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Abstract: Medicanes are rare cyclones in the Mediterranean Sea, with intensifying trends partly
attributed to climate change. Despite progress, challenges persist in understanding and predicting
these storms due to limited historical tracking data and their infrequent occurrence, which make
monitoring and forecasting difficult. In response to this issue, we present an AI-based system for
tracking and forecasting Medicanes, employing machine learning techniques to identify cyclone
positions and key evolving spatio-temporal structural features of the cloud system that are associated
with their intensification and potential extreme development. While the forecasting model currently
operates with limited training data, it can predict extreme Medicane events up to two days in advance,
with precision rates ranging from 65% to 80%. These innovative data-driven methods for tracking
and forecasting provide a foundation for refining AI models and enhancing our ability to respond
effectively to such events.

Keywords: extreme events; Medicanes; tropical cyclones; Mediterranean Sea; machine learning;
artificial intelligence prediction; tracking

1. Introduction

The escalation in the intensity of extreme weather events has emerged as a pressing
concern, with tropical cyclones (TCs) ranking among the most destructive natural phenom-
ena increasingly influenced by climate change and global warming [1,2]. While these storms
typically develop in tropical regions, there exists a unique category of cyclone that forms
over the Mediterranean Sea, known as Medicanes [3–5]. Over the past years, various studies
have examined and reported on these phenomena, highlighting their inherent risk [4–10].
Considering the densely populated areas surrounding the Mediterranean and future pro-
jections indicating the intensification of Medicanes in forthcoming years [11–13], precise
monitoring and forecasting of their development have assumed paramount importance.

While the precise definition of Mediterranean Hurricanes is still debated, these systems
share several characteristics with TCs [14,15]. Medicanes are generally distinguished
by their tropical-like structure, including the presence of a warm core, a circular eye
surrounded by a convective eyewall, and a roughly axisymmetric cloud pattern, as noted
in studies on their climatology [16–18]. However, the absence of a precise and widely
agreed-upon definition complicates their identification. This lack of clarity poses significant
challenges in building comprehensive tracking databases for Medicanes, as the difficulty
stems not only from defining their unique characteristics but also from the absence of
standardized tracking methodologies [15]. Addressing these gaps is a critical aspect of the
present study, which aims to establish a robust framework for Medicane identification and
support the development of consistent tracking databases. Existing methods are often based
on different characteristics of Medicanes and case studies [4,9,10,19–21], making direct
comparisons impractical and likely inconclusive without a standardized benchmark [22].
This study provides a foundation for future research to evaluate and refine these methods
under unified conditions.
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Furthermore, existing forecasting models primarily rely on computationally intensive
numerical simulations [23], which often struggle to accurately capture the nonlinear and
extreme development of Medicanes [7], among other challenges [14,15]. As emphasized
in the work by Flaounas et al. [14], there is a growing recognition that novel sensitivity
calculation methods should account for the nonlinear connections between predictions
and predictors [24]. Advancements in artificial intelligence (AI) and machine learning
(ML) techniques offer innovative avenues for addressing the challenges posed by climate
change, especially in tracking and forecasting extreme weather events [14,19,25]. However,
to date, no machine learning model has been specifically designed for predicting events
like Medicanes. This study also addresses this gap by developing a customized forecasting
tool for predicting Medicanes, leveraging AI to explore these emerging capabilities.

Therefore, to address these challenges, we must confront several primary issues:
(1) The absence of a comprehensive database that consolidates information related to cy-
clone location and associated features (e.g., wind speed or central pressure), as well as
the lack of a standardized tracking algorithm dedicated to Medicanes [18]; (2) numerical
forecasting models that are not adequately equipped to handle with the complexities of
nonlinear and extreme events, especially those characterized by rapid intensification, due
to the inherent approximations and parametrizations required for such processes, limited
model resolution, inaccurate initial conditions, and the difficulty in resolving interactions
with larger-scale systems and boundary conditions [5–7,26,27]; and (3) insufficient historical
monitoring and the limited number of past events, resulting in a scarcity of data [12]. To
overcome these challenges, we developed an AI-driven methodology designed to track
and predict Medicanes, including those with rapid development: (1) A machine learning-
based tracking methodology using a k-means algorithm, offering improved adaptability
to data patterns amidst changing climatic conditions and reducing dependency on pre-
defined thresholds (spatial or atmospheric pressure-based criteria) commonly used in
traditional models, which often struggle to capture the variability and complexity of Medi-
cane tracks [15]; and (2) a machine learning prediction framework for Medicane forecasting,
adapted from the work of Martinez-Amaya et al. [25], which combines Convolutional
Neural Networks (CNNs) and Random Forest (RF) models. This approach enhances ca-
pacity to capture complex, nonlinear relationships in the data—capabilities that traditional
numerical models, with their reliance on simplified parameterizations, often lack, particu-
larly when forecasting rapid intensification events. This resource-efficient and adaptable
data-driven alternative, originally developed for TCs in the Pacific and Atlantic oceans
and now tailored to address the unique characteristics of Medicanes enables effective
forecasting in contexts where computational efficiency and adaptability are crucial. Given
the binary nature of forecasting extreme events using RF models, where outcomes are
either accurately predicted or missed, this study provides an inherently reliable approach
to Medicane forecasting, with each prediction validated against documented events.

K-means, a widely adopted unsupervised clustering technique for storm pattern de-
tection [28,29], is used to track cyclone positions by processing mean sea level pressure
maps through an automated grid search approach. This enables us to determine the center
coordinates of each storm throughout its lifetime, a crucial step for obtaining the associated
wind speed. Additionally, we leverage CNNs, which are deep learning algorithms capable
of automatically extracting relevant spatial structural characteristics from satellite imagery
of the cyclone cloud’s system [25]. These features, closely linked to the intensification of
extreme events, enhance the accuracy of predicting the storm’s peak stage [25,30,31]. Note
that the structural predictors, though indirect, inherently reflect changes in the physical
processes driving storm intensification (see, e.g., [32,33]). Then, RF, an ensemble learning
algorithm that combines multiple decision trees for robust predictions, is trained using the
full range of spatio-temporal structural information and intensity levels (wind speed) of
these events. This AI-based approach, which enables the exploration of optimal combina-
tions of the nonlinearly linked variables for predicting extreme Medicane development,
is intrinsically validated against real-world data, offering a reliable means to assess its
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accuracy. While traditional comparisons against other methods could not be performed
due to the distinct structure of the RF approach—where outcomes are clearly dichotomized
as either correctly forecasted or not—our results indicate that the precision achieved aligns
well with observed occurrences, underscoring the model’s robustness in forecasting Medi-
canes. Our predictions span multiple lead-time (6 to 36 h), enabling forecasters to provide
advance notice before the Medicane reaches its peak intensity and potentially destructive-
ness. This system facilitates structured and timely delivery of information for preparedness
and response efforts.

2. Materials and Methods
2.1. Data Products

In this section, we present an array of data products derived from a combination
of reanalysis and remote sensing data. Our investigation into Medicanes monitoring
and forecasting involves leveraging these two complementary sources of information.
Reanalysis data offer a comprehensive and consistent record of historical atmospheric
conditions, while remote sensing data provide high-resolution spatial coverage, enabling a
detailed understanding of the storm structural changes linked to their intensification.

2.1.1. Atmospheric Reanalysis Data

The Copernicus European Regional ReAnalysis (CERRA) dataset encompasses sub-
daily data for Mean Sea Level Pressure (MSLP) and Wind Speed (WS) at 10 m above
the surface throughout 2020. This dataset offers a spatial resolution of 5.5 km at 3-hour
intervals [34] and was collected from 1984 to 2020, focusing on the Mediterranean basin,
as defined by geographic coordinates ([−5◦ 35◦ E], [20◦ 45◦ N]). Since CERRA data are
only available up to 2020, we transitioned to using the hourly ECMWF Reanalysis v5
(ERA-5) dataset from 2021 onward, which provides a global resolution of approximately
31 km [35]. Despite the coarser spatial resolution of ERA-5, our experiments demonstrated
that incorporating this product allowed the inclusion of additional Medicane cases, thereby
improving model performance in forecasting analysis. This was particularly valuable given
the limited number of events in the Mediterranean region. However, using only ERA-5 for
the entire analysis period was not feasible due to its spatial resolution limitations, which
hinder effective tracking of cyclone trajectories. Data are provided by the Copernicus
Climate Change Service (C3S) Climate Data Store (https://cds.climate.copernicus.eu/,
accessed on 30 November 2023).

A critical step in identifying Medicanes is detecting a relative minimum in the MSLP
field, which is essential for pinpointing the core structure of the storm [21,36]. To track
the center of Medicanes throughout their relatively short lifespans (typically no more than
2 days at peak development), we use the minimum MSLP values at each grid point in
combination with WS data (explained later). Additionally, we performed interpolation on
the tracked data to achieve a 30-minute temporal resolution, aligning it with the frequency
of satellite observations, specifically Meteosat data. These satellite observations are used to
extract various structural characteristics of Medicanes, which will be further discussed in
the following section.

Before combining MSLP and WS data to infer the Medicane’s trajectories, the events
under study (totaling 58) were segmented into two distinct groups, primarily based on their
maximum WS values. The first group, referred to as Class 1 or C1, consists of relatively
weaker Medicanes with sustained WS ranging from 52 to 81 km/h. The second group,
referred to as Class 2 or C2, includes extreme Medicanes, defined by sustained WSs of at
least 81 km/h. This categorization facilitated the creation of a binary system, as detailed
in Sections 2.3 and 3.2 of this study. It is important to note that approximately 10% of the
Medicane cases reported in the literature were excluded from the analysis due to their low
intensity, as they exhibited sustained WSs below 52 km/h, which did not meet the criteria
for inclusion in our study. The remaining 58 cases were selected because they represent
well-documented Medicane events reported in the scientific literature, spanning the period
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from 1984 to 2023 (as detailed in Section 3.1). Their selection ensures that the dataset
focuses on impactful events with reliable intensity and development characteristics (see, for
example, [5,8,9,37]). This selection process was essential due to the lack of a comprehensive
Medicane database, requiring reliance on cases already identified in previous studies for
training and testing. Additionally, 3 cases from the C2 class underwent further scrutiny in
a supplementary experiment (as elaborated in Section 3.2). The complete compilation of
Medicane cases is presented in Table 1.

Table 1. Medicane events included in the study. The first column lists the names of each case. The
second and third columns display the start and end dates of each cyclone system (D Month YYYY).
The last column indicates the class to which each event belongs based on the criteria described
in Section 2.1.1.

Storm Name Beginning Date Ending Date Class

Med1984 29 December 1984 31 December 1984 C1

Med19851 26 October 1985 29 October 1985 C1

Med19852 13 December 1985 16 December 1985 C1

Med1986 30 September 1986 3 October 1986 C2

Med1989 4 October 1989 6 October 1989 C2

Med19911 23 November 1991 23 November 1991 C2

Med19912 6 December 1991 8 December 1991 C2

Med1992 14 October 1992 15 October 1992 C2

Med1994 21 October 1994 25 October 1994 C1

Med19951 14 January 1995 17 January 1995 C2

Med19952 27 September 1995 29 September 1995 C1

Med19961 11 September 1996 13 September 1996 C2

Med19962 (Cornelia) 6 October 1996 11 October 1996 C2

Med19963 8 December 1996 11 December 1996 C2

Med19971 23 September 1997 27 September 1997 C1

Med19972 28 October 1997 31 October 1997 C2

Med19973 5 December 1997 8 December 1997 C1

Med1998 25 January 1998 27 January 1998 C2

Med19991 25 March 1999 28 March 1999 C1

Med19992 9 December 1999 11 December 1999 C1

Med19993 19 March 1999 20 March 1999 C1

Med20001 7 September 2000 9 September 2000 C1

Med20002 7 October 2000 9 October 2000 C1

Med2001 10 November 2001 12 November 2001 C2

Med20031 25 May 2003 26 May 2003 C1

Med20032 17 October 2003 19 October 2003 C2

Med20041 19 September 2004 20 September 2004 C1

Med20042 3 November 2004 5 November 2004 C1

Med20051 13 December 2005 16 December 2005 C2

Med20052 15 September 2005 16 September 2005 C1

Med20061 31 January 2006 2 February 2006 C2
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Table 1. Cont.

Storm Name Beginning Date Ending Date Class

Med20062 25 September 2006 28 September 2006 C1

Med20071 15 November 2007 16 November 2007 C2

Med20072 19 March 2007 22 March 2007 C2

Med20073 16 October 2007 18 October 2007 C1

Med20074 25 October 2007 26 October 2007 C2

Med2008 2 December 2008 4 December 2008 C2

Med2009 27 January 2009 29 January 2009 C1

Med20101 12 October 2010 14 October 2010 C2

Med20102 2 November 2010 3 November 2010 C1

Med2011 (Rolf) 6 November 2011 9 November 2011 C2

Med2012 13 April 2012 14 April 2012 C2

Med2013 18 November 2013 22 November 2013 C2

Med20141 (Ilona) 19 January 2014 21 January 2014 C2

Med20142 (Qendresa) 7 November 2014 8 November 2014 C2

Med20143 1 December 2014 3 December 2014 C1

Med2016 (Trixie) 29 October 2016 31 October 2016 C1

Med2017 (Numa) 17 November 2017 19 November 2017 C1

Med2018 (Zorbas) 28 September 2018 30 September 2018 C2

Med20191 (Detlef) 10 November 2019 11 November 2019 C1

Med20192 (Scott) 24 October 2019 26 October 2019 C1

Med20201 (Ianos) 15 September 2020 20 September 2020 C2

Med20202 (Elaina) 14 December 2020 16 December 2020 C1

Med20203 20 November 2020 24 November 2020 C1

Med2021 (Apollo) 25 October 2021 29 October 2021 C1

Med20231 (Helios) 20 January 2023 22 January 2023 C1

Med20232 (Hannelore) 08 February 2023 10 February 2023 C1

Med20233 (Juliette) 27 February 2023 02 March 2023 C1

Having an equivalent to the International Best Track Archive for Climate Stewardship
(IBTrACS) provided by NOAA [38] for the Mediterranean would have been invaluable
as a benchmark for comparison, significantly facilitating our analysis. However, only
a limited number of referenced studies offer ready-to-use datasets, typically covering a
small number of cases with tracking information or other relevant data. These benchmark
datasets are often subjectively generated and, therefore, susceptible to potential human
error [15]. Moreover, while alternative tracking methodologies for Medicanes exist, they
rely on diverse detection techniques and specific thresholds, which produce varying results,
as noted by Montella et al. [19]. Given these considerations, direct comparison with satellite
data emerges as the most reliable approach currently available for ensuring consistency
in tracking and analysis. As a result, we developed our own data collection and tracking
framework to build a consistent and reliable dataset. This effort not only ensures robust
results for the current study but also provides the scientific community with a curated list
of historically relevant Medicanes and their associated structural and temperature features,
which can serve as a foundation for future research and model development.
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2.1.2. Meteosat Temperature Observations

Due to data availability constraints, we used two different Meteosat imagery products to
extract features of the Medicanes’ cloud systems for the forecasting analysis. These products, cov-
ering the Mediterranean basin, were used to capture snapshots of Medicane events at 30-minute
intervals. Between 1984 and 2003, we sourced images from the infrared channel (11.5 µm,
4.5 × 4.5 km pixel size) of the Fundamental Climate Data Record of the Meteosat Visible and In-
frared Imager (FCDR MVIRI, https://user.eumetsat.int/s3/eup-strapi-media/C3_S_311b_T4_2
_D4_3_MVIRI_FCDR_Release_2_PUG_1b77ce07a9.pdf, accessed on 30 November 2023), while
from 2004 onward, data were obtained from channel 9 (10.8 µm, 3 × 3 km pixel size) of
the High Rate SEVIRI Level 1.5 Image Data (https://navigator.eumetsat.int/product/EO:
EUM:DAT:MSG:HRSEVIRI, accessed on 30 November 2023). Despite the inconsistency
in channel wavelength and resolution between the two Meteosat products, there is no
significant issue for the application purpose. The features used for forecasting, which
capture essential structural and temperature properties of Medicanes, are inherently robust
to minor variations in data acquisition methods, such as those introduced by K-means clus-
tering, and remain consistent across different datasets. Additionally, in pattern recognition
and machine learning applications, including those using CNNs, models often adapt to
data variations during training. This adaptability enables the model to generalize effec-
tively, capturing the relevant patterns and relationships required for accurate forecasting.
Therefore, while differences between the data products could theoretically introduce minor
discrepancies, their practical impact on the forecasting analysis is expected to be minimal.

To derive Brightness Temperature from pixel counts (FCDR MVIRI) or radiances
(SEVIRI), we first conducted a conversion process, followed by the extraction of various
features from the observed cloud formations in the images. These parameters—including
cloud area, brightness temperature differences between the inner and outer cloud regions,
circularity, and eccentricity—were determined using a k-means algorithm to delineate
the cloud’s edges, following the approach in Martinez-Amaya et al. [29]. The features,
calculated at 30-minute intervals, were then aligned with the coordinates obtained from
reanalysis data, as discussed in the previous section.

These features are not only extracted at each lead-time but also encompass a temporal
dimension, which involves calculating the mean and standard deviation of the temporal
variations throughout the entire evolution period of the storm, from its inception to the
specified lead-time [25]. Additionally, high-level spatial features, as learned through a CNN
method, have been integrated using the methodology outlined in the study conducted by
Martinez-Amaya et al. [25].

2.2. Automated Medicane Center Localization

While previous studies have investigated MSLP-based algorithms for tracking Medi-
canes [10,19], the need for practicality and efficiency calls for the adoption of an automatic
methodology, such as the one proposed in this study. It is crucial to note that existing ma-
chine learning algorithms were specifically designed to detect the centers of hurricanes and
other unique storm types, which possess features and dynamics distinct from Medicanes.
Consequently, these algorithms are not well suited for studying Medicanes. Addition-
ally, some of these approaches rely on specific thresholds, such as gradients or distances
between track points, which can be arbitrary or dependent on pre-existing labeled data,
limiting their general applicability. This underscores the importance of a more adaptable,
automated solution. To address this gap, we introduce a novel grid search technique that
leverages MSLP data, further enhanced by a k-means algorithm, to localize the centers of
Medicanes. Thus, this AI-based approach represents an evolution from existing methods,
integrating dynamically adaptive techniques.

In the analysis of each storm, the methodology begins with a grid search for MSLP
minima. This process employs a 4.5◦ × 4.5◦ sliding window that covers the entire study
region for each time step. The selection of this optimal window size was determined
through the processing of all available images to ensure accurate detection. Once the

https://user.eumetsat.int/s3/eup-strapi-media/C3_S_311b_T4_2_D4_3_MVIRI_FCDR_Release_2_PUG_1b77ce07a9.pdf
https://user.eumetsat.int/s3/eup-strapi-media/C3_S_311b_T4_2_D4_3_MVIRI_FCDR_Release_2_PUG_1b77ce07a9.pdf
https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:HRSEVIRI
https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:HRSEVIRI
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four lowest MSLP points are identified, a 2◦ × 2◦ window is applied around each point
to run a k-means clustering algorithm. This step segregates the image into two regions,
low-pressure and high-pressure areas, and establishes the boundary line between them.
Determining this boundary line is instrumental for calculating the circularity of the storm,
which reflects the degree of symmetry in its structure [29]. Among the four candidates,
we select the one with the highest circularity score, typically indicating a more stable and
well-organized cyclonic system. The center of this candidate is then designated as the
minimum MSLP center. Subsequently, the maximum WS is identified at each time step,
which determines the class of the Medicane, as outlined in Section 2.1. This maximum WS
is located within a 4.5◦ × 4.5◦ window centered on the calculated MSLP center. However,
for the extraction of spatio-temporal features (Section 2.3), a larger 10◦ × 10◦ window was
used to ensure that the edges of larger storms were fully captured and not missed.

2.3. CNN-RF Model for Medicanes Prediction

Medicanes, which share certain characteristics with tropical cyclones, prompted us to
adapt the CNN-RF models developed by Martinez-Amaya et al. [25] to address the unique
characteristics of Mediterranean cyclones. Following this methodology, our approach
begins with the implementation of a 2D CNN algorithm specifically designed to capture
prominent spatial features of the storm cloud system from satellite imagery at various
lead-time. Afterward, an RF algorithm is employed to learn these spatial features (extracted
from the second-to-last layer of the CNN) in combination with the brightness temperature
variables and structural attributes [25]. The goal of this approach is to unveil the nonlinear
relationships between the storm characteristics and its potential intensity range. It is
important to note that these features indirectly mirror environmental changes [39], leaving
distinctive imprints in the size, shape, and temperature characteristics of the storm’s cloud
system [33,40–43]. Consequently, our method focuses on automatically extracting a unique
combination of these properties from satellite images to assess storm intensification. This
avoids the need to directly predict based on environmental dynamics or disentangle each
individual factor contributing to the Medicane’s growth. However, our approach is flexible,
allowing for the inclusion of additional variables in future analysis.

For the CNN analysis, we applied a 10◦ × 10◦ window to the BT images centered on the
coordinates derived from our tracking method (Section 2.2). The images were then resized
to 256 × 256 pixels, following the approach outlined by Martinez-Amaya et al. [25]. The
decision to use a 256 × 256-pixel receptive field model as a feature extractor was motivated
by its proven ability to extract comprehensive features from the images, ensuring that all
relevant information is captured within each pixel, as illustrated in Figure 1 (which also
presents the CNN layers’ architecture). The configuration of the CNN model, including
its layers and hyperparameters, was kept consistent with the methodology of Martinez-
Amaya et al. [25]. Specifically, the model includes convolutional, max pooling, and fully
connected layers to optimize feature extraction and model performance. The rectified linear
unit (ReLU) activation function was employed to introduce nonlinearity, enhancing the
model’s ability to capture complex relationships. Additionally, batch normalization was
implemented to expedite training and support more efficient learning. The information
extracted from the second-to-last fully connected layer was preserved for later use in the
RF algorithm. These features are critical, as they gather high-level data from both the storm
and the surrounding environment.

Next, the RF component of our model is trained on all previously mentioned parame-
ters, incorporating their temporal information (see Table 2 for a comprehensive summary
of the features used in the final RF classification model). The RF model operates on a binary
basis, where prediction accuracy is directly evaluated against actual event occurrences, thus
minimizing ambiguity in performance assessment and providing a straightforward mea-
sure of forecasting reliability without requiring complex model-to-model comparisons [25].
This model effectively differentiates between the two predefined classes of Medicanes,
C1, and C2, predicting the most likely class for each event based on distinctive storm
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cloud characteristics, even days before reaching peak WS intensity. This approach ensures
robustness by focusing on the most distinctive patterns associated with the majority of
events, minimizing the impact of isolated cases that may be misclassified due to the spatial
resolution limitations of the WS product. Additionally, a thorough prior review of all cases
was conducted to verify that the maximum WS, critical for determining storm classification,
aligned with reported values, ensuring accurate categorization of each event. To further
ensure robustness, we implemented a 5-fold cross-validation strategy, with each fold using
80% of the data for training and the remaining 20% for testing [25]. For each lead-time, we
evaluated the mean and standard deviation across the five trained models, with a focus on
precision within the extreme class (pC2), calculated relative to the total number of actual
extreme occurrences, as our primary goal was to predict events with the potential for the
most severe impacts [25]. The RF algorithm’s design thus promotes reliability through
rigorous validation against test data throughout training. Additionally, in a separate exper-
iment presented in Section 3, we evaluated rapidly developing C2 cases using the hit ratio,
a statistical measure that calculates the percentage of correctly predicted events relative to
the total number of actual events [25].

Table 2. Overview of input variables incorporated into the RF algorithm for extreme Medicane
forecasting. The first column enumerates the variable names, while the second column furnishes their
corresponding descriptions. The storm cloud contours were delineated using a K-means algorithm
(detailed by Martinez-Amaya et al. [29]), facilitating the derivation of the first four features for each
event. Four additional inputs offer temporal insights associated with these variables. This temporal
dimension (t) represents the mean and standard deviation of the time range from TC formation to a
specified lead-time. The last input corresponds to the high-level spatial features acquired through
the CNN method. The model encompasses a total of nine input variables: A, ∆T, C, ε, At, ∆Tt, Ct, εt,
and CNN.

Variable Name Description

Area (A) Size of the storm cloud in km2

TempDiff (∆T) Temperature difference between the outer part and the inner core of the
storm cloud in ◦C

Circularity (C) Feature representing the symmetry of the storm cloud (unit-free)

Eccentricity (ε) Feature representing the eccentricity of the storm cloud (unit-free)

HSF CNN (CNN)
High-level spatial feature extracted using the CNN algorithm applied to a

10◦ × 10◦ window around the storm’s center in ◦C

It is important to note that we chose RF as the final classifier instead of a CNN due to
its higher reliability in situations with limited dataset availability and its superior handling
of overfitting, as noted by Kwak et al. [44] and Martinez-Amaya et al. [25]. Following
Martinez-Amaya et al. [25], we restricted each model to a maximum of 100 trees and
implemented a stopping criterion along with regularization terms to optimize performance
and minimize overfitting risks. To enhance classification accuracy, we explored two distinct
data configurations: a balanced dataset (BD), created by randomly undersampling the
majority class as per Martinez-Amaya et al. [25], and an all-data (AD) configuration, which
uses the entire dataset with a focus on error penalization in the minority class. Prioritizing
error penalization for the minority class is crucial when using the full dataset, as models can
otherwise disproportionately learn patterns from the majority class, leading to the misclas-
sification of the critical minority class [45], which often holds greater significance [46,47].
To address this, we introduced a cost-sensitive approach inspired by Li et al. [46] and
Dablain et al. [48], applying higher penalties for misclassifying minority class events. For
example, with 20 C1 events and 10 C2 events, we doubled the penalty for misclassifying
C2 events. We further tested both data configurations (BD and AD) with and without data
augmentation to assess potential performance improvements from expanding the dataset.
Data augmentation was achieved through rotations (90◦, 180◦, and 270◦) and flipping (hori-
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zontally and vertically) [25,49]. This approach allowed us to assess the model’s adaptability
and effectiveness in scenarios with augmented event counts.

Climate 2022, 10, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 1. Illustration of high-level spatial features (feature maps) extracted by the CNN, showcasing 
the learning process across various CNN layers for specific events: (a) Medicane Ianos (6 h lead-
time); (b) Medicane Numa (18 h lead-time). Each image represents the mean value of all the filters 
considered within each layer. The size, number of filters, and type of layer used are denoted as 
follows: Layer (sizeX, sizeY, #filters). ‘Conv’ stands for Convolutional, ‘MaxPool’ for Max Pooling, 
‘BN’ for Batch Normalization, ‘DO’ for Dropout, and ‘FC’ for Fully Connected layers. Note that the 
convolutional layers capture key features through adaptive kernel filters, the max pooling layer con-
denses important information, and the fully connected layers prepare the output for classification. 
The hyperparameter values and regularization terms, including dropout, were adopted from the 
best-performing model presented in Martinez-Amaya et al. [25]. Refer to Yamashita et al. [50] for 
comprehensive insights into CNN architecture and the training for learning high-level spatial fea-
tures. 

Figure 1. Illustration of high-level spatial features (feature maps) extracted by the CNN, showcasing
the learning process across various CNN layers for specific events: (a) Medicane Ianos (6 h lead-
time); (b) Medicane Numa (18 h lead-time). Each image represents the mean value of all the filters
considered within each layer. The size, number of filters, and type of layer used are denoted as
follows: Layer (sizeX, sizeY, #filters). ‘Conv’ stands for Convolutional, ‘MaxPool’ for Max Pooling,
‘BN’ for Batch Normalization, ‘DO’ for Dropout, and ‘FC’ for Fully Connected layers. Note that
the convolutional layers capture key features through adaptive kernel filters, the max pooling layer
condenses important information, and the fully connected layers prepare the output for classification.
The hyperparameter values and regularization terms, including dropout, were adopted from the
best-performing model presented in Martinez-Amaya et al. [25]. Refer to Yamashita et al. [50] for
comprehensive insights into CNN architecture and the training for learning high-level spatial features.
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3. Results and Discussion

Within the subsequent segment, we engage in a detailed discussion of our findings.
The results shed light on the performance of our tracking and forecasting models and their
implications for understanding and predicting Medicane phenomena.

3.1. Insights into Medicanes Tracking

As outlined in Section 2.2, our tracking methodology integrates both WS and MSLP
reanalysis data using their respective maximum and minimum values. This process is
enhanced by a k-means algorithm, which facilitates the identification of the storm’s center
throughout its entire lifespan. The inclusion of the k-means algorithm is essential, as the
presence of other weather systems in the Mediterranean Sea region can lead to inaccuracies
in estimating the event’s exact location. By employing k-means, we can delineate the
boundaries of the storm, assess its symmetry (circularity), and distinguish the cyclonic
system from other weather systems. This significantly improves our ability to pinpoint the
center of Medicanes for tracking purposes.

Given the lack of available ground-truth tracking data for Medicanes, a quantitative
comparative analysis was not feasible. To address this limitation, we implemented a
rigorous visual inspection process using multiple reference products, including BT satellite
imagery, MSLP, and WS fields, which provide a reliable basis for visually identifying the
storm’s center (see Section 2.1). This approach allowed us to assess the alignment between
the visually identified storm center and the center predicted by our model, indicated by
a cross in Figure 2. Although detailed figures for all 58 analyzed cases are impractical
to include, we provide two illustrative examples in Figure 2: the events of Numa (a
non-extreme cyclone in 2017) and Ianos (an extreme cyclone from 2020).
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Figure 2. Track analysis of Medicanes Ianos (a) and Numa (b). For both cases, moving from left to
right, the first two rows present BT images (in ◦C) and MSLP maps (in hPa), respectively, at 6, 12, 18,
24, 30 h (and 36 h, for Ianos) preceding the peak WS. The bottom row displays the same temporal
data but for WS maps (in km/h). In all plots, a gray cross is depicted, centered at the latitude and
longitude of the Medicane center, calculated using the methodology outlined in Section 2.2.
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As expected, as a Medicane intensifies (from 30 h to its peak at 0 h), the storm’s center
becomes more discernible due to increased symmetry in the storm structure, underscoring
the robustness of our tracking methodology. However, minor misplacements of the center
may occasionally occur, especially during phases of temporary weakening before the
storm regains strength (as seen in the Ianos case, 12 h before its peak in Figure 2a) or
when the storm is still distant from peak intensity (as in the Numa case, 30 h before
its peak in Figure 2b). It is also worth noting that the limited spatial resolution of the
reanalysis data (~31 km), particularly post-2020, may affect center tracking accuracy due
to potential alignment discrepancies. Despite these limitations, our method establishes a
solid foundation for Medicane tracking, with the potential for even greater accuracy as
higher-resolution and standardized datasets become available. The implications of these
findings for forecasting accuracy are further explored in the following section.

3.2. Exploring CNN-RF Predictions for Extreme Medicanes

Here, we present and discuss the outcomes of our CNN-RF model’s predictions
on a dataset comprising 58 Mediterranean cyclones, used for both training and testing
(see Section 2.3 for details on the model configuration). As mentioned earlier, the RF-
based forecasting system provides reliable binary outcomes for C2 Medicanes, where
the accuracy of each forecast can be directly confirmed or denied based on actual event
occurrences (see Section 2.1). Figure 3 provides an overview of the model’s precision for
the C2 class across all lead-time and various tests described in Section 2.3. The lead-time
represent prediction intervals (every 6 h) from the time the prediction is made (when all
predictors are inferred) up to the event’s peak development (see Section 2.3 for more details).
Predictions are generated within a 6- to 36-hour window prior to the event’s peak WS, as
data beyond 36 h are insufficient for deep learning modeling. As outlined in Section 2.3,
the model’s predictions rely on the spatio-temporal characteristics of cloud formations
along the tracking trajectory identified in the preceding experiment. We conducted four
distinct tests (see Section 2.3): (1) balanced dataset (BD); (2) balanced dataset with data
augmentation (BD with DA); (3) all dataset (AD); and (4) all dataset with data augmentation
(AD with DA). The number of available cases for each lead-time is shown, along with the
final count when data augmentation is applied. The results indicate that the AI model
predicts extreme Medicanes (C2 class) with precision consistently exceeding at least 60% at
lead-time beyond 24 h, presenting a promising approach for the early prediction of these
severe weather events (see Figure 3).

The approach using all available data with data augmentation emerged as the most
stable model across all lead-time. As expected, in cases with fewer available events, data
augmentation proved crucial, particularly for extended lead-time. However, it should
be noted that data augmentation can introduce challenges, such as amplifying errors
when dealing with tracking data that may contain bias [51]. To mitigate these issues, it
is essential to prioritize model error weighting over event loss in cases of data imbalance
(see Section 2.3). This approach ensures that all available cases are preserved, allowing the
model to account for a wide range of scenarios during training, which in turn leads to a
more realistic forecast assessment. The mean precision across all lead-time is approximately
71%, reaching a peak of 80% at the 36 h mark (with 13 cases). In cases where storms exhibit
less distinguishable features between group classes, the reduced precision for intermediate
states is expected, albeit still above 65%, as shown in Figure 3. As lead-time approach the
event peak, the influence of undersampling or data augmentation strategies diminishes
due to the relatively higher number of available events for the model to make accurate
predictions using a balanced dataset.

Finally, to further evaluate the effectiveness of our predictive models, we conducted an
additional analysis focusing on three challenging cases of rapid intensification—Med1991,
Med20101, and Med20142—all categorized as C2 storms. This evaluation used the Hit Ratio
(HR) metric (see Section 2.3) and was conducted with the best-performing forecasting model
(i.e., AD with DA). The final class of both extreme Med1991 and Med20101 Medicanes
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was successfully predicted by at least four out of the five models across all lead-time, with
HR values of 80% or higher. This accuracy was maintained despite the rapidly evolving
features within an 18 h window and significant variations in intensification rates (ranging
from 44 km/h to 115 km/h and from 56 km/h to 87 km/h, respectively), demonstrating the
robustness of the model. The tracking results of the studied Medicanes, which originated on
23 November 1991 off the Eastern Tunisian coast and on 12 October 2010 near the Balearic
Islands region, are illustrated in Figure 4. The predictability of Med20142, which originated
in the Ionian Sea on 5 November 2014, posed significant challenges for numerical weather
models due to inaccuracies in initial conditions and the complex mesoscale dynamics
driving its rapid intensification [52]. Yet, our model successfully predicted its intensification
to severe status, achieving an increase in HR values from 60% to 80% as it evolved toward
its peak intensity (from approximately 68 km/h to 97 km/h in less than 12 h), as shown
in Figure 4.
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Figure 3. Prediction precision for C2 Medicanes across all model experiments. Displayed from left
to right are results for the BD, BD with DA, AD, and AD with DA approaches. The error bar in
the figure represents the standard deviation derived from the 5-fold cross-validation models (see
Section 2.3). The table below shows the initial number of cases, denoted as ‘# Samples’ for each class
before random undersampling or the application of DA. This is denoted in parentheses when DA
is applied.
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Figure 4. Trajectories generated from the point of origin to their maximum WS (indicated with an
asterisk) for Medicanes Med1991, Med20101, and Med20142, along with HR analysis results from the
most robust model approach (i.e., AD with DA). HR values are provided only from an 18 h lead-time
onward due to the short duration of the events analyzed.
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4. Conclusions

Medicanes are cyclones in the Mediterranean region that, according to the IPCC
report, are likely to intensify due to climate change. To effectively monitor and predict
these hazards, it is essential to develop advanced, adaptable models that can track their
paths and identify early warning signals that capture intensifying features of cyclonic
development. This work contributes to the growing field of AI applications in climate
research by demonstrating the adaptability of machine learning techniques for tracking and
forecasting Mediterranean cyclones. It provides a rapid, efficient alternative to traditional,
resource-intensive models, offering valuable insights into these extreme weather events
that are crucial for building climate resilience.

The initial step in the proposed AI framework involved developing an automated
tracking technique that uses a k-means algorithm alongside reanalysis data to map the
trajectories of the most documented Medicanes. Although automated, the tracking system’s
accuracy is validated through rigorous visual verification against high-resolution Meteosat
images, which provides an essential quality check in the absence of a reliable, unified,
and objective benchmark dataset for Medicanes. Despite current limitations due to the
restricted spatio-temporal resolution of reanalysis data—which is updated on a weekly to
seasonal basis—the model’s robustness and adaptability highlight its strong potential for
achieving even greater precision as higher-resolution data become available. Nevertheless,
our approach demonstrates that the use of different reanalysis products does not critically
impact the forecasting analysis. By focusing on relative MSLP and WS values rather
than their absolute ones, we ensure consistent identification of Medicane features despite
differences in data resolution. Furthermore, the use of sliding windows (e.g., 4.5◦ × 4.5◦

for MSLP minima tracking and 10◦ × 10◦ for feature extraction) enables robust detection of
key storm characteristics, effectively accommodating variability in spatial resolution across
datasets. This enhancement positions our AI framework as a valuable addition to early
warning systems, capable of advancing Medicane monitoring in future applications.

In the second phase, we tailored a CNN-RF model, an AI technique designed to
capture the complex, nonlinear relationships between spatio-temporal storm information
from satellite imagery (key structural cyclonic features) and the peak intensity of Medicane
events, enabling predictions of extreme Medicanes. Our most robust model consistently
achieves a precision rate of 65% or higher, depending on storm duration and forecast lead-
time, with the highest precision reaching 80% for forecasts made 36 h in advance. We also
address the challenges posed by imbalanced and limited data scenarios, highlighting the
importance of retaining all events and employing data augmentation techniques. The case
studies on rapid intensification demonstrate the model’s ability to generalize effectively,
even in challenging scenarios.

In conclusion, our study marks a significant advancement in understanding and
predicting Mediterranean cyclones, showcasing the potential of AI-based approaches to
support forecasting in the context of a changing climate. The approach establishes a new
benchmark, facilitating cross-analysis with other methodologies and offering a deeper
understanding of Medicanes, particularly in the absence of reference datasets. This study
not only advances our understanding of Medicanes but also contributes a scalable AI-based
tool that could be adapted to predict and mitigate the impacts of other climate-related
extreme events as they become more frequent and severe under climate change scenarios.
We encourage further exploration of additional storm growth variables to mitigate the
potential impacts of these natural disasters.

Author Contributions: Conceptualization: V.N.; Methodology: V.N., J.M.-A. and J.M.-M.; Investi-
gation: V.N. and J.M.-A.; Analysis, Validation, and Data Curation: J.M.-A. and V.N.; Visualization:
J.M.-A. and V.N.; Writing—Original Draft Preparation: J.M.-A.; Writing—Review and Editing: V.N.
and J.M.-A.; Supervision: V.N.; Funding Acquisition, Resources, and Project Administration: V.N. All
authors have read and agreed to the published version of the manuscript.



Climate 2024, 12, 220 14 of 16

Funding: This research was funded by the European Space Agency (contract 4000134529/21/NL/
GLC/my), the Ministry of Culture, Education, and Science of the Generalitat Valenciana (grant CIDE-
GENT/2019/055), and the Spanish Ministry of Science and Innovation through the European Union
NextGenerationEU (PRTR-C17.I1) and the Generalitat Valenciana (GVA-THINKINAZUL/2021/018).

Data Availability Statement: The datasets generated for this study can be found in the AI4OCEANS
repository (https://github.com/AI4OCEANS/, accessed on 30 November 2023).

Acknowledgments: The authors gratefully acknowledge the computer resources at Artemisa, funded
by the European Union ERDF and Comunitat Valenciana.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Bhatia, K.T.; Vecchi, G.A.; Knutson, T.R.; Murakami, H.; Kossin, J.; Dixon, K.W.; Whitlock, C.E. Recent increases in tropical cyclone

intensification rates. Nat. Commun. 2020, 10, 1–9. [CrossRef]
2. Hicke, J.A.; Lucatello, S.; Mortsch, L.D.; Dawson, J.; Aguilar, M.D.; Enquist, C.A.F. North America. In Climate Change 2022: Impacts,

Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on
Climate, Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf,
S., Löschke, S., Möller, V., et al., Eds.; Cambridge University: Cambridge, UK; New York, NY, USA, 2022; pp. 1929–2042.

3. Koseki, S.; Mooney, P.A.; Cabos, W.; Gaertner, M.; de la Vara, A.; González-Alemán, J.J. Modelling a tropical-like cyclone in the
Mediterranean Sea under present and warmer climate. Nat. Hazards Earth Syst. Sci. 2021, 21, 53–71. [CrossRef]

4. Pytharoulis, I. Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmospheric
Res. 2018, 208, 167–179. [CrossRef]

5. Dafis, S.; Claud, C.; Kotroni, V.; Lagouvardos, K.; Rysman, J. Insights into the convective evolution of Mediterranean tropical-like
cyclones. Q. J. R. Meteorol. Soc. 2020, 146, 4147–4169. [CrossRef]

6. Lagouvardos, K.; Karagiannidis, A.; Dafis, S.; Kalimeris, A.; Kotroni, V. Ianos—A Hurricane in the Mediterranean. Bull. Am.
Meteorol. Soc. 2021, 103, E1621–E1636. [CrossRef]

7. Di Muzio, E.; Riemer, M.; Fink, A.H.; Maier-Gerber, M. Assessing the predictability of Medicanes in ECMWF ensemble forecasts
using an object-based approach. Q. J. R. Meteorol. Soc. 2019, 145, 1202–1217. [CrossRef]

8. Nastos, P.; Papadimou, K.K.; Matsangouras, I. Mediterranean tropical-like cyclones: Impacts and composite daily means and
anomalies of synoptic patterns. Atmospheric Res. 2018, 208, 156–166. [CrossRef]

9. Portmann, R.; González-Alemán, J.J.; Sprenger, M.; Wernli, H. How an uncertain short-wave perturbation on the North Atlantic
wave guide affects the forecast of an intense Mediterranean cyclone (Medicane Zorbas). Weather. Clim. Dyn. 2020, 1, 597–615.
[CrossRef]

10. Pravia-Sarabia, E.; Gómez-Navarro, J.J.; Jiménez-Guerrero, P.; Montávez, J.P. TITAM (v1.0): The Time-Independent Tracking
Algorithm for Medicanes. Geosci. Model Dev. 2020, 13, 6051–6075. [CrossRef]

11. González-Alemán, J.J.; Pascale, S.; Gutierrez-Fernandez, J.; Murakami, H.; Gaertner, M.A.; Vecchi, G.A. Potential Increase in
Hazard From Mediterranean Hurricane Activity With Global Warming. Geophys. Res. Lett. 2019, 46, 1754–1764. [CrossRef]

12. Ali, E.; Cramer, W.; Carnicer, J.; Georgopoulou, E.; Hilmi, N.J.M.; Cozannet, G.L.; Lionello, P. Cross-Chapter Paper 4: Mediter-
ranean Region. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate, Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E.,
Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University: Cambridge, UK;
New York, NY, USA, 2022; pp. 2233–2272.

13. Romero, R.; Emanuel, K. Medicane risk in a changing climate. J. Geophys. Res. Atmos. 2013, 118, 5992–6001. [CrossRef]
14. Flaounas, E.; Davolio, S.; Raveh-Rubin, S.; Pantillon, F.; Miglietta, M.M.; Gaertner, M.A.; Hatzaki, M.; Homar, V.; Khodayar, S.;

Korres, G.; et al. Mediterranean cyclones: Current knowledge and open questions on dynamics, prediction, climatology and
impacts. Weather. Clim. Dyn. 2022, 3, 173–208. [CrossRef]

15. Flaounas, E.; Aragão, L.; Bernini, L.; Dafis, S.; Doiteau, B.; Flocas, H.; Gray, S.L.; Karwat, A.; Kouroutzoglou, J.; Lionello, P.; et al.
A composite approach to produce reference datasets for extratropical cyclone tracks: Application to Mediterranean cyclones.
Weather. Clim. Dyn. 2023, 4, 639–661. [CrossRef]

16. Dafis, S.; Rysman, J.; Claud, C.; Flaounas, E.; Dafis, S.; Rysman, J.; Claud, C.; Flaounas, E.; Dafis, S.; Rysman, J.; et al. Remote
sensing of deep convection within a tropical-like cyclone over the Mediterranean Sea. Atmospheric Sci. Lett. 2018, 19. [CrossRef]

17. Menna, M.; Martellucci, R.; Reale, M.; Cossarini, G.; Salon, S.; Notarstefano, G.; Mauri, E.; Poulain, P.-M.; Gallo, A.; Solidoro, C. A
case study of impacts of an extreme weather system on the Mediterranean Sea circulation features: Medicane Apollo (2021). Sci.
Rep. 2023, 13, 1–15. [CrossRef]

18. Tous, M.; Romero, R. Meteorological environments associated with medicane development. Int. J. Clim. 2012, 33, 1–14. [CrossRef]

https://github.com/AI4OCEANS/
https://doi.org/10.1038/s41467-019-08471-z
https://doi.org/10.5194/nhess-21-53-2021
https://doi.org/10.1016/j.atmosres.2017.08.009
https://doi.org/10.1002/qj.3896
https://doi.org/10.1175/BAMS-D-20-0274.1
https://doi.org/10.1002/qj.3489
https://doi.org/10.1016/j.atmosres.2017.10.023
https://doi.org/10.5194/wcd-1-597-2020
https://doi.org/10.5194/gmd-13-6051-2020
https://doi.org/10.1029/2018GL081253
https://doi.org/10.1002/jgrd.50475
https://doi.org/10.5194/wcd-3-173-2022
https://doi.org/10.5194/wcd-4-639-2023
https://doi.org/10.1002/asl.823
https://doi.org/10.1038/s41598-023-29942-w
https://doi.org/10.1002/joc.3428


Climate 2024, 12, 220 15 of 16

19. Montella, R.; Di Luccio, D.; Ciaramella, A.; Foster, I. StormSeeker: A Machine-Learning based Mediterranean storm tracer. In
Internet and Distributed Computing Systems; Montella, R., Ciaramella, A., Fortino, G., Guerrieri, A., Liotta, A., Eds.; Springer: Cham,
Switzerland, 2019; Volume 11874, pp. 444–456. [CrossRef]

20. Cavicchia, L.; von Storch, H.; Gualdi, S. A long-term climatology of medicanes. Clim. Dyn. 2013, 43, 1183–1195. [CrossRef]
21. Picornell, M.A.; Campins, J.; Jansà, A. Detection and thermal description of medicanes from numerical simulation. Nat. Hazards

Earth Syst. Sci. 2014, 14, 1059–1070. [CrossRef]
22. Listowski, C.; Forestier, E.; Dafis, S.; Farges, T.; De Carlo, M.; Grimaldi, F.; Le Pichon, A.; Vergoz, J.; Heinrich, P.; Claud, C. Remote

Monitoring of Mediterranean Hurricanes Using Infrasound. Remote. Sens. 2022, 14, 6162. [CrossRef]
23. Romero, R. A method for quantifying the impacts and interactions of potential-vorticity anomalies in extratropical cyclones. Q. J.

R. Meteorol. Soc. 2008, 134, 385–402. [CrossRef]
24. Jourdan, A.; Loubière, P. Sensitivity Analysis in TORUS 1 –Toward an Open Resource Using Services; Laffly, D., Ed.; John Wiley &

Sons, Ltd: New York, NY, USA, 2020; pp. 107–128. [CrossRef]
25. Martinez-Amaya, J.; Longépé, N.; Nieves, V.; Muñoz-Marí, J. Improved forecasting of extreme hurricane events by integrating

spatio-temporal CNN-RF learning of tropical cyclone characteristics. Front. Earth Sci. 2023, 11, 1223154. [CrossRef]
26. Cangialosi, J.P.; Blake, E.; DeMaria, M.; Penny, A.; Latto, A.; Rappaport, E.; Tallapragada, V. Recent Progress in Tropical Cyclone

Intensity Forecasting at the National Hurricane Center. Weather. Forecast. 2020, 35, 1913–1922. [CrossRef]
27. Nystrom, R.G.; Zhang, F. Practical Uncertainties in the Limited Predictability of the Record-Breaking Intensification of Hurricane

Patricia (2015). Mon. Weather. Rev. 2019, 147, 3535–3556. [CrossRef]
28. Gupta, U.; Jitkajornwanich, K.; Elmasri, R.; Fegaras, L. Adapting K-means clustering to identify spatial patterns in storms. In

Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016;
pp. 2646–2654.

29. Martinez-Amaya, J.; Radin, C.; Nieves, V. Advanced Machine Learning Methods for Major Hurricane Forecasting. Remote. Sens.
2022, 15, 119. [CrossRef]

30. Maskey, M.; Ramachandran, R.; Ramasubramanian, M.; Gurung, I.; Freitag, B.; Kaulfus, A.; Bollinger, D.; Cecil, D.J.; Miller, J.
Deepti: Deep-Learning-Based Tropical Cyclone Intensity Estimation System. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020,
13, 4271–4281. [CrossRef]

31. Carmo, A.R.; Longepe, N.; Mouche, A.; Amorosi, D.; Cremer, N. Deep Learning Approach for Tropical Cyclones Classification
Based on C-Band Sentinel-1 SAR Images. In Proceedings of the IGARSS 2021–2021 IEEE International Geoscience and Remote
Sensing Symposium, Brussels, Belgium, 11–16 July 2021; pp. 3010–3013.

32. Asif, A.; Dawood, M.; Jan, B.; Khurshid, J.; DeMaria, M.; Minhas, F.U.A.A. PHURIE: Hurricane intensity estimation from infrared
satellite imagery using machine learning. Neural Comput. Appl. 2018, 32, 4821–4834. [CrossRef]

33. Song, J.; Duan, Y.; Klotzbach, P.J. Revisiting the Relationship Between Tropical Cyclone Size and Intensity Over the Western North
Pacific. Geophys. Res. Lett. 2020, 47. [CrossRef]

34. Schimanke, S.; Ridal, M.; Le Moigne, P.; Berggren, L.; Undén, P.; Randriamampianina, R.; Andrea, U.; Bazile, E.; Bertelsen, A.;
Brousseau, P.; et al. CERRA sub-daily regional reanalysis data for Europe on single levels from 1984 to present. Copernicus
Climate Change Service (C3S) Climate Data Store (CDS). 2021. Available online: https://cds.climate.copernicus.eu/datasets/
reanalysis-cerra-single-levels?tab=overview (accessed on 30 November 2023).

35. Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al.
ERA5 Hourly Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
2018. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (accessed on
30 November 2023).

36. Zhang, W.; Villarini, G.; Scoccimarro, E.; Napolitano, F. Examining the precipitation associated with medicanes in the high-
resolution ERA-5 reanalysis data. Int. J. Clim. 2020, 41, E126–E132. [CrossRef]

37. Ferrarin, C.; Pantillon, F.; Davolio, S.; Bajo, M.; Miglietta, M.M.; Avolio, E.; Carrió, D.S.; Pytharoulis, I.; Sanchez, C.;
Patlakas, P.; et al. Assessing the coastal hazard of Medicane Ianos through ensemble modelling. Nat. Hazards Earth Syst. Sci. 2023,
23, 2273–2287. [CrossRef]

38. Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate
Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [CrossRef]

39. Zehr, R.M. Environmental Vertical Wind Shear with Hurricane Bertha (1996). WAF 2003, 18, 345–356. [CrossRef]
40. Wu, L.; Tian, W.; Liu, Q.; Cao, J.; Knaff, J.A. Implications of the Observed Relationship between Tropical Cyclone Size and

Intensity over the Western North Pacific. J. Clim. 2015, 28, 9501–9506. [CrossRef]
41. Guo, X.; Tan, Z. Tropical cyclone fullness: A new concept for interpreting storm intensity. Geophys. Res. Lett. 2017, 44, 4324–4331.

[CrossRef]
42. Xu, J.; Wang, Y. Dependence of Tropical Cyclone Intensification Rate on Sea Surface Temperature, Storm Intensity, and Size in the

Western North Pacific. Weather. Forecast. 2018, 33, 523–537. [CrossRef]
43. Chen, K.; Chen, G.; Rao, C.; Wang, Z. Relationship of tropical cyclone size change rate with size and intensity over the western

North Pacific. Atmospheric Ocean. Sci. Lett. 2021, 14. [CrossRef]
44. Kwak, G.-H.; Park, C.-W.; Lee, K.-D.; Na, S.-I.; Ahn, H.-Y.; Park, N.-W. Potential of Hybrid CNN-RF Model for Early Crop

Mapping with Limited Input Data. Remote. Sens. 2021, 13, 1629. [CrossRef]

https://doi.org/10.1007/978-3-030-34914-1_42
https://doi.org/10.1007/s00382-013-1893-7
https://doi.org/10.5194/nhess-14-1059-2014
https://doi.org/10.3390/rs14236162
https://doi.org/10.1002/qj.219
https://doi.org/10.1002/9781119720492.ch9
https://doi.org/10.3389/feart.2023.1223154
https://doi.org/10.1175/WAF-D-20-0059.1
https://doi.org/10.1175/MWR-D-18-0450.1
https://doi.org/10.3390/rs15010119
https://doi.org/10.1109/JSTARS.2020.3011907
https://doi.org/10.1007/s00521-018-3874-6
https://doi.org/10.1029/2020GL088217
https://cds.climate.copernicus.eu/datasets/reanalysis-cerra-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-cerra-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://doi.org/10.1002/joc.6669
https://doi.org/10.5194/nhess-23-2273-2023
https://doi.org/10.1175/2009BAMS2755.1
https://doi.org/10.1175/1520-0434(2003)018%3C0345:EVWSWH%3E2.0.CO;2
https://doi.org/10.1175/JCLI-D-15-0628.1
https://doi.org/10.1002/2017GL073680
https://doi.org/10.1175/WAF-D-17-0095.1
https://doi.org/10.1016/j.aosl.2021.100040
https://doi.org/10.3390/rs13091629


Climate 2024, 12, 220 16 of 16

45. Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27. [CrossRef]
46. Li, Q.; Zhao, C.; He, X.; Chen, K.; Wang, R. The Impact of Partial Balance of Imbalanced Dataset on Classification Performance.

Electronics 2022, 11, 1322. [CrossRef]
47. Joloudari, J.H.; Marefat, A.; Nematollahi, M.A.; Oyelere, S.S.; Hussain, S. Effective Class-Imbalance Learning Based on SMOTE

and Convolutional Neural Networks. Appl. Sci. 2023, 13, 4006. [CrossRef]
48. Dablain, D.; Jacobson, K.N.; Bellinger, C.; Roberts, M.; Chawla, N.V. Understanding CNN fragility when learning with imbalanced

data. Mach. Learn. 2023, 113, 4785–4810. [CrossRef]
49. Mumuni, A.; Mumuni, F. Data augmentation: A comprehensive survey of modern approaches. Array 2022, 16. [CrossRef]
50. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology.

Insights Imaging 2018, 9, 611–629. [CrossRef] [PubMed]
51. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
52. Carrió, D.S. Improving the predictability of the Qendresa Medicane by the assimilation of conventional and atmospheric motion

vector observations. Storm-scale analysis and short-range forecast. Nat. Hazards Earth Syst. Sci. 2023, 23, 847–869. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.3390/electronics11091322
https://doi.org/10.3390/app13064006
https://doi.org/10.1007/s10994-023-06326-9
https://doi.org/10.1016/j.array.2022.100258
https://doi.org/10.1007/s13244-018-0639-9
https://www.ncbi.nlm.nih.gov/pubmed/29934920
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.5194/nhess-23-847-2023

	Introduction 
	Materials and Methods 
	Data Products 
	Atmospheric Reanalysis Data 
	Meteosat Temperature Observations 

	Automated Medicane Center Localization 
	CNN-RF Model for Medicanes Prediction 

	Results and Discussion 
	Insights into Medicanes Tracking 
	Exploring CNN-RF Predictions for Extreme Medicanes 

	Conclusions 
	References

