Analysis of Electromagnetic Interference Effects of 5G Signals on Radio Altimeters
Abstract
:1. Introduction
2. Analysis of Interference Mechanisms
2.1. Analysis of 5G Signals
2.2. Analysis of RA Receiver Interference Mechanisms
3. Simulation of 5G Signal Injection
3.1. Modeling the RF Front-End Circuit of the RA Receiver
3.2. Interference Effect Simulation and Results Analysis
4. Injection Experiment of 5G Signal Interference into an RA Receiver
4.1. Design of the Experiment
4.2. Analysis of Gain Compression Effects on IF Signals
4.3. Analysis of the Influence of 5G Signal Interference on RA Measurement Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IATA. Problem Statement—5G Interference with Radar Altimeter Frequency Band. Ip08, FSMP-WG11, Montreal, Canada. 2020. Available online: https://www.icao.int/safety/FSMP/MeetingDocs/FSMP%20WG11/IP/FSMP-WG11-IP08_ICAO%20Flight%20Operations%20Panel%20and%20IATA%20%20IFALPA%205G%20problem%20statement.pdf (accessed on 27 November 2020).
- Cui, K.; Liu, R.; Zou, L.; Sun, X.; Sun, Q.; Wu, J. A study of C-band 5G system interference to Radio Altimeter. In Proceedings of the 2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 15–17 September 2023; Volume 7, pp. 1098–1103. [Google Scholar] [CrossRef]
- RTCA. Assessment of C-Band Mobile Telecommunications Interference Impact on Low Range Radar Altimeter Operations; Technical Report PMC-2073; RTCA: Washington, DC, USA, 2020. [Google Scholar]
- Son, H.K.; Chong, Y.J. Interference Analysis for Compatibility between 5G system and Aeronautical Radio Altimeter. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 21–23 October 2020; pp. 1553–1556. [Google Scholar] [CrossRef]
- He, L.; Zeng, X. Analysis of Sensitivity Characteristics of Airborne FM Radio Altimeter. Navig. Control 2018, 17, 67–72. (In Chinese) [Google Scholar]
- Zhang, Q.; Chen, Y.; Yu, F.; Zhang, Y.; Han, F.; Zhou, L. Study on the effect of satellite navigation receiver under out-of-band electromagnetic interference. Syst. Eng. Electron. 2024, 8, 2563–2571. [Google Scholar]
- Tong, X.; Yazhou, C.; Yuming, W.; Min, Z. Research on In-Band Continuous Wave Electromagnetic Interference Effect of Unmanned Aerial Vehicle Data Link. Trans. Beijing Inst. Technol. 2021, 41, 1084–1094. [Google Scholar] [CrossRef]
- He, H.; Nie, C.; Liu, J.; Fan, Y. Research on Modeling Method of Blocking Interference Response of Radio Receiver. J. Microwaves 2014, 30, 61–64. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Cheng, E.; Ma, L.; Chen, Y. Investigation on the Effect of the B1I Navigation Receiver Under Multifrequency Interference. IEEE Trans. Electromagn. Compat. 2022, 64, 1097–1104. [Google Scholar] [CrossRef]
- Li, W.; Wei, G.; Pan, X.; Sun, S. Blocking Jamming Effect Prediction Method under Multi-Frequency In-Band Radiation Environment for Spectrum-Dependent Equipment. J. Beijing Univ. Aeronaut. Astronaut. 2021, 47, 715–723. (In Chinese) [Google Scholar] [CrossRef]
- ITU. Operational and Technical Characteristics and Protection Criteria of Radio Altimeters Utilizing the Band 4200–4400 MHz; Technical Report ITU-R Report 2059-0; ITU: Geneva, Switzerland, 2014. [Google Scholar]
- Junjie, S.; Xiaodong, W.; Yongqiao, Q.; Wenjian, W.; Xiangpeng, N. Simulation and Analysis of High Degree of Interference of Mid-band 5G Systems on Civil Aviation Wireless Communication Systems. China Wirel. 2021, 11, 37–40. [Google Scholar]
- Li, S.; Xuan, B.; Gao, W. Behavior-Level Simulation and Analysis of Airborne Shortwave Radio Interference with Radio Altimeter. Mod. Electron. Tech. 2010, 33, 14–17. [Google Scholar] [CrossRef]
- AVSI. AFE 76s2 Report: Derivation of Radar Altimeter Interference Tolerance Masks; Technical Report AFE76S2; AVSI: Milan, Italy, 2021. [Google Scholar]
- Futatsumori, S.; Miyazaki, N. Measurement of Pulsed Aircraft Radio Altimeter In-Band and Out-band Interference Threshold Power Due to Sub-6 band 5G Mobile Communication Systems. In Proceedings of the 2022 International Symposium on Electromagnetic Compatibility—EMC Europe, Gothenburg, Sweden, 5–8 September 2022; pp. 608–611. [Google Scholar] [CrossRef]
- Duan, Z.; Ma, Z.; Bai, J.; Wang, P.; Xu, K.; Yuan, S. Deployment Protection for Interference of 5G Base Stations with Aeronautical Radio Altimeters. Sensors 2024, 24, 2313. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Y. Modeling and Simulation of Communication Systems Based on MATLAB/Simulink, 2nd ed.; Beihang University Press: Beijing, China, 2021; pp. 180–181. [Google Scholar]
- Amaireh, A.; Zhang, Y. Novel Machine Learning-Based Identification and Mitigation of 5G Interference for Radar Altimeters. IEEE Access 2024, 12, 102425–102439. [Google Scholar] [CrossRef]
- Li, J.; Liu, S.; Lu, H.; Hwang, S.H. Coexistence of 5G Communication Systems with Radar Altimeters. IEEE Access 2024, 12, 32554–32568. [Google Scholar] [CrossRef]
- Wei, G.; Zheng, J. A Model for Predicting Second-Order Intermodulation Low-Frequency Blocking Effects. IEEE Trans. Electromagn. Compat. 2022, 64, 348–357. [Google Scholar] [CrossRef]
- Wei, G.; Li, M.; Zhao, H. The General Evaluation Model for Radio-Frequency Blocking Effects of Frequency Equipment in Complex Electromagnetic Environment. IEEE Trans. Antennas Propag. 2023, 71, 7418–7425. [Google Scholar] [CrossRef]
- Li, M. Analysis of Blocking Effects of Electromagnetic Radiation Noise on Navigation Receiver. Syst. Eng. Electron. 2022, 44, 3221–3227. [Google Scholar] [CrossRef]
- 3GPP. Radio Frequency (RF) System Scenarios (Release 15); Technical Report TR 36.942 V15.0.0; 3GPP: Valbonne, France, 2018. [Google Scholar]
- RTCA. Minimum Performance Standards Airborne Low-Range Radar Altimeters; Technical Report DO-155; RTCA: Washington, DC, USA, 1974. [Google Scholar]
Equipment Name | Equipment Model | Function |
---|---|---|
Radio altimeter | LRA700 (Collins, West Palm Beach, IA, USA) | Test object |
Altitude simulator | ALT8000 (Viva, Kansas, KS, USA) | Generates RA echo signals |
Signal generator | E8267D (Keysight, Santa Clara, CA, USA) | Generates 5G signals |
Spectrum analyzer | N9020B (Keysight, Santa Clara, CA, USA) | Displays signal spectrum |
AC Power supply | HY9001 (Hwayunrike, Shenzhen, China) | RA power supply |
ARINC429 data converter | USB429-1T1R-B (Horntech, Beijing, China) | Receives altitude data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Z.; Xu, K.; Ma, Z.; Wang, P. Analysis of Electromagnetic Interference Effects of 5G Signals on Radio Altimeters. Aerospace 2025, 12, 15. https://doi.org/10.3390/aerospace12010015
Duan Z, Xu K, Ma Z, Wang P. Analysis of Electromagnetic Interference Effects of 5G Signals on Radio Altimeters. Aerospace. 2025; 12(1):15. https://doi.org/10.3390/aerospace12010015
Chicago/Turabian StyleDuan, Zhaobin, Ke Xu, Zhenyang Ma, and Peng Wang. 2025. "Analysis of Electromagnetic Interference Effects of 5G Signals on Radio Altimeters" Aerospace 12, no. 1: 15. https://doi.org/10.3390/aerospace12010015
APA StyleDuan, Z., Xu, K., Ma, Z., & Wang, P. (2025). Analysis of Electromagnetic Interference Effects of 5G Signals on Radio Altimeters. Aerospace, 12(1), 15. https://doi.org/10.3390/aerospace12010015