Mathematical Models in High-Temperature Viscometry: A Review
Abstract
:1. Introduction
2. Full Axisymmetric Case
3. Traditional Assumptions
3.1. Mathematical Model
3.2. Features of Fluid Flow and Viscometer Oscillations
3.3. Parameter Identification
4. Working Equations
4.1. Linear Fluids
4.2. Nonlinear Fluids
5. Forced Mode
5.1. Linear Fluids
5.2. Nonlinear Fluids
6. Other Models
6.1. Oscillating Plate
6.2. General Model
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shvidkovskiy, Y.G. Certain Problems Related to the Viscosity of Fused Metals; NASA–TT–F–88; GITTL: Moscow, Russia, 1962. (In Russian) [Google Scholar]
- Zhao, D.; Yan, L.; Jiang, T.; Peng, S.; Yue, B. On the viscosity of molten salts and molten salt mixtures and its temperature dependence. J. Energy Storage 2023, 61, 106707. [Google Scholar] [CrossRef]
- Pries, J.; Weber, H.; Benke-Jacob, J. Fragile-to-strong transition in phase-change material Ge3Sb6Te5. Adv. Funct. Mater. 2022, 32, 2202714. [Google Scholar] [CrossRef]
- Zhu, W.; Gulbiten, O.; Aitken, B.; Sen, S. Viscosity, enthalpy relaxation and liquid-liquid transition of the eutectic liquid Ge15Te85. J. Non-Cryst. Solids 2021, 554, 120601. [Google Scholar] [CrossRef]
- Magnusson, J.; Munro, T.; Memmott, M. Review of thermophysical property methods applied to fueled and un-fueled molten salts. Ann. Nucl. Energy 2020, 146, 107608. [Google Scholar] [CrossRef]
- Nell, S.; Yang, F.; Evenson, Z.; Meyer, A. Viscous flow and self-diffusion in densely and loosely packed metallic melts. Phys. Rev. B. 2021, 103, 064206. [Google Scholar] [CrossRef]
- Brillo, J.; Arato, E.; Giuranno, D.; Kobatake, H.; Maran, C.; Novakovic, R.; Ricci, E.; Rosello, D. Viscosity of liquid Ag-Cu alloys and the competition between kinetics and thermodynamics. High Temp. High Press. 2018, 47, 417–441. [Google Scholar]
- Assael, M.J.; Kalyva, A.E.; Antoniadis, K.D.; Banish, R.M.; Egry, I.; Wu, J.; Kaschnitz, E.; Wakeham, W.A. Reference Data for the Density and Viscosity of Liquid Copper and Liquid Tin. J. Phys. Chem. Ref. Data 2010, 39, 033105. [Google Scholar] [CrossRef]
- Horne, K.; Ban, H. Sensitivity analysis of the transient torque viscosity measurement method. Metrologia 2015, 52, 1. [Google Scholar] [CrossRef]
- Jin, Y.; Cheng, J.; An, X.; Su, T.; Zhang, P.; Li, Z. Accurate viscosity measurement of nitrates/nitrites salts for concentrated solar power. Sol. Energy 2016, 137, 385–392. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, T. Numerical analysis of an improved heating device for the electromagnetically driven oscillating cup vis-cometer. Adv. Mech. Eng. 2017, 9, 10. [Google Scholar] [CrossRef]
- Nunes, V.M.B.; Lourenço, M.J.V.; Santos, F.J.V.; Nieto de Castro, C. Measurements of the Viscosity of Molten Lithium Nitrate by the Oscillating-cup Method. Int. J. Thermophys. 2017, 38, 13. [Google Scholar] [CrossRef]
- Quested, P.; Redgrove, J. Issues concerning measurement of the viscosity of liquid metals. In Proceedings of the IUPAC Meeting, Bergen, Norway, 5–6 April 2003. [Google Scholar]
- Gruner, S.; Hoyer, W. A statistical approach to estimate the experimental uncertainty of viscosity data obtained by the oscil-lating cup technique. J. Alloys Comp. 2009, 480, 629–633. [Google Scholar] [CrossRef]
- Cheng, J.; Gröbner, J.; Hort, N.; Kainer, K.U.; Schmid-Fetzer, R. Measurement and calculation of the viscosity of metals—A review of the current status and developing trends. Meas. Sci. Technol. 2014, 25, 062001. [Google Scholar] [CrossRef]
- Tolbaru, D.; Popescu, A.-M.; Zuca, S. Error Analysis of the Oscillating Cup Method for Viscosity Measurements of Molten Salts. Z. Naturforsch. 2008, 63, 57–60. [Google Scholar] [CrossRef]
- Jeyakumar, M.; Hamed, M.; Shankar, S. Rheology of liquid metals and alloys. J. Non-Newton. Fluid Mech. 2011, 166, 831–838. [Google Scholar] [CrossRef]
- Malik, M.M.; Jeyakumar, M.; Hamed, M.S.; Walker, M.J.; Shankar, S. Rotational rheometry of liquid metal systems: Measurement geometry selection and flow curve analysis. J. Non-Newton. Fluid Mech. 2010, 165, 733–742. [Google Scholar] [CrossRef]
- Ritwik, R. Measuring the Viscous Flow Behaviour of Molten Metals under Shear. Ph.D. Thesis, Brunel University, London, UK, 2012. [Google Scholar]
- Elton, E.S.; Reeve, T.C.; Thornley, L.E.; Joshipura, I.D.; Paul, P.H.; Pascall, A.J.; Jeffries, J.R. Dramatic effect of oxide on measured liquid metal rheology. J. Rheol. 2020, 64, 119–128. [Google Scholar] [CrossRef]
- Brooks, R.F.; Dinsdale, A.T.; Quested, P.N. The measurement of viscosity of alloys–A review of methods, data and models. Meas. Sci. Technol. 2005, 16, 354–362. [Google Scholar] [CrossRef]
- Nunes, V.M.B.; Santos, F.J.V.; de Castro, C.A.N. A High-Temperature Viscometer for Molten Materials. Int. J. Thermophys. 1998, 19, 427–435. [Google Scholar] [CrossRef]
- Kleiman, R.N. Analysis of the oscillating-cup viscometer for the measurement of viscoelastic properties. Phys. Rev. 1987, 35, 261–275. [Google Scholar] [CrossRef]
- Zhu, P.; Lai, J.; Shen, J.; Wu, K.; Zhang, L.; Liu, J. An oscillating cup viscometer based on Shvidkovskiy algorithm for molten metals. Measurement 2018, 122, 149–154. [Google Scholar] [CrossRef]
- High-Temperature Oscillating-Cup Viscometer. Available online: https://www.tu-chemnitz.de/physik/RND/ausruest.php.en (accessed on 9 May 2023).
- Sakata, K.; Mukai, M.; Rajesh, G.; Arivanandhan, M.; Inatomi, Y.; Ishikawa, T.; Hayakawa, Y. Viscosity of molten InSb, GaSb, and InxGa1−xSb alloy semiconductors. Int. J. Thermophys. 2014, 35, 352–360. [Google Scholar] [CrossRef]
- Macosko, C.W. Rheology: Principles, Measurements and Applications; Wiley/VCH: New York, NY, USA, 1994. [Google Scholar]
- Grouvel, J.M.; Kestin, J. Working equations for the oscillating-cup viscometer. Appl. Sci. Res. 1978, 34, 427–443. [Google Scholar] [CrossRef]
- Nieuwoudt, J.C.; Sengers, J.V.; Kestin, J. On the theory of oscillating-cup viscometers. Phys. A. Stat. Mech. Its Appl. 1988, 149, 107–122. [Google Scholar] [CrossRef]
- Elyukhina, I.; Vikhansky, A. On the secondary flows in oscillating-cup viscometer. Measurement 2023, 206, 112267. [Google Scholar] [CrossRef]
- Elyukhina, I.V.; Vyatkin, G.P. Evaluation of the effect of secondary flows on the oscillations of an oscillating-cup viscometer. Dokl. Phys. 2006, 51, 459–460. [Google Scholar] [CrossRef]
- Elyukhina, I.; Vyatkin, G. Software for oscillating-cup viscometry: Verification of data reasonableness and parametric identi-fication of rheological model. J. Phys. Conf. Ser. 2008, 98, 022011. [Google Scholar] [CrossRef]
- Lourenço, M.J.V.; Santosô, F.J.V.; Nieto de Castro, C.A. The meniscus effect in viscosity determinations by the oscillating-cup method. High Temp. High Press. 2003, 35, 75–80. [Google Scholar]
- Kestin, J.; Newell, G.F. Theory of oscillation type viscometers: The oscillating cup. Part I. Z. Angew. Math. Phys. 1957, 8, 433–449. [Google Scholar] [CrossRef]
- Ostwald, W. About the rate function of the viscosity of dispersed systems. Kolloid Z. 1925, 36, 99–117. [Google Scholar] [CrossRef]
- De Waele, A. Viscometry and plastometry. J. Oil Color Chem. Assoc. 1923, 6, 33–88. [Google Scholar]
- Bingham, E.C. Fluidity and Plasticity; McGraw-Hill: New York, NY, USA, 1922. [Google Scholar]
- Burgos, G.R.; Alexandrou, A.N.; Entov, V. On the determination of yield surfaces in Herschel–Bulkley fluids. J. Rheol. 1999, 43, 463–483. [Google Scholar] [CrossRef]
- Johnson, M.; Segalman, D. A model for viscoelastic fluid behavior which allows non-affine deformation. J. Non-Newton. Fluid Mech. 1977, 2, 255–270. [Google Scholar] [CrossRef]
- Beverly, C.R.; Tanner, R.I. Numerical analysis of three-dimensional Bingham plastic flow. J. Non-Newton. Fluid Mech. 1992, 42, 85–115. [Google Scholar] [CrossRef]
- Keentok, M.; Georgescu, A.G.; Sherwood, A.A.; Tanner, R.I. The measurement of the second normal stress difference for some polymer solutions. J. Non-Newton. Fluid Mech. 1980, 6, 303–324. [Google Scholar] [CrossRef]
- Yelyukhina, I.V. The observation and measurement of the non-Newtonian properties of high-temperature fluids using the torsional-oscillation method. High Temp. 2006, 44, 406–413. [Google Scholar] [CrossRef]
- Vyatkin, G.P.; Elyukhina, I.V. The potential of an oscillating-cup viscometer for the analysis of elastic viscoplastic properties. Dokl. Phys. 2006, 51, 90–92. [Google Scholar] [CrossRef]
- Elyukhina, I.V. Johnson-Segalman fluid behavior in a oscillating-cup system. Russ. J. Phys. Chem. 2006, 80, 819–822. [Google Scholar] [CrossRef]
- Kehr, M.; Hoyer, W.; Egry, I. A New High-Temperature Oscillating Cup Viscometer. Int. J. Thermophys 2007, 28, 1017–1025. [Google Scholar] [CrossRef]
- Elyukhina, I. Nonlinear oscillating-cup viscometry. Rheol. Acta 2011, 50, 327–334. [Google Scholar] [CrossRef]
- Beckwith, D.A.; Newell, G.F. Theory of oscillating type viscometers: The oscillating cup. Part II. Z. Angew. Math. Phys. 1957, 8, 450–465. [Google Scholar] [CrossRef]
- Kholpanov, L.P.; Elyukhina, I.V. Identification of the complex nonlinear processes. Theor. Found. Chem. Eng. 2009, 43, 869–880. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables; Dover Publications: Mineola, NY, USA, 1972. [Google Scholar]
- Wittenberg, L.J.; Ofte, D.; Curtiss, C.F. Fluid Flow of Liquid Plutonium Alloys in an Oscillating-Cup Viscosimeter. J. Chem. Phys. 1968, 48, 3253–3260. [Google Scholar] [CrossRef]
- Roscoe, R. Viscosity Determination by the Oscillating Vessel Method I: Theoretical Considerations. Proc. Phys. Soc. 1958, 72, 576–584. [Google Scholar] [CrossRef]
- Nieuwoudt, J.C. An extension of the theory of oscillating cup viscometers. Int. J. Thermophys. 1990, 11, 525–535. [Google Scholar] [CrossRef]
- Wang, D.; Overfelt, R.A. Oscillating cup viscosity measurements of aluminum alloys: A201, A319 and A356. Int. J. Thermophys. 2002, 23, 1063–1076. [Google Scholar] [CrossRef]
- Iida, T.; Guthrie, R.I.L. The Physical Properties of Liquid Metals; Clarendon Press: Oxford, UK, 1988. [Google Scholar]
- Torklep, K.; Oye, H.A. An absolute oscillating cylinder (or cup) viscometer. J. Phys. Sci. Instrum. 1979, 12, 875–885. [Google Scholar] [CrossRef]
- Krall, A.H.; Sengers, J.V. Simultaneous measurement of viscosity and density with an oscillating-disk instrument. Int. J. Thermophys. 2003, 24, 337–359. [Google Scholar] [CrossRef]
- Elyukhina, I. Oscillating-cup technique for yield stress and density measurement. J. Mater. Sci. 2013, 48, 4387–4395. [Google Scholar] [CrossRef]
- Elyukhina, I.V.; Vyatkin, G.P. Analytical method for estimating the nonlinear properties of liquids by a torsion viscosimeter. J. Eng. Phys. Thermophys. 2008, 81, 544–550. [Google Scholar] [CrossRef]
- Elyukhina, I.V. Theoretical foundation of oscillating-cup viscometry for viscoplastic fluids. High Temp. 2009, 47, 533–537. [Google Scholar] [CrossRef]
- Elyukhina, I.V. Oscillating-Cup Viscometer for Nonlinear Fluids in Forced Mode. High Temp. 2022, 60, 328–334. [Google Scholar] [CrossRef]
- Parthiban, R.; Stoica, M.; Kaban, I.; Kumar, R.; Eckert, J. Viscosity and fragility of the supercooled liquids and melts from the Fe–Co–B–Si–Nb and Fe–Mo–P–C–B–Si glass-forming alloy systems. Intermetallics 2015, 66, 48–55. [Google Scholar] [CrossRef]
- Yuan, B.; Aitken, B.; Sen, S. Structure and Rheology of Se-I Glasses and Supercooled Liquids. J. Non-Cryst. Solids 2020, 544, 120106. [Google Scholar] [CrossRef]
- Bakhtiyarov, S.I.; Overfelt, R.A. Measurement of liquid metal viscosity by rotational technique. Acta Mater. 1999, 47, 4311–4319. [Google Scholar] [CrossRef]
- Shpilrain, E.E.; Fomin, V.A.; Skovorodko, S.N.; Sokol, G.F. Research on Liquid-Metal Viscosity; Nauka: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Elyukhina, I.V.; Vyatkin, G.P. Identification of the nonlinear viscous properties of fluids by the vibrational method. J. Eng. Phys. Thermophys. 2005, 78, 907–915. [Google Scholar] [CrossRef]
- Elyukhina, I. Modeling the experiments in an oscillating cylinder viscometry. AIP Conf. Proc. 2015, 1648, 850077. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elyukhina, I. Mathematical Models in High-Temperature Viscometry: A Review. Mathematics 2023, 11, 2300. https://doi.org/10.3390/math11102300
Elyukhina I. Mathematical Models in High-Temperature Viscometry: A Review. Mathematics. 2023; 11(10):2300. https://doi.org/10.3390/math11102300
Chicago/Turabian StyleElyukhina, Inna. 2023. "Mathematical Models in High-Temperature Viscometry: A Review" Mathematics 11, no. 10: 2300. https://doi.org/10.3390/math11102300
APA StyleElyukhina, I. (2023). Mathematical Models in High-Temperature Viscometry: A Review. Mathematics, 11(10), 2300. https://doi.org/10.3390/math11102300