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Abstract: The Chang’e-6 mission achieved the first successful sample collection and re-
turn from the Moon’s far side. Accurate alignment detection of the primary packaging
container is critical for the success of this mission, as it ensures proper retrieval of lunar
soil. To address challenges such as complex backgrounds, uneven lighting, and reflective
surfaces, this paper introduces an alignment detection method that integrates YOLO object
recognition, Devernay subpixel edge detection, and the RANSAC fitting algorithm. By
employing both linear and elliptical fitting techniques, the method accurately determines
the median line of the primary packaging container, ensuring precise alignment detection.
The effectiveness of this approach is demonstrated by an average alignment distance of
0.28 mm with a standard deviation of 0.03 mm in lunar surface images, underscoring its
accuracy and reliability.

Keywords: alignment detection; primary packaging container; median line; region of interest

1. Introduction
The Chang’e-6 lunar surface sampling mission, completed on June 25, 2025, as part of

China’s “Lunar Exploration Program,” represents a significant milestone in space explo-
ration, marking the first time humanity has successfully collected and returned samples
from the Moon’s far side [1]. This mission required overcoming several obstacles due to
the unique challenges posed by the Moon’s far side, including the inability to directly
communicate with ground personnel. As a result, the Chang’e-6 mission relied heavily on
advanced autonomous capabilities, including perception, analysis, judgment, and decision-
making, to achieve its objectives. Among these capabilities, the precise alignment between
the primary packaging container, which held the lunar soil samples, and the Chang’e-6
spacecraft was critical. The alignment process relied on a sampling surveillance system,
where the camera was positioned to monitor the alignment between the primary packaging
container and the sealed container. As shown in Figure 1a, the camera was mounted
at a fixed angle to capture real-time images of the containers, ensuring that alignment
detection could be performed with high accuracy. After the sampling, it was essential that
the primary packaging container was correctly aligned with the sealed container attached
to Chang’e-6 to ensure successful retrieval of the lunar soil. As shown in Figure 1b, the
primary packaging container was detached from the top displacement device through a
controlled explosive release, causing it to rapidly and forcefully descend into the sealed
container below. If the alignment was not precise, this violent movement could cause a
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failure in the drilling and sampling tasks. Therefore, the alignment detection of the primary
packaging container is crucial to ensuring the success of the mission.
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Figure 1. (a) Schematic diagram of hardware setup for alignment detection. (b) Primary packaging
container and sealed container. (c) Hole in primary packaging container.

The primary packaging container was not directly inserted into the sealed container.
Instead, it detached from the top displacement device through a controlled release and
then descended into the sealed container. This required the alignment detection system on
Chang’e-6 to be both highly accurate and stable, with a maximum permissible alignment
error of 0.5 mm and a stability threshold of no less than 0.1 mm.

Several factors complicate the alignment detection process. Firstly, images captured
often have complex backgrounds, with the region of interest (ROI) representing only a small
portion, making it challenging to maintain the accuracy and stability of alignment detection
due to potential background interference. Secondly, variations in the rotation angle of the
primary packaging container can affect edge detection, as illustrated in Figure 1c. Thirdly,
the Moon’s surface reflects light unpredictably, introducing numerous uncertainties into
the captured images due to the complex interactions between the camera and the reflective
surfaces. To address the challenge, the alignment detection system relies on both natural
sunlight and independent light sources. These light sources ensure reliable illumination in
areas that may be in shadow or lack sufficient sunlight, allowing the system to continue
operating effectively under varying lighting conditions. Finally, the three-dimensional
nature of the task is challenging to interpret in two-dimensional images, especially when
the container moves toward or away from the camera, which can impact the alignment
detection’s precision and stability.

While there have been some studies on alignment detection, they are often not fully
applicable to the specific challenges faced by Chang’e-6. For example, Jose Lezama et al.
developed a two-dimensional point pair alignment detection algorithm that is effective in
noisy backgrounds but suffers from redundant calculations in complex environments [2],
resulting in longer computation times and lower robustness due to its sensitivity to image
variations. Zhang et al. proposed a joint alignment detection method using a multi-task
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cascaded convolutional network [3], which offers improved detection performance and real-
time capability but is highly sensitive to hyperparameters. Similarly, Sebastiano Battiato
et al. presented a robust image alignment detection method based on image hashing [4],
which is efficient and robust for detecting image transformations but unsuitable for object
alignment within an image.

In light of these challenges, this paper introduces a novel alignment detection tech-
nique specifically tailored to the Chang’e-6 mission. In complex backgrounds, a deep
convolutional neural network [5] is employed to accurately identify regions of interest,
thereby enhancing target detection robustness. For scenarios involving the primary pack-
aging container’s structural holes, traditional edge detection methods [6–8] are combined
with an elliptical fitting median line method [9] to improve accuracy. To address issues
arising from reflective surfaces, an adaptive algorithm selection strategy for alignment
detection is implemented. Furthermore, to manage dimensionality challenges when the
container moves, a size ratio-based dimension expansion method is utilized. This compre-
hensive approach to alignment detection significantly improves accuracy, efficiency, and
stability. Experimental results demonstrate that the proposed technique precisely calculates
the distance and angle between the primary packaging container and the median line
of the sealed container, ensuring precise alignment. The accuracy and stability achieved
with this technique not only meet but exceed mission requirements, outperforming tradi-
tional methods.

2. Approach
In the Chang’e-6 mission, addressing the challenges posed by complex lunar images,

as outlined in the introduction, requires precise extraction of two regions of interest (ROI):
the primary packaging container and the sealed container. These challenges include
background interference, unpredictable lighting conditions, and the three-dimensional
nature of the task. To overcome these issues, several methods have been proposed to
ensure accurate detection and alignment. Leonardo Rossi et al. introduced a novel ROI
extraction layer that aims to overcome the limitations of traditional ROI extractors, which
typically select only a single optimal layer from the feature pyramid network for feature
extraction [10]. However, their model is hindered by high computational complexity and
difficulties in hyperparameter tuning. Similarly, G. Rafiee et al. developed a two-stage
unsupervised segmentation strategy using ensemble clustering and Gaussian difference
methods to efficiently extract ROI from low depth-of-field images [11]. This method,
however, struggles with errors when applied to images with complex backgrounds. Liu
et al. suggested an ROI extraction technique based on the HSV color space and stereo
vision, which quickly identifies salient regions by evaluating their saliency and refining the
boundaries, all while minimizing computational complexity [12]. Despite its efficiency, this
algorithm is sensitive to illumination changes and lacks robust generalization. In contrast,
the YOLO (You Only Look Once) algorithm [5,13–15] has shown outstanding accuracy
and robustness in ROI extraction, making it the preferred choice for object detection in
this mission.

To address the issue of holes appearing in images captured during the rotation of
primary packaging containers—which can lead to errors in image edge extraction and
render traditional line fitting methods ineffective—a new approach has been developed.
This technique specifically targets the unique features of these images, extracting the
median line through bottom ellipse fitting of the primary packaging containers. Unlike
previous methods, this approach remains robust even with container rotation, ensuring
greater accuracy and reliability.
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The lunar backlighting environment adds further complexity by creating multiple
reflection points within images, which can compromise the accuracy of alignment detection.
However, the bottom ellipse of the primary packaging container is relatively unaffected
by these reflections, making it an effective reference for alignment detection. Despite this,
the brightness of the bottom ellipse is typically lower and noisier than that of the side
edge, which can reduce the accuracy of using an ellipse fitting method compared to a
straight line fitting method. Therefore, under standard conditions, a straight line fitting
approach is generally preferred. To optimize the process, an algorithm has been designed
to adaptively select the most appropriate fitting method. This algorithm evaluates the
presence of reflections and holes in the images to determine whether a straight line or
ellipse fitting method is more suitable for each situation.

Furthermore, this paper addresses the challenge of detecting minor changes in two-
dimensional images when the primary packaging container moves along the camera’s
optical axis, with the relative position of the sealed container and the camera remaining
unchanged. In such cases, the size ratio between the primary and sealed containers in the
image can be used to calculate their median line alignment in the optical axis direction.

The detection technology process developed for the Chang’e-6 mission is illustrated in
Figure 2. This process primarily includes YOLO object recognition, line fitting for median
lines, ellipse fitting for median lines, and the adaptive selection of the appropriate median
line fitting algorithm.
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2.1. YOLO Object Recognition

The YOLO algorithm is designed to predict both the bounding box location and
category probability of objects directly from input images using a deep convolutional
neural network [14]. This approach allows for rapid object detection while maintaining
high accuracy.
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In applying the YOLO algorithm for object recognition, preprocessing the input image
is essential. This step involves resizing and normalizing the image to match the model’s
input specifications. Once preprocessing is complete, the image undergoes feature extrac-
tion through a deep convolutional neural network. The model then generates a tensor
that contains bounding box data, including predicted position, width, height, confidence
level for each grid cell, and class probability. This bounding box information is subse-
quently decoded to transform the coordinates from the network’s output space back to
the original image’s coordinate space. In the final step, the Non-Maximum Suppression
(NMS) algorithm [16,17] is employed to refine the decoded bounding boxes by removing
any overlapping or redundant ones. The refined bounding boxes, along with their class
probabilities, are then provided as the final detection results.

Over time, the YOLO algorithm has evolved, with the latest version, YOLOv5, of-
fering improved speed and accuracy over earlier iterations [14]. YOLOv5 also features
enhanced universality and scalability, along with better multi-scale detection capabilities.
Its streamlined design makes it an ideal choice for extracting regions of interest.

For the Chang’e-6 alignment detection task, the YOLOv5 algorithm is used to tackle the
challenges posed by complex image backgrounds and small regions of interest. This method
enables efficient extraction of the areas corresponding to the primary packaging container
and the sealed container, reducing the computational load of the subsequent median line
fitting process. As a result, both the accuracy and processing speed of the alignment
detection are improved. The model is trained on multiple sets of images, captured under
various conditions. Specifically, part of the training data was obtained from laboratory
tests conducted on Earth, while the rest came from actual lunar surface operations during
the Chang’e-5 mission. These images were used to train the model before the Chang’e-6
mission, and the training was completed on Earth prior to the mission launch. The detection
results for the primary packaging container and sealed container from this model are then
applied to actual images, as shown in Figure 3a.
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2.2. Median Line Fitting in Straight Line

Since both the primary and sealed packaging containers are cylindrical, the position of
the median line can be determined by isolating the left and right edges of the container and
analyzing their positions. Within the region of interest identified by the YOLO algorithm,
there may be additional edges on the container that could interfere with the extraction of the
left and right edges. To improve the precision of edge extraction, a narrower, strip-shaped
region of interest can be selected near the positions of the left and right edges within the
original region of interest. This strategy effectively minimizes the impact of other container
edges, as shown in Figure 3b.

Within this refined region of interest, a subpixel edge extraction algorithm is first
employed to extract edges with greater precision. Although other methods, such as the
partial area effect approach by Trujillo et al. [18] and Zernike moments [19], are promising
for subpixel edge detection, we chose the Devernay subpixel edge extraction algorithm [20]
due to its high accuracy and suitability for our engineering application. The Devernay
algorithm has shown reliable performance in achieving subpixel edge detection accuracy in
lunar surface images, meeting the precision requirements for the Chang’e-6 mission. Next,
the RANSAC algorithm [21,22] is used to fit the potential edge points into a straight line,
allowing for the optimal calculation of edge line parameters. Finally, using the two edge
line parameters of the container, the median line parameters are computed.

The Devernay algorithm identifies edge points based on the maximal gradient modu-
lus difference between adjacent points. It works by interpolating a quadratic function of
the gradient modulus at three nearby points along the gradient direction, as illustrated in
Figure 3c. While this method provides the necessary accuracy for the task, its computational
cost can be high. To mitigate this, an approximate formula can be used to simplify the
fitting process without compromising edge detection precision:

η =
1
2

∥g(A)∥ − ∥g(C)∥
∥g(A)∥+ ∥g(C)∥ − 2∥g(B)∥ , (1)

where ∥g(A)∥, ∥g(B)∥ and ∥g(C)∥ represent the gradient magnitudes at three points, and
η is the maximum difference in gradient magnitude.

After extracting the subpixel edge points, these points need to be fitted into edge lines.
The least squares method, however, often results in significant errors when fitting edge
lines due to its sensitivity to image noise and background interference. To address this, the
RANSAC line fitting algorithm is used for a more accurate approach [21,22]. As shown in
Figure 3d, the RANSAC line fitting algorithm begins by randomly selecting two points
(green points) from the candidate subpixel edge points (red points) and fitting a line using
these points. The distances of all other candidate edge points to this line are then calculated.
Points within a predefined threshold distance (illustrated by the dashed boundary) from
the line are considered inliers (blue points). This process is repeated multiple times, with
the number of iterations set beforehand. The model that accumulates the highest number
of inliers is selected, and all inliers within this model are used for least squares line fitting
to derive the optimal edge. This iterative process ensures robustness against outliers (red
points outside the dashed boundary), leading to a more accurate line fitting result.

By applying Devernay subpixel edge detection and RANSAC line fitting techniques,
the median line of both the primary and sealed containers is derived, as illustrated in
Figure 4a, where the blue line represents the median line fitted to the primary packaging
container, and the red line represents the median line fitted to the sealed container.
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2.3. Median Line Fitting in Ellipse

During the rotation of the primary packaging container, holes may appear in the
elongated region of interest, leading to significant errors when fitting the midline with
a straight line. To ensure accurate midline fitting, alternative methods must be consid-
ered. Since the round bottom of the primary packaging container appears as an ellipse
in the image, the ellipse’s minor axis can be used to represent the midline of the primary
packaging container.

Within the region of interest identified by the YOLO algorithm, elliptical template
matching is used to extract sub-regions of interest. This approach helps avoid interference
from other edges during the initial fitting of the bottom ellipse of the primary packaging
container. In the refined region, a subpixel edge extraction algorithm is employed to
accurately delineate the ellipse’s edges. Then, the RANSAC algorithm [22] is used to align
the potential edge points into an elliptical shape, deriving the optimal elliptical parameters.
These parameters are then used to calculate the ellipse’s minor axis, which serves as the
baseline for the primary packaging container.

For inlier filtering in the RANSAC algorithm, a threshold is determined by the
weighted average of distances from each point to the focus. Points located at a distance less
than this threshold are classified as inliers. The initial focus is provided by the results of
YOLO object recognition, and the weight assigned to each potential edge point is calculated
based on the sum of distances from each point to the initial focus:

wi = e−
1
2 |2a0−r0i |, (2)

where a0 is the prior semi-major axis length, and wi is the weight of each candidate
edge point.

In cases where images of the primary packaging container show holes, the results
derived from the median line of both the primary and sealed containers are shown in
Figure 4b. These results are obtained using Devernay subpixel edge detection and RANSAC
ellipse fitting techniques.

2.4. Selection of Adaptive Median Line Fitting Algorithm

For the Chang’e-6 mission, an automated approach to selecting the optimal median
line fitting algorithm is essential to handle scenarios prone to significant errors, such as
holes, uneven illumination, and reflections. To address these challenges, gamma correction
is first applied to the image to standardize illumination across the scene. Next, the mean
and variance of the grayscale values within the elongated region of interest, shown in
Figure 3b, are calculated.

When the image of the primary packaging container exhibits holes or intense reflec-
tions, the mean and variance of the grayscale values will be either unusually high or
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low. By setting dual thresholds for these metrics, the system can automatically identify
such anomalies.

During the initial assessment of the primary packaging container, the system calculates
the mean and variance of the grayscale values within the specified elongated region of
interest. These values are then compared to predetermined thresholds. If both metrics are
within the acceptable range, a line fitting median is selected; otherwise, an ellipse fitting
median is applied. This adaptive method ensures accurate alignment detection, regardless
of the varying conditions of the images.

3. Experiment
To evaluate the effectiveness of the alignment detection algorithm, experiments were

conducted using images of the primary packaging container captured in two different
environments: a simulated lunar surface and the actual far side of the moon. The objective
was to assess the algorithm’s performance under various conditions.

The experimental data is categorized into two parts. The first part consists of images
obtained from Chang’e-6 on a simulated lunar surface, primarily used for training the
YOLO model, designing initial algorithms for alignment detection, and evaluating the
accuracy, precision, and robustness of the detection functions. The second part includes
real images taken on the actual lunar surface.

3.1. Simulation of Lunar Surface Experiment

To test the alignment detection algorithm’s effectiveness and robustness, parameters
such as the position, rotation angle, and light intensity of the primary packaging container
were varied. The tests were conducted on Earth in a simulated lunar environment at the
Aerospace Research Institute’s dedicated test facility. The test environment simulated
various lunar conditions, including lunar soil simulation, terrain types, and drilling and
sampling conditions. These simulations were designed to closely mimic the physical
properties of the lunar surface and the challenges faced during actual lunar operations.

First, the impact of rotation angle on alignment detection performance was examined
under consistent location and lighting conditions. The primary packaging container was
rotated completely, with images captured at each position for alignment detection. These
results are shown in Figure 5. An image taken at the precise alignment moment was used
as the baseline. By calculating the difference between the angle and distance of the primary
packaging container relative to the median line within the sealed container in each test
image, compared to the baseline image, the alignment detection results were obtained, as
detailed in Table 1.

Table 1. Impact of Different Rotation Angles on the Alignment Detection Results in Primary Packag-
ing Container.

Serial Number Angle (rad) Distance (mm)

1 0.002 0.17
2 0.002 0.17
3 0.001 0.12
4 0.001 0.12
5 0.001 0.15
6 0.001 0.18
7 0.001 0.13
8 0.001 0.15
9 0.002 0.12
10 0.001 0.14
11 0.001 0.13
12 0.002 0.17
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Figure 5. Comparison of alignment detection results at different rotational angles of the primary
packaging container.

Analysis of 12 sets of image data revealed a mean value for the angle of 0.001 rad with
a standard deviation of 0.001 rad. The mean value for the distance was 0.15 mm, with a
standard deviation of 0.02 mm. These results suggest that, under consistent positioning
and lighting conditions, the alignment detection algorithm exhibits high precision and
stability with respect to rotation angle. This demonstrates the algorithm’s effectiveness in
addressing issues such as holes appearing in primary packaging containers during rotation.

Next, the effect of varying light intensities on alignment detection performance was
evaluated under fixed position and rotation angle conditions. In this experiment, the
primary packaging container remained stationary while the ambient light intensity was
altered. Images were captured at different light intensities for alignment detection, as
shown in Figure 6. The angle and distance between the primary packaging container
and the median line within the sealed container were calculated for each test image and
compared to the baseline image results, as outlined in Table 2.

Analysis of 6 sets of image data showed that the mean value for the angle was 0.001 rad
with a standard deviation of 0.001 rad. The mean value for the distance was 0.14 mm, with
a standard deviation of 0.03 mm. These findings indicate that under consistent position
and rotation angle conditions, the alignment detection algorithm is highly precise and
robust to variations in light intensity. Moreover, the algorithm performs effectively even in
low-light environments, successfully handling uneven lighting and reflections commonly
encountered with primary packaging containers.

Table 2. Impact of Different Light Intensities of Alignment Detection Results in Primary Packag-
ing Container.

Serial Number Angle (rad) Distance (mm)

1 0.001 0.10
2 0.001 0.11
3 0.001 0.15
4 0.002 0.17
5 0.002 0.16
6 0.001 0.15
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3.2. Practical Lunar Surface Results

During the Chang’e-6 mission on the far side of the Moon, the alignment detection
algorithm was employed to analyze images captured during the sampling process. To
ensure accuracy and reliability, multiple images were used for testing. The Chang’e-6
sampling surveillance camera captured 12 images during the actual sampling procedure.
The results from the alignment detection algorithm are shown in Figure 7, and the alignment
detection outcomes relative to the benchmark are detailed in Table 3.
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Analysis of the actual image alignment detection results indicated that no holes were
present in the primary packaging container during sampling. However, due to uneven
lighting conditions, the right side of the container appeared darker, leading to less accurate
edge detection. As a result, the method of fitting the median line using the elliptical base of
the primary packaging container was chosen over the straight-edge fitting method.
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Table 3. Impact of Different Conditions on Alignment Detection Results in Primary Packag-
ing Container.

Serial Number Angle (rad) Distance (mm)

1 0.001 0.29
2 0.002 0.28
3 0.003 0.22
4 0.003 0.25
5 0.003 0.27
6 0.003 0.29
7 0.001 0.32
8 0.001 0.28
9 0.001 0.29
10 0.001 0.28
11 0.001 0.29
12 0.001 0.32

Analysis of 12 sets of image data revealed a mean orthogonal angle of 0.002 rad
with a standard deviation of 0.001 rad. The mean orthogonal distance was 0.28 mm,
with a standard deviation of 0.03 mm. These results suggest that the alignment detection
algorithm achieves high precision and stability in actual lunar surface environments, with
detection accuracy not less than 0.5 mm and stability not less than 0.1 mm, thus meeting task
requirements. However, due to uncontrollable factors present in field images of the lunar
surface, the accuracy is slightly lower than that achieved in simulated lunar environments.

The successful application of this detection technology enabled precise alignment
detection of the primary packaging container and sealed container after Chang’e-6 sampled
on the far side of the Moon, marking the successful completion of the mission.

4. Conclusions
To meet the alignment requirements and address the practical challenges of the pri-

mary packaging container in the Chang’e-6 lunar surface autonomous sampling mission,
we developed a detection technique that combines both linear and elliptical midline fitting
methods. This technique leverages YOLO target recognition on images captured by the
Chang’e-6 sampling surveillance camera to identify and extract regions of interest for
the primary and sealed containers. By analyzing grayscale mean and variance against
dual thresholds, the method determines whether to employ linear or elliptical midline
fitting. Edge extraction is then performed within these regions, and the parameters are
derived using RANSAC fitting, either linear or elliptical. These parameters are used to
calculate the midlines of the primary and sealed containers, which are compared to a
reference image to evaluate their relative angles and distances. This process ensures precise
container alignment and facilitates the adjustment of the primary packaging container for
optimal alignment.

The algorithm’s performance was assessed using images from both a simulated lunar
surface and the actual far side of the Moon. For the real lunar surface images, the mean
corrected angle was 0.002 rad with a standard deviation of 0.001 rad, and the mean corrected
distance was 0.28 mm with a standard deviation of 0.03 mm. These results confirm that the
algorithm achieves the necessary precision and stability, demonstrating its effectiveness
and reliability for alignment detection in both simulated and real lunar environments.
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