Potential of Hydrogen Fuel Cell Aircraft for Commercial Applications with Advanced Airframe and Propulsion Technologies
Abstract
:1. Introduction
2. Enabling Technologies for More Sustainable Aviation
2.1. Airframe Technologies
2.1.1. Laminar Flow Control
2.1.2. Advanced Materials and Structure Concepts
2.1.3. Load Alleviation
2.2. Propulsion and Energy System Technologies
2.2.1. Hydrogen Combustion Energy Network
2.2.2. Hydrogen Fuel Cell Energy Network
2.2.3. Liquid Hydrogen Storage
3. Aircraft Sizing Methodology
3.1. Initial Sizing Framework
3.1.1. Geometric Parameterization
Fuselage Geometric Sizing
- If the fuel tank diameter , which includes the actual tank diameter and an extra 10 cm of piping, is less or equal to the cabin radius , then the second segment is blended with the tank segment and makes either a trapezoid or a rectangle depending on the fuel tank diameter. In this trapezoid, the upper side is always equal to the tank diameter and the lower side equals . So, the total cross-sectional area becomes,
- If the tank diameter is greater than the cabin radius, then the upper cabin segment becomes a trapezoid, and the fuel tank segment is defined as a square. The cross-sectional area is then defined by,
Wing and Empennage Geometric Sizing
3.1.2. Aerodynamic Analysis
3.1.3. Ducted Fan Sizing
3.2. Aircraft Mass Estimation
3.2.1. Fuel Cell System Mass Estimation
3.2.2. Fuel System Mass Estimation
3.2.3. Estimation of Direct Operating Costs
3.2.4. Emission Modeling
3.2.5. Dynamic Aircraft Sizing
- Perform initial fuel cell (if applicable) and propulsor sizing summarized in the appendix based on initial aircraft inputs.
- Construct the constraint diagram and isolate a design point with specific and or that satisfies all constraints.
- Estimate empty mass breakdown based on the formulation in Section 3.2.
- Run the mission and performance analyses and obtain the fuel mass and all necessary performance metrics.
- Knowing the value of the take-off mass for the present iteration, obtain the reference area using the wing loading value obtained in Step 2.
- Obtain all wing geometric characteristics based on constants and the using Section “Wing and Empennage Geometric Sizing”.
- Find the required fuel volume given the fuel mass and liquid hydrogen density.
- Given the required fuel tank volume and a fixed tank compartment length based on the fuselage length, obtain the required tank inner radius .
- Given that the insulation is defined outside of the structural layer and the insulation thickness-to-diameter ratio is defined by the designer, the insulation thickness becomes
- Recalculate parameters of fuselage cross-section using equations described in the “Fuselage Geometric Sizing” Section and calculate the new fuselage wetted area.
- Based on updated tank geometric properties, perform the thermodynamic analysis of tanks using the method described in ref. [68]. Obtain boil-off and venting masses.
- Calculate the new value of the maximum take-off mass.
- Resize the propulsion system based on the new maximum take-off mass using either formulation for the fuel cell aircraft summarized in Section 3.1.3 and Appendix A or default methods in SUAVE for turbofan engines.
- Update the constraint diagram inputs of aerodynamic properties based on results obtained during the mission and performance analyses.
- Compare the new value of MTOM to the old value. If not converged, repeat Steps 2–12.
- Compute aircraft DOC and equivalent emissions using Section 3.2.3 and Section 3.2.4. Compute other performance metrics necessary for comparisons.
3.3. Design Methodology Verification
3.4. Verification of the Numerical Model with the CHEETA Reference Aircraft
4. Results
Comparative Study Between Hydrogen Combustion and Fuel Cell Options
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Leading edge sweep in deg | |
Reynolds number | |
Transition chord ratio | |
m | Mass in kg |
Wing loading in kg/m2 | |
S | Area in m2 |
D | Diameter in m |
Aspect ratio | |
R | Radius in m, Resistance in Ohm |
r | Area-specific resistance in Ohm/m2 |
s | Emission forcing factor |
F | Faraday constant |
H | Height in m |
W | Width in m |
C | Chord in m |
Thrust-to-weight ratio in N/kg | |
Specific heat at constant pressure in J/kg/K | |
b | Span in m |
Taper ratio | |
V | Volume in m3, Velocity in m/s |
Fuel cell voltage in V | |
Power density in kW/kg | |
P | Power in kW, Pressure in Pa |
Horsepower | |
A | Cross-sectional area in m2 |
T | Temperature in K, Thrust |
Heat transfer rate in J/s | |
Stress in Pa | |
Weld efficiency | |
Direct operating costs in EUR | |
p | Price in EUR |
Fuel flow rate in kg/s | |
t | Thickness in m |
Efficiency | |
i | Current density in A/m2 |
Open circuit voltage in V | |
AIC | Aviation-induced cloudiness |
FC | Fuel cell |
HLFC | Hybrid laminar flow control |
NLF | Natural laminar flow |
SAF | Sustainable aviation fuel |
PEM | Proton exchange membrane |
PCHP | Phase-change-heat-pump |
BOP | Balance of plant |
CFRP | Carbon fiber-reinforced plastic |
ISA | International Standard Atmosphere |
UHBPR | Ultra-high bypass ratio |
SFC | Specific fuel consumption |
TMS | Thermal management system |
PMAD | Power management and distribution |
GH2 | Gaseous hydrogen |
LH2 | Liquid hydrogen |
MTOM | Maximum takeoff mass |
MLM | Maximum landing mass |
CG | Center of gravity |
Appendix A. Derivation of the Hydrogen Fuel Cell Energy Network for Aircraft Sizing
References
- European Commission, Directorate-General for Research and Innovation. Fly the Green Deal—Europe’s Vision for Sustainable Aviation; Advisory Council for Aviation Research and Innovation in Europe (ACARE): Brussels, Belgium, 2022; Available online: https://perma.cc/8JJN-LEKV (accessed on 27 December 2024).
- Horst, P.; Elham, A.; Radespiel, R. Reduction of Aircraft Drag, Loads and Mass for Energy Transition in Aeronautics; Deutsche Gesellschaft für Luft-und Raumfahrt: Bonn, Germany, 2021. [Google Scholar] [CrossRef]
- Scholz, D. Calculation of the Emission Characteristics of Aircraft Kerosene and Hydrogen Propulsion; Harvard Data-Verse; HAW Hamburg: Hamburg, Germany, 2020. [Google Scholar] [CrossRef]
- Agarwal, R.K. Review of technologies to achieve sustainable (green) aviation. Recent Adv. Aircr. Technol. 2012, 19, 427–464. [Google Scholar] [CrossRef]
- Li, S.; Gu, C.; Zhao, P.; Cheng, S. A novel hybrid propulsion system configuration and power distribution strategy for light electric aircraft. Energy Convers. Manag. 2021, 238, 114171. [Google Scholar] [CrossRef]
- Schäfer, A.W.; Barrett, S.; Doyme, K.; Dray, L.; Gnadt, R.; Self, R.; O’Sullivan, A.; Synodinos, A.; Troija, A. Technological, economic and environmental prospects of all-electric aircraft. Nat. Energy 2019, 4, 160–166. [Google Scholar] [CrossRef]
- Karpuk, S. Influence of Future Airframe and Propulsion Technologies on Energy-efficient Aircraft. Ph.D. Dissertation, Forschungsbericht Niedersächsisches Forschungszentrum für Luftfahrt. Technische Universität Braunschweig, Niedersächsisches Forschungszentrum für Luftfahrt, Braunschweig, Germany, 2024. [Google Scholar] [CrossRef]
- Brewer, D. Hydrogen Aircraft Technology; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Tiwari, S.; Pekris, M.; Doherty, J. A review of liquid hydrogen aircraft and propulsion technologies. Int. J. Hydrogen Energy 2024, 57, 1174–1196. [Google Scholar] [CrossRef]
- Jha, R. Distributed Sensor Network for Leakage Detection and Condition Monitoring in Hydrogen-Powered Aircraft. In Proceedings of the AIAA Aviation Forum and ASCEND, Las Vegas, NV, USA, 29 July–2 August 2024. [Google Scholar] [CrossRef]
- Kazula, S.; Staggat, M.; Graaf, S.D. Functional and Safety Challenges of Hydrogen Fuel Cell Systems for Application in Electrified Regional Aircraft. J. Phys. Conf. Ser. 2023, 2526, 012063. [Google Scholar] [CrossRef]
- Palladino, V.; Jordan, A.; Bartoli, N.; Schmollgruber, P.; Pommier-Budinger, V.; Benard, E. Preliminary studies of a regional aircraft with hydrogen-based hybrid propulsion. In Proceedings of the AIAA Aviation 2021 Forum, Virtual Event, 2–6 August 2021. [Google Scholar] [CrossRef]
- Kadyk, T.; Winnefeld, C.; Hanke-Rauschenbach, R.; Krewer, U. Analysis and Design of Fuel Cell Systems for Aviation. Energies 2018, 11, 375. [Google Scholar] [CrossRef]
- Waddington, E.G.; Merret, J.M.; Ansell, P.J. Impact of Liquid-Hydrogen Fuel-Cell Electric Propulsion on Aircraft Configuration and Integration. J. Aircr. 2023, 60, 1588–1600. [Google Scholar] [CrossRef]
- Bhatti, W.; Wu, W.; Doyle, F.; Llambrich, J.; Webber, H.; Town, N. Fuel Cells Roadmap. Report: FZO-PPN-COM-0033; Aerospace Technology Institute: Cranfield, UK, 2022; Available online: https://perma.cc/V9R8-CVJP (accessed on 29 December 2024).
- Gollnow, M. Passenger Aircraft towards Zero Emission with Hydrogen and Fuel Cells. In Deutscher Luft-und Raumfahrtkongress; Hamburg University of Applied Sciences; Aircraft Design and Systems Group (AERO): Hamburg, Germany, 2022. [Google Scholar] [CrossRef]
- Kožulović, D. Heat Release of Fuel Cell Powered Aircraft. In Proceedings of the Global Power and Propulsion Society, Virtual Event, 7–9 September 2020. [Google Scholar] [CrossRef]
- Kösters, T.; Liu, X.; Kožulović, D.; Wang, S.; Friedrichs, J.; Gao, X. Comparison of phase-change-heat-pump cooling and liquid cooling for PEM fuel cells for MW-level aviation propulsion. Int. J. Hydrogen Energy 2022, 47, 29399–29412. [Google Scholar] [CrossRef]
- Epstein, A.; O’Flarity, S. Considerations for Reducing Aviation’s CO2 with Aircraft Electric Propulsion. J. Propuls. Power 2019, 35, 572–582. [Google Scholar] [CrossRef]
- Guynn, M.; Freeh, J.; Olson, E. Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions; NASA/TM-2004-212989; NASA Langley: Hampton, VA, USA, 2004. Available online: https://ntrs.nasa.gov/citations/20040033924 (accessed on 27 December 2024).
- Karpuk, S.; Radespiel, R.; Elham, A. Assessment of Future Airframe and Propulsion Technologies on Sustainability of Next-Generation Mid-Range Aircraft. Aerospace 2022, 9, 279. [Google Scholar] [CrossRef]
- Risse, K.; Stumpf, E. Conceptual Aircraft Design including Hybrid Laminar Flow Control. CEAS Aeronaut. J. 2014, 5, 333–343. [Google Scholar] [CrossRef]
- Sudhi, A.; Elham, A.; Badrya, C. Coupled Boundary-Layer Suction and Airfoil Optimization for Hybrid Laminar Flow Control. AIAA J. 2021, 59, 5158–5173. [Google Scholar] [CrossRef]
- Sudhi, A.; Radespiel, R.; Badrya, C. Design of Transonic Swept Wing for HLFC Application. In Proceedings of the AIAA Aviation 2021 Forum, Virtual Event, 2–6 August 2021. [Google Scholar] [CrossRef]
- Parikh, P.; Lund, D.; George-Falvy, D.; Nagel, A. Hybrid Laminar Flow Control Tests in the Boeing Research Wind Tunnel; SAE Technical Paper; SAE International: Pittsburgh, PA, USA, 1990; p. 901978. [Google Scholar] [CrossRef]
- Scholz, P.; Barklage, A.; van Rooijen, B.; Seitz, A.; Horn, M.; Badrya, C.; Radespiel, R. Large-Scale Wind Tunnel Testing of an Advanced Hybrid Laminar Flow Control System. In Proceedings of the Deutscher Luft- und Raumfahrtkongress 2022, Dresden, Germany, 27–29 September 2022. [Google Scholar] [CrossRef]
- Braslow, A. A History of Suction-Type Laminar—Flow Control with Emphasis on Flight Research; NASA History Division, Office of Policy and Plans: Washington, DC, USA, 1999. [Google Scholar]
- Schrauf, G.; Geyr, H. Hybrid Laminar Flow Control on A320 Fin: Retrofit Design and Sample Results. J. Aircr. 2021, 58, 1272–1280. [Google Scholar] [CrossRef]
- Streit, T.; Kruse, M.; Kilian, M.; Petropoulos, I. Aerodynamic Design and Analysis of HLFC Wings Within the European Project HLFC-WIN. In Proceedings of the 33rd Congress of the International Council of the Aeronautical Sciences, Stockholm, Sweden, 4–9 September 2022; Available online: https://elib.dlr.de/194170/ (accessed on 27 December 2024).
- Mosca, V.; Karpuk, S.; Badrya, C.; Elham, A. Multidisciplinary Design Optimisation of a Fully Electric Regional Aircraft Wing with Active Flow Control Technology. Aeronaut. J. 2021, 126, 730–754. [Google Scholar] [CrossRef]
- Karpuk, S.; Mosca, V. Investigation of Hybrid Laminar Flow Control Capabilities from the Flight Envelope Perspective. J. Aircr. 2024, 61, 1629–1654. [Google Scholar] [CrossRef]
- Lukaczyk, T.; Wendroff, A.; Colonno, M.; Economon, T.; Alonso, J.; Orra, T.; Ilario, C. SUAVE: An Open-Source Environment for Multi-Fidelity Conceptual Vehicle Design. In Proceedings of the 16th AIAA ISSMO Multidisciplinary Analysis and Optimization Conference, Dallas, TX, USA, 22–26 June 2015. [Google Scholar] [CrossRef]
- Hepperle, M. MDO of Forward Swept Wings. In Proceedings of the AKATnet II Workshop, Braunschweig, Germany, 28–29 January 2008; Available online: https://perma.cc/P6CL-AAWU (accessed on 29 December 2024).
- Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S.; Schatz, G.; Espinosa, H. Measurements of Near-ultimate Strength for Multiwalled Carbon Nanotubes and Irradiation-induced Crosslinking Improvements. Nat. Nanotechnol. 2008, 3, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Lourie, O.; Dyer, M.; Moloni, K.; Kelly, T.; Ruoff, R. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef]
- Brooks, T.; Martins, J. On Manufacturing Constraints for Tow-steered Composite Design Optimization. Compos. Struct. 2018, 204, 548–559. [Google Scholar] [CrossRef]
- Greitzer, E.; Bonnefoy, P.; delaRosaBlanco, E.; Dorbian, C.; Drela, M.; Hall, D.; Hansman, R.; Hileman, J.; Liebeck, R.; Lovegren, J.; et al. N+3 Aircraft Concept Designs and Trade Studies; NASA/CR—2010-216794/VOL1; NASA: Cleveland, OH, USA, 2010; Volume 1, Available online: https://core.ac.uk/display/10557299 (accessed on 27 December 2024).
- Kalarikovilagam Srinivasan, G.; Bertram, O. Preliminary Design and System Considerations for an Active Hybrid Laminar Flow Control System. Aerospace 2019, 6, 109. [Google Scholar] [CrossRef]
- Iyer, V.; Bertram, O. Assessment of a Chamberless Active HLFC System for the Vertical Tail Plane of a Mid-Range Transport Aircraft. In Proceedings of the Deutscher Luft- und Raumfahrtkongress 2017, Munich, Germany, 5–7 September 2017. [Google Scholar] [CrossRef]
- Dähne, S.; Hühne, C. Gradient Based Structural Optimization of a Stringer Stiffened Composite Wing Box with Variable Stringer Orientation. In Proceedings of the World Congress of Structural and Multidisciplinary Optimisation, Kobe, Japan, 5–9 June 2017; WCSMO 2017. Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ying, B.; Changchum, X. Gust Load Alleviation Wind Tunnel Tests of a Large-aspect-ratio Flexible Wing with Piezoelectric Control. J. Aeronaut. 2017, 30, 292–309. [Google Scholar] [CrossRef]
- Beyer, Y.; Kuzolap, A.; Steen, M.; Diekmann, H.; Fezans, N. Adaptive Nonlinear Flight Control of STOL-Aircraft Based on Incremental Nonlinear Dynamic Inversion. In Proceedings of the 2018 AIAA Aviation Forum, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar] [CrossRef]
- Ehlers, J.; Fezans, N. Airborne Doppler LiDAR Sensor Parameter Analysis for Wake Vortex Impact Alleviation Purposes. In Proceedings of the 2015 CEAS Conference on Guidance, Navigation, and Control, Toulouse, France, 13–15 April 2015. [Google Scholar] [CrossRef]
- Khalil, K.; Asaro, S.; Bauknecht, A. Active Flow Control Devices for Wing Load Alleviation. J. Aircr. 2022, 59, 458–473. [Google Scholar] [CrossRef]
- Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes CS-25. June 2020. Available online: https://perma.cc/9K76-KJPW (accessed on 27 December 2024).
- Dagget, D.; Brown, S.; Kawai, R. Ultra-Efficient Engine Diameter Study; NASA/CR-2003-212309; NASA: Seattle, WA, USA, 2003. Available online: https://ntrs.nasa.gov/citations/20030061085 (accessed on 27 December 2024).
- Giescke, D.; Lehmler, M.; Friedrichs, J.; Blinstrub, J.; Bertsch, L.; Heinze, W. Evaluation of Ultra-high Bypass Ratio Engines for an Over-wing Aircraft Configuration. J. Glob. Power Propuls. Soc. 2018, 2, 493–515. [Google Scholar] [CrossRef]
- Bijewitz, J.; Seitz, A.; Hornung, M. Architectural Comparison of Advanced Ultra-High Bypass Ratio Turbofans for Medium to Long Range Application. In Proceedings of the Deutscher Luft-und Raumfahrtkongress 2014, Augsburg, Germany, 16–18 September 2014; Available online: https://perma.cc/YDF6-A66D (accessed on 27 December 2024).
- Merkl, E. Final Report Summary-ENOVAL (Engine Module Validators); European Commission: Amsterdam, The Netherlands, 2018; Available online: https://perma.cc/59JE-877J (accessed on 27 December 2024).
- Chapman, J.; Schulo, S.; Nitzsche, M. Development of a Thermal Management System for Electrified Aircraft. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef]
- Mukhopadhaya, J. Performance Analysis of Fuel Cell Retrofit Aircraft. ICCT White Paper. 2023. Available online: https://theicct.org/publication/fuel-cell-retrofit-aug23/ (accessed on 4 December 2024).
- Larminie, J.; Dicks, A. Fuel Cell Systems Explained, 2nd ed.; John Wiley & Son Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Welstead, J.; Feldder, J. Conceptual Design of a Single-Aisle Turboelectric Commercial Transport with Fuselage Boundary Layer Ingestion. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef]
- Stückl, S. Methods for the Design and Evaluation of Future Aircraft Concepts Utilizing Electric Propulsion Systems. Ph.D. Dissertation, Technische Universität München, München, Germany, 2015. Available online: http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20160701-1255732-1-0 (accessed on 27 December 2024).
- Brake, H.; Wiegerinck, G. Low-power Cryocooler Survey. Cryogenics 2015, 42, 705–718. [Google Scholar] [CrossRef]
- Karpuk, S.; Elham, A. Influence of Novel Airframe Technologies on the Feasibility of Fully-Electric Regional Aviation. Aerospace 2021, 8, 163. [Google Scholar] [CrossRef]
- Winnefeld, C.; Kadyk, T.; Bensmann, B.; Krewer, U.; Hanke-Rauschenbach, R. Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications. Energies 2018, 11, 105. [Google Scholar] [CrossRef]
- Gudmundsson, S. General Aviation Aircraft Design: Applied Methods and Procedures, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Silberhorn, D.; Atanasov, G.; Walther, J.; Zill, T. Assessment of Hydrogen Fuel Tank Integration at Aircraft Level. In Proceedings of the Deutscher Luft- und Raumfahrtkongress 2019, Darmstadt, Germany, 30 September–2 October 2019; Available online: https://core.ac.uk/download/pdf/237080603.pdf (accessed on 27 December 2024).
- Gomez, A.; Smith, H. Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis. Aerosp. Sci. Technol. 2019, 95, 105438. [Google Scholar] [CrossRef]
- Raymer, D. Aircraft Design: A Conceptual Approach, 6th ed.; American Institute of Aeronautics and Astronautics: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Drela, M.; Youngren, H. Athena Vortex-Lattice Method. Available online: https://perma.cc/RWM5-NFK9 (accessed on 27 December 2024).
- Nita, M.; Scholz, D. Estimating the Oswald Factor from Basic Aircraft Geometrical Parameters. In Proceedings of the Deutscher Luft- und Raumfahrtkongress 2012, Berlin, Germany, 10–12 September 2012; Available online: https://nbn-resolving.org/urn:nbn:de:101:1-201212176728 (accessed on 27 December 2024).
- Mason, W. Analytic models for technology integration in aircraft design. In Proceedings of the Aircraft Design, Systems and Operations Conference, Dayton, OH, USA, 17–19 September 1990. [Google Scholar] [CrossRef]
- Mattingly, J.; Heiser, W.; Pratt, D. Aircraft Engine Design, 3rd ed.; AIAA Education Series; AIAA: Las Vegas, NV, USA, 2018. [Google Scholar] [CrossRef]
- Masson, P.J.; Soban, D.S.; Upton, E.; Pienkos, J.E.; Luongo, C.A. HTS motors in aircraft propulsion: Design considerations. IEEE Trans. Appl. Supercond. 2005, 15, 2218–2221. [Google Scholar] [CrossRef]
- Wells, D.; Horvath, B.; McCullers, L. The Flight Optimization System Weights Estimation Method; NASA TM 20170005851; NASA: Hampton, VA, USA, 2017; Available online: https://core.ac.uk/display/84913944 (accessed on 27 December 2024).
- Karpuk, S.; Ma, Y.; Elham, A. Design Investigation of Potential Long-Range Hydrogen Combustion Blended Wing Body Aircraft with Future Technologies. Aerospace 2023, 10, 566. [Google Scholar] [CrossRef]
- Verstraete, D. The Potential of Liquid Hydrogen for Long Range Aircraft Propulsion. Ph.D. Dissertation, Cranfield University, Cranfield, UK, 2009. Available online: https://dspace.lib.cranfield.ac.uk/handle/1826/4089 (accessed on 27 December 2024).
- Barron, R. Cryogenic Systems, 2nd ed.; Oxford University Press: Oxford, UK, 1985. [Google Scholar]
- Scholz, D.; Thorbeck, J. TU Berlin DOC Method. In Proceedings of the 3rd Symposium on Collaboration in Aircraft Design, Linköping, Sweden, 19 September 2013; Available online: https://purl.org/aero/PRE2013-09-19 (accessed on 29 December 2024).
- Roskam, J. Airplane Design, 2nd ed.; Darcorporation: Lawrence, KS, USA, 2003; Volumes 1–8. [Google Scholar]
- Hoelzen, J.; Silberhorn, D.; Zill, T.; Bensmann, B.; Hanke-Rauschenbach, R. Hydrogen-powered Aviation and its Reliance on Green Hydrogen Infrastructure—Review and Research Gaps. Int. J. Hydrogen Energy 2022, 47, 3108–3130. [Google Scholar] [CrossRef]
- Scholz, D. Contrail management: From basics to application. In Proceedings of the Deutscher Luft- und Raumfahrtkongress 2024, Hamburg, Germany, 30 September–2 October 2024. [Google Scholar] [CrossRef]
- Baughcum, S.; Tritz, T.; Henderson, S.; Pickett, D. Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis; NASA Contractor Report 4700; NASA: Hampton, VA, USA, 1996. [Google Scholar]
- Dallara, E. Aircraft Design for Reduced Climate Impact. Ph.D. Dissertation, Stanford University, Stanford, CA, USA, 2011. Available online: https://perma.cc/3TDH-TB2S (accessed on 27 December 2024).
- Barton, D.I.; Hall, C.A.; Oldfield, M.K. Design of a Hydrogen Aircraft for Zero Persistent Contrails. Aerospace 2023, 10, 688. [Google Scholar] [CrossRef]
- Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F. Aircraft type influence on contrail properties. Atmos. Chem. Phys. 2013, 13, 11965–11984. [Google Scholar] [CrossRef]
- Annex 14 to the Convention on International Civil Aviation, Aerodromes, 8th ed.; ICAO: Montreal, QC, Canada, 2018; Volume 1, Available online: https://perma.cc/H853-AMWW (accessed on 29 December 2024).
Technology | Value Range | Units | Reference |
---|---|---|---|
Fuel cell stack specific power | 5.5 | kW/kg | [14] |
Fuel cell power density | 1.0 | kW/L | [51] |
Compressor specific power | 5.0 | kW/kg | assumed |
Compressor efficiency | 0.85 | - | [52] |
Heat exchanger design temperature | 317 | K | [53] |
Heat exchanger cooling fluid temperature | 380 | K | [53] |
Maximum expected motor power | 6.0 | MW | [54] |
Maximum desired motor power | 10.0 | MW | assumed |
Motor efficiency | 0.99 | - | [54] |
Motor cooling power loss | 10 | kW | [55] |
PMAD power density | 33 | kW/kg | [53] |
PMAD cooling power loss | 10 | kW | [53] |
Cable density | 3.9–5.0 | kg/m | [12,53] |
Cable efficiency | 0.995 | - | [53] |
Gearbox efficiency | 0.98 | - | [56] |
PMAD efficiency | 0.98 | - | [53] |
Ducted fan pressure ratio | 1.5 | - | assumed |
Component | Weight | Units |
---|---|---|
Boost pumps | 53.1 | kg/tank |
High-pressure pumps | 6.0 | kg/engine |
Pump/valves electrical systems | 48.5 | kg |
Engine fuel delivery lines | 0.065 | kg/m |
Refuel/defuel system | ||
Refuel lines inside tank | 7.2 | kg/tank |
Valves and adapters | 21.3 | kg |
Refuel/defuel manifold | 239.5 | kg |
Tank vent/pressurization system | ||
Valves | 3.5 | kg/tank |
Tank pressure generation system | 2.5 | kg/tank |
Vent lines | 0.98 | kg/m |
Component | Parameter | Units |
---|---|---|
CO2 | 3.58 × | K/ |
7.79 × | K/ | |
−9.14 × | K/ | |
−3.90 × | K/ | |
Contrails | 1.37 × | K/km |
Cirrus | 4.12 × | K/km |
Constant | Value | Influence Description |
---|---|---|
2.79 | Higher hydrogen combustion temperature | |
0.1–0.75 | Lean combustion | |
Equation (36) | Higher H2O emission | |
0.27–0.36 | Thinner ice crystals and less visibility of contrails | |
Equation (39) | Aircraft size |
Parameter | Value |
---|---|
Passengers (single class) | 180 |
Cabin | Single aisle |
Span (at airport gate) | Within 79–118 ft |
Takeoff field length | 8200 ft |
Range | 2935 NM at end of life |
Cruise Mach | 0.78 |
Cruise altitude | 37,000 |
Reserves | 200 NM divert, 30 min loiter, 5% contingency |
Regulation | FAR 25 compliant |
CO2 emissions | 0.0 lb/pmi (0.2 lb/pmi for B737-800) |
NO2 emissions | 0.0 lb/LTO cycle (27 lb/LTO cycle for B737-800) |
Parameter | CHEETA | Current Model | % Difference |
---|---|---|---|
Maximum take-off mass, kg | 86,400 | 87,281 | 1.02 |
Operating empty mass, kg | 62,868 | 63,867 | 1.59 |
Payload mass, kg | 15,875 | 15,875 | 0.00 |
Fuel cell system mass, kg | 9108 | 9427 | 3.50 |
Fuel tank mass, kg | 4976 | 4843 | −2.67 |
Fuel burn, kg | 7655 | 7582 | −0.95 |
Parameter | CHEETA | Current Model | % Difference |
---|---|---|---|
10 | 10 | 0.0 | |
Wing area, m2 | 171 | 176 | 2.9 |
Kink span ratio | 0.39 | 0.38 | 2.6 |
Wingspan, m | 41.3 | 41.9 | 1.4 |
Taper ratio | 0.3 | 0.3 | 0.0 |
Characteristic | Medium-Range | Long-Range B787-9 Category | Long-Range B777-300ER Category | Units |
---|---|---|---|---|
Maximum payload mass | 19.9 | 53.0 | 70.0 | t |
Cruise Mach number | 0.75 | 0.81 | 0.81 | - |
Maximum Cruise Mach number | 0.78 | 0.84 | 0.84 | - |
Design range | 6100 | 14,140 | 13,649 | km |
Takeoff field length (MTOM, ISA) | 2100 | 2900 | 3100 | m |
Landing field length (MLM, ISA) | 1370 | 1870 | 2150 | m |
Parameter | LH2 Fuel Cell | LH2 Combustion | Units |
---|---|---|---|
Wing | |||
11.0 | 13.0 | - | |
b | 43.0 | 42.0 | m |
168.3 | 135.3 | m2 | |
27.0 | 27.0 | deg | |
7.78 | 6.43 | m | |
2.33 | 2.12 | m | |
Fuselage | |||
Length | 37.5 | 37.5 | m |
Width | 4.2 | 4.2 | m |
Height | 5.06 | 4.88 | m |
Propulsion | |||
Number of engines | 8 | 2 | - |
Engine diameter | 1.37 | 1.94 | m |
Motor total power | 2033 | kW | |
Motor power-to-weight ratio | 21.7 | kW/kg | |
Sea-level static thrust | 23.87 | 69.5 | kN |
LH2 tanks | |||
Total compartment length | 20.12 | 20.12 | m |
Tank diameter | 0.87 | 0.69 | m |
Weights | |||
77.68 | 60.9 | t | |
53.48 | 37.7 | t | |
2.37 | 3.27 | t | |
15.92 | 14.3 | t | |
2.91 | 2.26 | t | |
9.08 | t | ||
2.46 | 2.28 | N/kg | |
461.5 | 450.2 | kg/m2 |
Parameter | LH2 Fuel Cell | LH2 Combustion | Units |
---|---|---|---|
Wing | |||
10.5 | 12.5 | - | |
b | 71.9 | 65.8 | m |
492.2 | 346.0 | m2 | |
33.0 | 33.0 | deg | |
14.38 | 11.7 | m | |
2.87 | 2.93 | m | |
Fuselage | |||
Length | 56.8 | 56.8 | m |
Width | 5.7 | 5.7 | m |
Height | 8.23 | 7.75 | m |
Propulsion | |||
Number of engines | 8 | 2 | - |
Engine diameter | 1.59 | 2.81 | m |
Motor total power | 8372 | kW | |
Motor power-to-weight ratio | 32.1 | kW/kg | |
Sea-level static thrust | 56.93 | 171.50 | kN |
LH2 tanks | |||
Total compartment length | 36.5 | 36.5 | m |
Tank diameter | 2.38 | 1.90 | m |
Weights | |||
228.7 | 162.9 | t | |
162.8 | 101.2 | t | |
5.45 | 7.93 | t | |
33.35 | 27.53 | t | |
16.98 | 12.83 | t | |
37.34 | t | ||
2.0 | 2.1 | N/kg | |
464.6 | 470.8 | kg/m2 |
Parameter | LH2 Fuel Cell | LH2 Combustion | Units |
---|---|---|---|
Wing | |||
8.5 | 11.0 | - | |
b | 76.5 | 77.0 | m |
689.0 | 538.9 | m2 | |
33.0 | 33.0 | deg | |
17.9 | 14.86 | m | |
3.59 | 3.71 | m | |
Fuselage | |||
Length | 72.0 | 72.0 | m |
Width | 6.6 | 6.6 | m |
Height | 8.96 | 8.49 | m |
Propulsion | |||
Number of engines | 10 | 2 | - |
Engine diameter | 1.62 | 3.44 | m |
Motor total power | 8899 | kW | |
Motor power-to-weight ratio | 32.6 | kW/kg | |
Sea-level static thrust | 63.87 | 279.7 | kN |
LH2 tanks | |||
Total compartment length | 48.6 | 48.6 | m |
Tank diameter | 2.67 | 2.19 | m |
Weights | |||
326.4 | 257.2 | t | |
221.9 | 159.2 | t | |
7.35 | 12.83 | t | |
50.45 | 42.97 | t | |
25.45 | 21.57 | t | |
49.56 | t | ||
1.96 | 2.17 | N/kg | |
473.7 | 477.3 | kg/m2 |
Component | Medium-Range | Long-Range B787-9 Category | Long-Range B777-300ER Category | Units |
---|---|---|---|---|
Fuel cells | 5.3 | 21.7 | 28.8 | t |
Compressors | 1.2 | 4.8 | 6.4 | t |
Cooling system | 2.3 | 9.6 | 12.8 | t |
Humidifier | 0.3 | 1.1 | 1.54 | t |
Total | 9.0 | 37.3 | 49.6 | t |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpuk, S.; Freund, Y.; Hanke-Rauschenbach, R. Potential of Hydrogen Fuel Cell Aircraft for Commercial Applications with Advanced Airframe and Propulsion Technologies. Aerospace 2025, 12, 35. https://doi.org/10.3390/aerospace12010035
Karpuk S, Freund Y, Hanke-Rauschenbach R. Potential of Hydrogen Fuel Cell Aircraft for Commercial Applications with Advanced Airframe and Propulsion Technologies. Aerospace. 2025; 12(1):35. https://doi.org/10.3390/aerospace12010035
Chicago/Turabian StyleKarpuk, Stanislav, Yannik Freund, and Richard Hanke-Rauschenbach. 2025. "Potential of Hydrogen Fuel Cell Aircraft for Commercial Applications with Advanced Airframe and Propulsion Technologies" Aerospace 12, no. 1: 35. https://doi.org/10.3390/aerospace12010035
APA StyleKarpuk, S., Freund, Y., & Hanke-Rauschenbach, R. (2025). Potential of Hydrogen Fuel Cell Aircraft for Commercial Applications with Advanced Airframe and Propulsion Technologies. Aerospace, 12(1), 35. https://doi.org/10.3390/aerospace12010035