.

Most lattice-based signature schemes have large signature sizes, which makes them un-
suitable for resource-constrained IoT environments. Traditional digital signature schemes
usually need to bind the message and the signature to make it easier for the verifier to verify
the message, but this also incurs additional bandwidth costs, especially when the message
and signature sizes are relatively large. The concept of message recovery was born based
on the idea of reducing the consumption of bandwidth. In message recovery, the message
is embedded in the signature. The sender sends the signature to the receiver and once
the receiver receives the signature, he can perform signature verification and recover the
original message from the signature [12]. In 1993, Nyberg and Ruppel modified the Digital
Signature Algorithm (DSA) to support message recovery. It was the first signature scheme
to support message recovery [13] and reduces the amount of information to be transmitted,
and thus can save the transmission bandwidth dramatically.

In 1998, Hoffstein, Pipher, and Silverman [14] designed a fast public key cryptosys-
tem based on the finite computation of constraint polynomials over a polynomial ring,
the NTRU cryptosystem. The NTRU cryptosystem is 1.5 times faster than the ECC in
hardware implementation [15]. Compared to the software implementation of RSA, NTRU
is 200 times faster in key generation, nearly 3 times faster in encryption, and about 30 times
faster in decryption [16]. The security of the NTRU cryptosystem is considered to be
comparable to that of RSA and ECC when using the recommended parameters [17]. NTRU
is not only a fast public-key cryptosystem, but also quantum-resistant.

In 2003, Hoffstein et al. also combined the GGH scheme and the NTRU lattice and
proposed the NTRU signature scheme [18]. This scheme has shorter public and private
keys and is more efficient, but it leaks trapdoor information during the Signature and does
not give rigorous security proof.

In 2008, Gentry et al. designed a one-way function, also known as preimage sampleable
functions, based on the hard problem on the lattice (Short Integer Solution (SIS) problem)
and proposed a digital signature scheme based on it, the GPV08 digital signature [19]. This
scheme is provably secure under the random oracle model and is resistant to adaptive
chosen-message attacks. However, the GPV08 digital signature scheme is inefficient, mainly
due to the inefficiency of its Preimage Gaussian sampling algorithm.

In 2008 and 2010, the NTRU encryption algorithm was standardised by the IEEE [20]
and ASC X9 [21].

In 2012, Lyubashevsky proposed a lattice-based digital signature scheme based on SIS
problem without using trapdoor matrices [22].

In 2013, Tian [23] et al. first introduced the concept of message recovery to lattice-
based cryptography.

In 2016, NIST initiated the Post-Quantum Cryptography Project to start a worldwide
call for post-quantum cryptographic algorithms with a view to laying the groundwork for
subsequent standardisation [24]. After three rounds of selection, NIST announced on 5 July
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2022 the final algorithms selected for standardization as well as those that require further
discussion in the fourth round. The NTRU public-key cryptosystem involves only simple
polynomial modular multiplication and addition/subtraction operations in the computa-
tion process, and its encryption and decryption speeds and time efficiencies outperform
existing public-key cryptosystems, such as RSA, ElGamal [25], etc. under the same security
level. In NIST’s post-quantum cryptography scheme collection project, schemes based
on the NTRU lattice occupy an important position. For example, the Falcon digital signa-
ture [26] is constructed based on the NTRU lattice and is one of the pre-standardization
signatures in the standard collection of NIST post-quantum cryptography schemes.

In 2017, Faguo Wu [27] et al. present a new identity-based proxy signature scheme
over an NTRU lattice with message recovery (IB-PSSMR), which is more efficient than the
other existing identity-based proxy signature schemes in terms of the size of the signature
and the cost of energy.

In 2019, Shuai Li [28] et al. proposed a group-based NTRU-like public key cryptosys-
tem, GTRU, using non-Abelian poly-Z groups and NTRU encryption algorithms. This
scheme constructs a high-performance GTRU for IoT. In the security analysis, it is demon-
strated that the IoT GTRU proposed by this scheme is more secure against lattice-based attacks
than the NTRU security and its efficiency exceeds that of traditional cryptographic algorithms.

To enhance the security of the Nyberg-Rueppel digital signature algorithm for IoT ap-
plications, this paper proposes a message recoverable signature algorithm based on NTRU-
like. This scheme is based on the GTRU cryptosystem proposed by Shuai Li et al. [28] and
exploits the message recovery property of the Nyberg-Rueppel digital signature algorithm.
It has the advantage of resisting the attack of quantum algorithms, and it is a suitable digital
signature scheme for IoT applications with higher security compared to the traditional NTRU
public key cryptosystem and Nyberg-Rueppel digital signature algorithm.

The remainder of this paper is organised as follows. Section 2 provides an overview
of the research in this article. Section 3 presents the mathematical background knowl-
edge and theorems. Section 4 constructs the NR-GTRU signature algorithm. Section 5
compares the performance with the NR-NTRU algorithm, Section 6 analyses the security
properties, Section 7 describes the advantages and challenges faced by NR-GTRU in IoT.
Finally, the conclusions are presented in Section 8. Appendix A gives an example of this
signature algorithm and Appendix B lists all the abbreviations and annotations that appear
in this paper.

2. Research Content

Due to security reasons, traditional public key cryptosystems will be replaced by
post-quantum cryptographic schemes, of which lattice-based cryptosystems are one of the
best alternatives.

By studying and analyzing NTRU and digital signature algorithms in related literature,
it is concluded that the security of NTRU mainly stems from the difficulty of finding the
shortest vector in a given lattice, i.e., the Shortest Vector Problem (SVP): given a lattice L,
find a non-zero vector v satisfying that for any non-zero vector u ∈ L, ∥v∥ ≤ ∥u∥.

To ensure the security of the Internet of Things, this paper focuses on the Nyberg-
Rueppel digital signature scheme and the group-based NTRU-like public key cryptosystem
(GTRU) and proposes a new group-based message recoverable signature scheme. This
scheme uses the GTRU cryptosystem, which has message recovery properties, is suitable for
the IoT, and is resistant to lattice-based attacks, making it a secure digital signature scheme.

The research focus of this paper includes the following aspects:

1. Design and improve a group-based NTRU-like signature algorithm based on the
GTRU public key cryptosystem studied by Shuai Li [28] et al. It is also ensured that
this signature algorithm can statute to the SVP, guaranteeing that it can withstand
lattice-based attacks.
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2. The signature scheme proposed by Nyberg and Rueppel [13] is adapted to a group-
based NTRU-like signature algorithm to make it message-recovery friendly and
resistant to some well-known forgery attacks and other related lattice attacks.

3. The efficiency and security of the signature scheme are verified and analyzed.

3. Mathematical Background

In this section, the NTRU public-key cryptosystem and poly-Z group are introduced.

3.1. NTRU

We denote by Z the set of all integers, Z being the infinite cyclic group under the
ordinary addition. For a positive integer n, we use Zn to denote the n-ary cartesian
product of Z. As the n-ary direct product of Z, Zn is the group under vector addition.
For the positive integer m, denoted Zm = Z/mZ, the operation mod m defines the natural
homomorphism from Zn to Zn

m.
NTRU [29] has three parameters N, p, q, where N is used for modulo operations with

polynomial coefficients less than N, and N is generally set to a prime number for better
security. On the other hand, p and q must be mutually prime, and they are used to minimise
the polynomial coefficients. Note that p must be less than q. NTRU also has four subsets
L f , Lg, Lr, and Lm of Zn, where Zn is endowed with the structure of a ring under the
addition operation

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn), (1)

and the multiplication operation, i.e., the cyclic convolution product

(a1, . . . , an) ∗ (b1, . . . , bn) = (c1, . . . , cn), (2)

where
ck = ∑

i+j=k+1 mod n
aibj.

The key generation, encryption and decryption operations of NTRU are as follows.

3.1.1. Key Generation

1. First choose two random polynomials f ∈ L f , g ∈ Lg and have fp, fq to satisfy:

f ∗ fp = e1 mod p,

f ∗ fq = e1 mod q,

In some cases, f has no corresponding fp, fq, in which case another polynomial f ∈ L f
must be re-selected to compute fp, fq.

2. Compute the public key h using the chosen f , g:

h = fq ∗ pg mod q

3. The public key is (n, p, q, h) and the private key is ( f , fp).

3.1.2. Encrypt

1. Select the plaintext to be encrypted m ∈ Lm, after randomly selecting r ∈ Lr.
2. Calculate c:

c = h ∗ r + m mod q
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3.1.3. Decrypt

1. To recover the plaintext m, you need to multiply c by the private key f , and then take
the modulus of q after calculating the result:

a = f ∗ c mod q

2. Finally, using a and fp, the plaintext m is computed:

m = fp ∗ a mod p

The NTRU can be decrypted correctly because a mod m = b mod m and 0 ≤ a, b ≤ m,
which means that for a, b, b ∈ Z, a = b.

3.2. Zn

Shuai Li [28] et al. construct high-performance GTRU for IoT by the use of the non-
abelian poly-Z group Zn−3 ×H, where H is the discrete Heisenberg group. The signature
algorithm constructed in this paper uses the GTRU encryption algorithm as the basis,
and the following is a brief summary of the Propositions made in GTRU.

The circular convolution product of two vectors h and r in Zn can be expressed as the
image H(r) under the Zn self-homomorphism H, where H is determined by h.

Moreover, the result of a modulo m operation on a vector in Zn can be expressed as
the image of that vector in the natural homomorphism. The following proposition shows
that the result of choosing the coefficients of an n-vector on Zm can be expressed as the
image of this n-vector on Zn

m under the function from Zn
m to Zn in the interval from −m/2

to m/2 [28].

Theorem 1 ([28]). Let G be a group, N be a normal subgroup of G, and 𭟋N be the natural homo-
morphism from G to G/N, i.e., 𭟋N(x) = xN, TN be a transversal to N in G, i.e., G =

⋃
t∈TN

tN.

For every x ∈ G, denote the unique element in xN ∩ TN by xTN , then the function

ρTn : G/N → G, ρTN(xN) = xTN

is well-defined.
Further, for every t ∈ TN , ρTN ◦𭟋N(t) = t.

Theorem 2 ([28]). Let G be a group, N be a normal subgroup of G, E(G) be the endomorphism
monoid of G, E(G/N) be the endomorphism monoid of G/N. Denote E(G)N = { f ∈ E(G) :
f (N) ⊆ N}, then the function

𭟋N : E(G)N → E(G/N),𭟋N( f ) = f

is a monoid homomorphism, where f ∈ E(G/N) is defined by f (xN) = f (x)N.
Furthermore, let 𭟋N be the natural homomorphism from G to G/N, i.e., 𭟋N(x) = xN, then

for every f ∈ E(G)N , 𭟋N ◦ f = 𭟋N( f ) ◦𭟋N .

3.3. Poly-Z Group

Let X and Y betwo groups with group operations · and ∗ respectively, and ϕ : Y →
Aut(X) be a group homomorphism. The semi-direct product X ⋊ϕ Y of X and Y with
respect to ϕ. As a set, X ⋊ϕ Y is equal to X × Y, but the group operation of X ⋊ϕ Y is:

(x1, y1) ⋆ (x2, y2) = (x1 · ϕ(y1)(x2), y1 ∗ y2)

A group G is called polycyclic if it has a subnormal series with cyclic quotients [30,31].
The Hirsch length of a polycyclic group G is the number of factors in the subnormal series
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of G. Specially, a polycyclic group G is called poly-Z if G has a subnormal series with
infinite cyclic quotients.

The Hirsch dimension of a polycyclic group G corresponds to the number of factors
within its subnormal series. Specifically, a polycyclic group G is called poly-Z when it
features a subnormal series composed of quotients that are infinitely cyclic [28]. A poly-Z
group can be created by successive infinite cyclic extensions [32]. Namely, up to isomor-
phism, a poly-Z group with group operation ⋆ is equal to

Z{ϕi :1≤i<n} = ((Z⋊ϕ1 Z)⋊ϕ2 )⋊ϕn−1 Z.

As a set, Z{ϕi :1≤i<n} is equal to Zn. In other words, any element in Z{ϕi :1≤i<n} can
be written as an n-ary integer vector. Specifically, the identity element of Z{ϕi :1≤i<n} is
denoted by 0 = (0, . . . , 0). We use ei to denote the element in Z{ϕi :1≤i<n} with a 1 in the i-th
entry and 0’s elsewhere for 1 ≤ i ≤ n. For a ∈ Z{ϕi :1≤i<n}, let a−1 denote the inverse of a.
For k ∈ Z and a ∈ Z{ϕi :1≤i<n}, the k-th power of a is given by

ak =


a ⋆ ⋆ a︸ ︷︷ ︸
k times

k > 0

0 k = 0
(a−1)−k k < 0

For x ∈ Z{phii :1≤i<n}, f ∈ E(Z{ϕi :1≤i<n}), we have

f (x) = f (ex1
1 ⋆ ⋆ exn

n ) = f (e1)
x1 ⋆ ⋆ f (en)

xn ,

thus f is entirely determined by f (ei), 1 ≤ i ≤ n. In other words, f ∈ E(Z{ϕi :1≤i<n}) can be
written as an n × n integer matrix [28].

Let n be a positive integer at least 3, and Gn = Zn−1 ⋊ϕ Z, where ϕ : Z → Aut(Zn−1)
is delineated by

ϕ(a) =


1 0 · · · a
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

, a ∈ Z.

Gn is a special poly-Z group. The group operation of Gn is given by

x ⋆ y = (x1 + y1 + xnyn−1, x2 + y2, . . . , xn + yn), (3)

and Gn ≃ Zn−3×, where H is the discrete Heisenberg group [28,33].

Theorem 3 ([1]). For f ∈ E(Gn) with f (e1) ̸= 0, there must have
f11 = f(n−1)(n−1) fnn − f(n−1)(n−1) fn(n−1),
f1k = 0 2 ≤ k ≤ n,
fk(n−1) = fkn = 0 2 ≤ k ≤ n − 2

Subsequently, the endomorphism f of Gn with f (e1) ̸= 0 can be written as the matrix with the
form in Equation (4).
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

f11 0 0 · · · 0 0 0
ine f21 f22 f23 · · · f2(n−2) 0 0

f31 f32 f33 · · · f3(n−2) 0 0
...

...
...

. . .
...

...
...

f(n−2)1 f(n−2)2 f(n−2)3 · · · f(n−2)(n−2) 0 0
ine f(n−1)1 f(n−1)2 f(n−1)3 · · · f(n−1)(n−2) f(n−1)(n−1) f(n−1)n

fn1 fn2 fn3 · · · fn(n−2) fn(n−1) fnn


(4)

Denote E1(Gn) = { f ∈ Gn : f (e1) ̸= 0}. Give the image of an element in Gn under an
element in E1(Gn), and the operation of two elements in E1(Gn) in the following.

For x ∈ Gn and f ∈ E(Gn) with f (e1) ̸= 0, if y = f (x), then

yi = δi +
n

∑
k=1

xk fki, (5)

where δi = 0 for 2 ≤ i ≤ n and

δ1 =
xn−1(xn−1 − 1)

2
f(n−1)(n−1) f(n−1)n

+
xn(xn − 1)

2
fn(n−1) fnn

+ xn−1xn f(n−1)n fn(n−1)

For f ∈ E(Gn) with f (e1) ̸= 0, g ∈ E(Gn) with g(e1) ̸= 0, if h = f ◦ g, then

hij = δij +
n

∑
k=1

gik fkj, (6)

where δij = 0 for i ̸= n − 1, n. j ̸= 1, and

δi1 =
gi(n−1)(gi(n−1) − 1)

2
f(n−1)(n−1) f (n − 1)n

+
gin(gin − 1)

2
fn(n−1) fnn

+ gi(n − 1)gin f(n−1)n fn(n−1)

For i = n − 1, n; particularly, if h = id, i.e., g is the inverse of f , we have Equation (7), and
g11 = f−1

11 and gi1 = f−1
11 (δi1 + ∑n

i=2 gik fk1) for 2 ≤ i ≤ n [28].

g22 · · · g2n
...

. . .
...

gn2 · · · gnn

 =

 f22 · · · f 2n
...

. . .
...

fn2 · · · fnn


−1

(7)

Theorem 4 ([28]). Let the function 𭟋m from the poly-Z group Gn to the set Zn
m is defined by

𭟋m((x1, . . . , xn)) → (x1 mod m, . . . , xn mod m), (8)

then 𭟋m is a group homomorphism.

Theorem 5 ([28]). For f ∈ E1(Gn), if m is odd, then f (ker 𭟋m) ⊆ ker 𭟋m.
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4. An NTRU-like Message Recoverable Signature Algorithm

In this section, this paper uses GTRU [28] to extend the NTRU encryption algorithm
to general groups and constructs the poly-Z group [14] by an infinite cyclic of successive
extensions.

The signature of NR-GRTU is shown in Figure 1, where the signer uses the private key
to sign the message M and sends the signature information to the verifier, who uses the
public key to verify the correctness of the signature and recover the original message.

Figure 1. NR-GTRU Signature Process.

Given a group G, a normal subgroup N of G, and a transversal TN to N in G, let 𭟋N ,
ρTN and 𭟋N be as depicted in Theorems 1 and 2, i.e.,

𭟋N : G → G/N,𭟋P(g) = gP,

ρTN : G/N → G, ρTN(gN) = gTN ∈ gN ∩ TN ,

𭟋N : E(G)N → E(G/N),𭟋N( f )(gN) = f (g)N.

An NTRU-Like Message Recoverable Signature Algorithm proposed in this paper is
shown below.

4.1. Parameters

N: Number, coefficients of the polynomial
p: Small modulus to reduce the coefficient
q: Large modulus to reduce the coefficient
G: Group
P: A normal subgroup of the group G.
Q: A normal subgroup of the group G.
E(G): The endomorphism group of G
L f ,Lg,Lu,Lv: Subgroups of E(G)
Lm,Lr,Lk: Subgroups of G

4.2. Key Generation

1. Choose f ∈ L f and g ∈ Lg and there exist fP, fQ, and gQ satisfying the

𭟋P( f ◦ fP) ◦𭟋P = 𭟋P,

𭟋Q( f ◦ fQ) ◦𭟋Q = 𭟋Q,

𭟋Q(g ◦ gQ) ◦𭟋Q = 𭟋Q.
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In some cases, f , g has no corresponding fP, fQ, gQ, in which case the other polynomi-
als f ∈ L f and g ∈ Lg must be re-selected.

2. Choose U ∈ Lu and v ∈ Lv, let u = E ⋆ pU (where E is the identity matrix), and satisfy

𭟋Q(u ◦ uQ) ◦𭟋Q = 𭟋Q

3. Calculates h and l
h = 𭟋Q(g ◦ fQ),

l = 𭟋Q(uQ ◦ v).

4. The private key of A is ( f , g) and the public key of A is h; The private key of B is u
and the public key of B is l.

4.3. Signature

1. A randomly selected m ∈ Lm, r ∈ Lr.
2. Based on Equation (3), A uses the public key l of B to calculate c

c = 𭟋Q(m) ⋆ pl ◦𭟋Q(r).

3. A calculates
H(h, c) = (sp, tp).

4. A randomly selected k ∈ Lk.
5. A calculates s0 and t0

s0 = sp ⋆ k,

t0 = h ◦𭟋Q(s0).

6. A calculates
a = gP ◦𭟋P(tp) ◦𭟋P(−t0).

7. A calculates s and t
s = s0 ⋆ f ◦ a,

t = t0 ⋆ g ◦ a.

8. A sends (c, (s, t)) to B.

4.4. Verification

1. B calculates t = h ◦𭟋Q(s), verifies equality, and rejects otherwise.
2. B calculates

H(h, c) = (sp, tp).

3. B verifies that (s, t) = (sp, tp) mod p, otherwise reject.
4. B restores message m

z = u ◦𭟋Q(c),

z = m (mod p).

Theorem 6. H (h, c) is based on polynomial groups for a special kind of computation, and in the
aforementioned mathematics, this paper explains how to construct this signature scheme using
a non-abelian poly-Z group, whose f ∈ E(Z{ϕi :1≤i<n}) can be represented as a matrix of n × n.
Through this property, this paper is designed as H(h, c) = (sp, tp), where sp, tp represent the
symbolic and numerical matrices of the h ⋆ c result, respectively.
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Proof of Verification 1.

t = h ◦𭟋Q(s)

= h ◦𭟋Q(s0 ⋆ f ◦ a)

= h ◦𭟋Q(s0) ⋆ h ◦𭟋Q( f ◦ a)

= t0 ⋆ h ◦𭟋Q( f ◦ a)

= t0 ⋆𭟋Q(g ◦ fQ) ◦𭟋Q( f ◦ a),

among them

𭟋Q(g ◦ fQ) ◦𭟋Q( f ◦ a) = 𭟋Q(g ◦ fQ) ◦𭟋Q( f ◦ a) ◦𭟋Q

= 𭟋Q(g ◦ fQ ◦ f ◦ a) ◦𭟋Q

= 𭟋Q(g ◦ a) ◦𭟋Q

= g ◦ a,

so it can be inferred

t = t0 ⋆𭟋Q(g ◦ fQ) ◦𭟋Q( f ◦ a)

= t0 ⋆ g ◦ a

Proof of Verification 4.

z = u ◦𭟋Q(c)

= u ◦𭟋Q(𭟋Q(m) ⋆ pl ◦𭟋Q(r))

= u︸︷︷︸
E⋆pU

◦𭟋Q(m) ⋆ u ◦𭟋Q(pl ◦𭟋Q(r)),

thus taking the model p for z gives:

z = m (mod p).

An example of NR-GTRU signature verification is given in Appendix A.

5. Performance Analysis

In this section, this paper discusses the efficiency analysis of the NR-GTRU signature
algorithm and the NR-NTRU [34] signature algorithm.

5.1. Parameter

In NR-NTRU and NR-GTRU, it is mostly recommended that p = 3 and a prime
number q is chosen to ensure security, and the value of q is guaranteed to be sufficiently
large, and here in this paper, q = 1009 is chosen.

Since the operation of NR-GTRU is based on polynomial groups while NR-NTRU
is based on normal polynomials, if the same N is chosen, the computational complexity
of NR-GTRU will be N times higher than that of NR-NTRU. Therefore, for performance
analysis, this paper sets NR-GTRU to take N = 17 and NR-NTRU to take N = 293 as a way
to ensure that their arithmetic storage is at the same level.

5.2. Key Generation

Compared to NR-NTRU, NR-GTRU requires more computation in key generation
because it uses polynomial groups instead of a single polynomial. In addition, NR-GTRU
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imposes strict requirements on the format of the polynomial group. Therefore, the NR-
GTRU proposed in this paper is slower in generating the key compared to NR-NTRU.
However, considering that the key needs to be generated only once, a slightly slower key
generation speed is acceptable.

5.3. Signature and Verification

Compared to NR-NTRU, the NR-GTRU signature algorithm does not make use of
norm constraints to restrict its corresponding polynomial group. Due to the unique arith-
metic algorithm and polynomial group of NR-GTRU, it necessarily requires more computa-
tions to obtain the corresponding results.

5.4. Analysis

According to the proposed parameters, we implement the comparison of NR-GTRU
and NR-NTRU in the following environment: Intel (R) Core (TM) i7-7700 CPU @3.60 GHz,
8GB RAM, Windows 10 operating system. For NR-GTRU and NR-NTRU, we performed
Key Generation, Signature, and Verification 1000 times, respectively, and listed the average
time for one signature verification in Table 1.

Table 1 demonstrates the efficiency comparison between NR-GTRU and NR-NTRU.
From the table, it can be seen that in the key generation phase, NR-GTRU is much slower
compared to NR-NTRU. And in the signature verification phase, the time taken by NR-
NTRU is almost 1.1 times the time taken by NR-NTRU. In the verification signature phase,
NR-NTRU is also slightly slower than NR-NTRU than NR-NTRU.

The performance analysis of NR-GTRU, NR-NTRU and NTRU is given in Table 2.

Table 1. This is a comparison between NR-GTRU and NR-NTRU.

NR-GTRU NR-NTRU

Parameter N 17 293
Parameter p 3 3
Parameter q 1009 1009

key (bit) 212 212

Key Generation (ms) 58.3568 37.9395
Signature (ms) 10.3836 9.4576

Verification (ms) 7.5134 6.4936

Table 2. Comparison among signature algorithms.NR-NTRU [34], NTRUsign [18] and our scheme.

Message
Recovery Key Size Operation Speed Algorithms

NTRUsign [18] No Medium Fast NTRU
NR-NTRU [34] No Medium Slower than NTRU NTRU
NR-GTRU Yes Large Slower than NR-NTRU GTRU

6. Security Analysis

In this section, the paper continues with a discussion of NR-GTRU security.
In contrast to traditional signature verification methods, NR-GTRU sends an encrypted

form of the message rather than a summary of the message. When an attacker intercepts
the output of (c, (s, t)), they get the ciphertext (i.e., the output of c). In this case, the attacker
may attack the proposed signature algorithm as an encryption algorithm only [34].

6.1. Brute Force Attacks

An attacker can try to perform a brute force attack on the NR-GTRU digital signature
algorithm, which involves testing all possible private key values until the correct one is
found. However, in the case of NR-GTRU, since it uses a large key space, it is usually
impractical to find the right key through multiple attempts.
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6.2. Lattice-Based Attacks

The security of the message is related to the difficulty of finding the shortest vector,
while the security of the key is related to the difficulty of the shortest vector problem. Lattice
basis reduction algorithms, especially the LLL (Lenstra-Lenstra-Lovász) algorithm [35], are
the main means of attacking NTRU cryptosystems.

To explore the security of GTRUs constructed from poly-Z groups against lattice-
based attacks, Shuai Li et al. [28] generalised the shortest vector problem on NTRU lattices.
In their work, the shortest vector problem was generalised to poly-Z groups. In the poly-Z
group G, the shortest vector problem is defined as follows: given a matrix f of n × n and a
norm N, where f equates to a one-to-one endomorphism of the group G, a non-zero vector
v must be found in the lattice L = { f (x) : x ∈ G} such that N(v) = min

x∈L/{0}
N(x).

It can be shown that the shortest vector problem for the ordinary additive group Zn is
actually the original shortest vector problem. Therefore, the shortest vector problem for the
poly-Z group serves as a generalisation of the original shortest vector problem and is at
least as hard as the original problem.

6.3. Forgery and Key Recovery Attacks

Forgery attacks are the most conventional attacks on signature algorithms. For lattice-
based signature algorithms, if an attacker attempts a forgery attack, they have to solve
the problem of finding the approximate closest vector in the corresponding lattice [36,37],
which is a known hard problem. Furthermore, the study by Hoffstein et al. [37] analyses
this type of attack based on lattice bases and explores its security. Therefore, considering
these factors, the signature algorithm proposed in this topic is also able to defend against
this type of attack.

7. Advantages and Challenges

NR-GTRU has multiple advantages in terms of its applicability in IoT environments
and can effectively ensure its security.

1. Against quantum attacks: The traditional signature algorithm is primarily implemented
by using algorithms such as RSA, DSA and finite field cryptography. However, all
these schemes are practically inadequate against quantum attacks [38]. The NR-
GTRU signature algorithm is implemented on top of the GTRU encryption algorithm,
and the security of GTRU is associated with the difficult problem of SVP for lattice
cryptography, so it is reasonable to believe that the NR-GTRU signature algorithm
can be well protected against quantum attacks.

2. Faster execution time: Although NR-GTRU loses some of its efficiency when compared
to the traditional NTRU signature algorithm, it is still more efficient than the tradi-
tional RSA signature algorithm and the Elliptic Curve Digital Signature Algorithm
(ECDSA).

However, there are still some issues that need to be effectively addressed in practi-
cal applications:

1. Computation cost: Due to the large number of matrix operations used in NR-GTRU
and the resource constrained IoT devices, which usually have low processing power,
limited memory and low computational power, this definitely increases the computa-
tional cost in IoT devices.

2. Appropriate parameters selection: NR-GTRU has certain parameter requirements and it
is a difficult task to select the appropriate parameters and mathematical functions for
a particular application.

3. Communication cost: NR-GTRU is a lattice-based signature algorithm that is more
efficient and secure than traditional encryption and signature algorithms, but this also
results in more communication bits to be processed.
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4. Side channel attacks: Digital signature algorithms based on lattice cryptography theory
can operate securely in a quantum environment, but in practice, they still face the
threat of side-channel attacks such as energy analysis attacks and timing attacks.

8. Conclusions

With the widespread adoption of IoT in smart infrastructures, security and privacy
have become major challenges in the last few years. Traditional signature algorithms
cannot effectively address the security challenges in IoT environments as they are not
resistant to quantum attacks.The paper presents an algorithm that constructs a lightweight
high-performance Group-Based Message Recoverable Signature Algorithm (NR-GTRU)
signature algorithm for IoT applications. It uses a combination of Group-Based NTRU-Like
Public-Key Cryptosystem (GTRU) and efficient Nyberg-Rueppel type of NTRU digital
signature algorithm (NR-GTRU). The developed algorithm is a quantum attack-resistant
algorithm and performs well as compared to traditional algorithms, except the efficiency.
However, the practical application of NR-GTRU in IoT still has certain drawbacks that need
to be addressed, such as computation cost, communication cost, and side channel attacks
are all issues that need to be considered, and in the future, we will continue to improve the
usability of the scheme and investigate the specific application scenarios of the scheme.
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Appendix A

In this appendix, this paper gives an example of NR-GTRU signature verification.
At this first, we choose n = 7, p = 3, q = 1009 for parameters.

Appendix A.1. Key Generation

1. Choose f ∈ L f and g ∈ Lg and there exist fP, fQ, and gQ

f =



−1 0 0 0 0 0 0
−1 −1 0 0 −1 0 0
0 0 1 1 1 0 0
−1 0 −1 0 0 0 0
0 −1 −1 1 −1 0 0
0 0 −1 0 1 −1 −1
−1 0 1 −1 1 0 1


,

g =



−1 0 0 0 0 0 0
0 −1 −1 −1 1 0 0
0 0 −1 0 −1 0 0
0 1 0 −1 1 0 0
−1 −1 −1 1 −1 0 0
1 −1 −1 −1 0 −1 1
1 1 0 0 −1 1 0


.
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2. Choose U ∈ Lu and v ∈ Lv and let u = E ⋆ pU

u =



4 0 0 0 0 0 0
3 −2 0 0 0 0 0
−3 3 1 −3 −3 0 0
3 3 3 −2 0 0 0
3 3 −3 −3 −2 0 0
−3 3 3 3 3 −2 0
−3 0 3 −3 −3 0 −2


,

v =



−1 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 −1 1 −1 1 0 0
0 0 −1 1 −1 0 0
1 −1 0 1 1 0 0
−1 −1 1 −1 −1 −1 0
−1 1 1 −1 0 1 1


.

3. Calculate h and l

h =



1 0 0 0 0 0 0
−5 −1 2 5 −4 0 0
−1 −1 0 1 −1 0 0
−3 −1 0 3 −3 0 0
4 2 −1 −4 3 0 0
7 5 −1 −10 10 0 −1
−4 −1 1 6 −6 1 0


,

l =



252 0 0 0 0 0 0
359 130 −325 260 488 0 0
315 392 32 −227 456 0 0
63 113 −32 227 −456 0 0

240 −179 195 −358 −293 0 0
76 214 −276 423 163 −504 0

217 −334 456 −162 325 504 504


.

4. The private key of A is ( f , g) and the public key of A is h; The private key of B is u
and the public key of B is l.

Appendix A.2. Signature

1. A randomly selected m ∈ Lm, r ∈ Lr

m =
(

1 0 −1 1 1 1 0
)

r =
(

0 0 0 1 −1 0 −1
)

2. A uses the public key l of B to calculate c

c =
(

261 −141 −32 224 −454 −502 −503
)
.

3. A calculates
H(h, c) = (sp, tp).

4. A calculates
sp =

(
−1 1 1 −1 −1 −1 1

)
,

tp =
(

221 61 171 283 413 503 502
)
.
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5. A randomly selected k ∈ Lk

k =
(

0 −3 0 3 −3 3 0
)
.

6. A calculates s0 and t0

s0 =
(

2 −2 1 2 −4 2 1
)
,

t0 =
(
−3 0 −1 −1 3 1 −2

)
.

7. A calculates a
a =

(
1 −1 1 1 −1 0 1

)
.

8. A calculates s and t
s =

(
0 0 3 1 0 2 2

)
.

t =
(
−4 4 0 −2 2 2 −2

)
9. A sends (c, (s, t)) to B.

Appendix A.3. Verification

1. B calculates t = h ◦𭟋Q(s), verifies equality, and rejects otherwise.

t1 = h ◦𭟋Q(s) =
(
−4 4 0 −2 2 2 −2

)
.

2. B calculates:
H(h, c) = (sp, tp).

3. B verifies that (s, t) = (sp, tp) mod p, otherwise reject.
4. B restores message m

z = u ◦𭟋Q(c) =
(

16 9 −4 4 −2 −5 −3
)
,

z = m (mod p).

Appendix B

All abbreviations and annotations appearing in this paper are shown in the Table A1.

Table A1. Related abbreviations and their annotations.

Abbreviation Annotation

DDoS Distributed Denial of Service Attack
DSA Digital Signature Algorithm
ECC Elliptic Curve Cipher

ECDLP Elliptic Curve Discrete Logarithm Problem
ECDSA Elliptic Curve Digital Signature Algorithm

GTRU A Group-Based NTRU-Like
Public-Key Cryptosystem

IoT Internet of Things
NR Nyberg-Rueppel

NR-GTRU An NTRU-Like Message Recoverable
Signature Algorithm

NR-NTRU An Efficient Nyberg-Rueppel Type of NTRU
Digital Signature Algorithm

NTRU Number Theory Research Unit
SIS Short Integer Solution problem
SVP Shortest Vector Problem
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