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Abstract: The occurrence and spread of Verticillium dahliae (V. dahliae) in cotton depends on the
combined effects of pathogens, host plants, and the environment, among which temperature is
one of the most important environmental factors. Studying how temperature impacts the occurrence
of V. dahliae in cotton and the mechanisms governing host defense responses is crucial for disease
prevention and control. Understanding the dual effects of temperature on both pathogens and hosts
can provide valuable insights for developing effective strategies to manage this destructive fungal
infection in cotton. This study was based on the deciduous V. dahliae Vd-3. Through cultivation at
different temperatures, Vd-3 formed the most microsclerotia and had the largest colony diameter
at 25 ◦C. Endospore toxins were extracted, and 48 h was determined to be the best pathogenic
time point for endotoxins to infect cotton leaves through a chlorophyll fluorescence imaging system
and phenotypic evaluation. Transcriptome sequencing was performed on cotton leaves infected
with Vd-3 endotoxins for 48 h at different culture temperatures. A total of 34,955 differentially
expressed genes (DEGs) were identified between each temperature and CK (no pathogen inoculation),
including 17,422 common DEGs. The results of the enrichment analysis revealed that all the DEGs
were involved mainly in photosynthesis and sugar metabolism. Among the 34,955 DEGs, genes in
the biosynthesis and signal transduction pathways of jasmonic acid (JA), salicylic acid (SA), and
ethylene (ET) were identified, and their expression patterns were determined. A total of 5652 unique
DEGs were clustered into six clusters using the k-means clustering algorithm, and the functions
and main transcription factors (TFs) of each cluster were subsequently annotated. In addition, we
constructed a gene regulatory network via weighted correlation network analysis (WGCNA) and
identified twelve key genes related to cotton defense against V. dahliae at different temperatures,
including four genes encoding transcription factors. These findings provide a theoretical foundation
for investigating temperature regulation in V. dahliae infecting cotton and introduce novel genetic
resources for enhancing resistance to this disease in cotton plants.

Keywords: G. hirsutum; temperature; V. dahliae; RNA-seq; candidate genes

1. Introduction

Temperature is an important environmental factor in the growth and pathogenicity
of plant pathogens [1]. Many reports have described the inhibitory effects of high or low
temperatures on the growth and infection of pathogens [2]. Verticillium dahliae is extremely
sensitive to temperature and mutates due to culture conditions, temperature, and other
environmental factors [3]. Its morphological variation is manifested mainly in changes
in colony morphology and the increase or loss in microsclerotia and sclerotia [4]. The
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suitable temperature for the growth of V. dahliae on cotton is 22–25 ◦C, with high conidia
and toxin production and the greatest pathogenicity [5]. In early July, the temperature in the
cotton-producing area in northern Xinjiang, China, is mostly between 25 and 30 ◦C, which
creates favorable conditions for the survival of V. dahliae [6]. An appropriate temperature
can accelerate the infection and reproduction of pathogens. When the temperature is above
35 ◦C, the pathogen stops growing and reproducing and will not infect plants, and thus
high-temperature latent symptoms will occur. High-temperature hidden syndrome is
an extreme manifestation of V. dahliae infection of cotton in the field. It is an adaptive
mechanism of V. dahliae to cope with adverse environments [7]. The longer the high
temperature is, the lower the activity of the pathogen, the weaker the infection abil-
ity, and the disease cannot spread. The continuous high temperatures in the Xinjiang
cotton-producing area in July and August every year have a very obvious inhibitory ef-
fect on the occurrence of the disease. When the temperature decreases, the pathogen
resumes growth, and the incidence rate increases [8]. This phenomenon has a great im-
pact on the growth of cotton fields and has severely hindered the progress of cotton
resistance research.

The transcriptome has been widely used to study plant disease resistance. Transcrip-
tome data analysis revealed that the expression of the OsHLP1 gene in rice was significantly
upregulated in response to rice blast infection. OsHLP1-overexpressing plants exhibited
significantly increased resistance to rice blast [9]. Significant differences in gene expres-
sion were observed between two sesame varieties, suggesting that the upregulation of
differentially expressed genes (DEGs) among the disease resistance (R) genes may increase
resistance. Moreover, combined with the phenotypic observations of sesame leaves inocu-
lated at different time points, a comparative transcriptome analysis of Corynespora leaf
spot from the two sesame varieties revealed that 12 h post-inoculation (hpi) was the key
time point leading to the difference in resistance between the two materials. A weighted
correlation network analysis (WGCNA) identified two modules significantly associated
with disease resistance and identified ten key candidate genes [10]. Through an RNA-seq
analysis of the metabolite components of eggplants with high resistance and high sensitivity
to V. dahliae, after inoculation with V. dahliae, the highly resistant material presented greater
polyphenol oxidase and superoxide dismutase activities than did the highly resistant mate-
rial, and 4017 DEGs were identified. A coexpression analysis identified 13 transcription
factors as key genes related to the eggplant defense response [11]. Through an RNA-seq
analysis of the highly V. dahliae-susceptible cotton variety Junmian 1 and the highly resistant
cotton variety Liaomian 38, most DEGs were annotated to resistance-related pathways.
Resistance gene analogs (RGAs) have also been identified, and their roles in enhancing
V. dahliae resistance in Liaomian 38 were analyzed [12]. A comparative RNA-seq anal-
ysis of the upland cotton stems of the V. dahliae varieties Jimian 11 and Zhongzhimian
2 revealed 8330 DEGs and 383 miRNAs, and 31 differentially expressed miRNA-mRNA
pairs were identified [13].

Increases in global temperature and extreme temperature fluctuations are important
trends in future climate change [14]. Understanding the dual impacts of temperature
on V. dahliae occurrence in cotton and the host response is crucial for understanding the
pathogenesis of this disease. Therefore, analyzing how various temperatures affect the
occurrence of V. dahliae in cotton, studying the mechanism regulating host defense, and
revealing the dual effects of temperature on pathogens and hosts are essential for achieving
environmentally friendly disease prevention and control and temperature regulation. This
study is based on defoliating V. dahliae (Vd-3). Endotoxins were extracted at different culture
temperatures, the best pathogenic time point for endotoxins to infect cotton leaves was
determined using a chlorophyll fluorescence imaging system, and the materials obtained at
this time were subjected to RNA-seq. Through a differential expression analysis, cluster
analysis, enrichment analysis, expression pattern analysis of hormone biosynthesis and
signal transduction genes, WGCNA, and qRT-PCR, the key genes that induce the cotton
defense system and the regulatory pathways related to defense were further characterized,
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revealing the mechanism of cotton resistance to temperature sensitivity. These results are
highly important for research on cotton resistance to V. dahliae and genetic engineering, and
provide theoretical support for the effective prevention and control of V. dahliae and for
temperature regulation research.

2. Results
2.1. Phenotypes of Vd-3 Inoculated at Different Times and Temperatures

Since different temperatures can affect the growth of hyphae, they can also affect
the spore production, spore shape, size, etc., of the pathogen, ultimately affecting the
germination, infection, and spread of the pathogen. To this end, the Verticillium wilt
pathogen Vd-3 was inoculated on PDA solid media and cultured for 14 days. At 25 ◦C, the
greatest number of microsclerotia formed, and the largest colony diameter was observed
(Figure 1a). Phenotypic chlorophyll fluorescence imaging of leaves at different time points
(0 h, 12 h, 24 h, 36 h, 48 h, and 60 h) revealed that the leaves wilted at 48 h (Figure 1b). Using
48 h as the key period of infection, the degree of wilting of the leaves of the inoculated
plants increased with increasing culture temperature. At 25 ◦C, the disease was most
severe, the vascular bundles browned, and Fv/Fm, Y(II), NPQ, and Y(NO) all reached
their maximum values (Figure 1c). Therefore, RNA-seq was performed on samples of
Verticillium wilt-infected cotton cultured at different temperatures for 48 h to analyze
the regulatory pathways and key genes of Verticillium wilt-infected cotton cultured at
different temperatures.
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Figure 1. (a) Phenotype and colony diameter of Vd-3 colonies after 14 days of culture at different
temperatures, bar = 1 cm. Different letters indicate the significance level of difference in colony
diameter at different temperatures (p < 0.05). (b) Phenotype and chlorophyll fluorescence imaging
of cotton leaves infected with the spore toxin protein at different times under normal conditions;
bar = 1 cm. (c) Phenotype and chlorophyll fluorescence imaging of cotton leaves infected with spore
toxin protein at different temperatures for 48 h; bar = 1 cm.
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2.2. RNA-Seq Data Analysis

This study generated 124.3 Gb of clean data from 18 samples of cotton leaves infected
with Vd-3 at various culture temperatures (10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C). Each
sample had 6.29 Gb of clean data, with a Q30 base percentage exceeding 92.98% and an
alignment rate surpassing 97.86% (Table S2). By calculating the Pearson correlation co-
efficient between three biological replicates of the same sample, a correlation exceeding
0.98 was observed (Figure 2a). The PCA results revealed that the biological replicate sam-
ples clustered together, suggesting the high reliability and repeatability of the transcriptome
data (Figure 2b).
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2.3. Differential Expression Analysis

DEGs between samples cultivated each temperature, and the CK were identified to in-
vestigate the regulatory patterns of V. dahliae infection in cotton cultivated at different temper-
atures (Figure 3a). At 10 ◦C, a total of 25,707 DEGs were identified: 10,589 were upregulated,
15,118 were downregulated, and 748 were unique DEGs. At 15 ◦C, a total of 26,524 DEGs
were identified: 10,713 were upregulated, 15,811 were downregulated, and 938 were unique
DEGs. At 20 ◦C, a total of 25,627 DEGs were identified: 10,315 were upregulated, 15,312 were
downregulated, and 431 were unique DEGs. At 25 ◦C, a total of 28,468 DEGs were identified:
12,258 were upregulated, 16,210 were downregulated, and 2208 were unique DEGs. At 30 ◦C,
a total of 23,149 DEGs were identified, including 9443 upregulated, 13,706 downregulated,
and 1327 unique DEGs. A total of 34,955 DEGs were identified under all the temperature
conditions, including 17,422 common DEGs (Figure 3b).

Annotation of differentially expressed genes helps us to further understand the func-
tions of genes. We performed GO and KEGG enrichment analyses on 34,955 DEGs.
GO enrichment analysis revealed that the biological process terms included photosyn-
thesis, chloroplast organization, the photosynthetic electron transport chain, the glucan
metabolic process, the abscisic acid-activated signaling pathway, the cellular polysaccharide
catabolic process, the chlorophyll metabolic process, the glucose metabolic process, and the
starch metabolic process. The main molecular functions included carbohydrate binding,
glucosyltransferase activity, ligase activity, oxidoreductase activity, chlorophyll binding,
polysaccharide binding, transmembrane binding, membrane receptor protein kinase ac-
tivity, carbohydrate phosphatase activity, UDP-glucosyltransferase activity, and cellulose
synthase activity (Figure 3c). Enriched KEGG pathways were associated mainly with
glyoxylate and dicarboxylate metabolism, the pentose phosphate pathway, fructose and
mannose metabolism, glutathione metabolism, photosynthesis, propanoate metabolism,
fatty acid metabolism, glycolysis/gluconeogenesis, phenylalanine metabolism, peroxisome
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metabolism, cytochrome P450, unsaturated fatty acid biosynthesis, galactose metabolism,
pyruvate metabolism, and alpha-linolenic acid metabolism (Figure 3d).
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The functional changes in genes under V. dahliae stress in cotton cultured at different
temperatures were investigated by clustering the 34,955 DEGs into nine clusters using
the k-means clustering algorithm, and the number of transcription factors (TFs) in each
cluster was determined (Figure 4). Cluster 1 presented the highest expression level under
CK conditions, with 736 TFs among the 9750 DEGs. Cluster 2 presented the highest
expression level at 10 ◦C, with 239 TFs among the 2263 DEGs. Cluster 3 presented the
highest expression level at 25 ◦C, with 245 TFs among the 2274 DEGs. Cluster 4 presented
the highest expression level under CK and 30 ◦C conditions, with 432 TFs among the
5625 DEGs. Cluster 5 presented the lowest expression level under CK conditions, with
239 TFs among the 2599 DEGs. Cluster 6 presented the lowest expression level at 15 ◦C,
with 173 TFs among the 2950 DEGs. Cluster 7 presented the highest expression level under
CK and 30 ◦C conditions and contained 250 TFs among 2897 DEGs. Cluster 8 presented the
lowest expression level under CK conditions and included 347 TFs among the 3313 DEGs.
Cluster 9 presented the lowest expression level under CK conditions and the highest
expression level at 30 ◦C and contained 256 TFs among the 2784 DEGs.
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We clustered the 5652 unique DEGs into six clusters using the k-means clustering
algorithm and then annotated the functions and main TFs of each cluster to further un-
derstand the functions of the unique DEGs (Figure 5). Cluster 1 genes, which included
mainly the WRKY, C2H2, bZIP, and AP2 transcription factors, were highly expressed under
CK conditions and annotated in the defense response to virus, oligosaccharide metabolic
process, and gibberellic acid-mediated signaling pathways. Cluster 2 genes, which included
mainly MYB, G2-like, and bZIP transcription factors, were highly expressed at 10 ◦C and
annotated in the tricarboxylic acid cycle, leaf development, and aerobic respiration. Clus-
ter 3 genes, which included bHLH, GRAS, WRKY, NAC, and ERF transcription factors,
were highly expressed at 15 ◦C and annotated as being involved in the cellular response
to external biotic stimuli, the steroid biosynthetic process, and the cellular response to
biotic stimuli. Cluster 4 genes were highly expressed at 20 ◦C, enriched in phospholipid
metabolic processes, polysaccharide biosynthetic processes, and pectin biosynthetic pro-
cesses, and included mainly HD-ZIP, bHLH, GRAS, AP2, and C2C2 transcription factors.
Cluster 5 genes were highly expressed at 25 ◦C, annotated as being involved in leaf mor-
phogenesis, the cell cycle, and protein transmembrane transport, and included mainly
HD-ZIP, ERF, and G2-like transcription factors. Cluster 6 genes were highly expressed at
30 ◦C, annotated in dicarboxylic acid metabolic processes, tetrahydrofolate biosynthetic
processes, and photorespiration, and included mainly MYB and G2-like transcription
factors (Figure 5).
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2.4. Analysis of Patterns of Gene Expression in the JA, SA, and ET Pathways

JA, SA, and ET are believed to play important roles in the response of cotton to
V. dahliae stress. To this end, we identified 184 DEGs in the JA, SA, and ET biosynthesis and
signal transduction pathways (Figure 6). In the JA biosynthesis pathway, LOX genes were
mostly expressed at the highest level under CK conditions, two AOC genes (GH_A08G0400
and GH_D12G1887) were expressed at the highest level at 25 ◦C, and most OPR genes were
expressed at the highest level at 25 ◦C (Figure 6a). In the JA signal transduction pathway, the
expression levels of JAR1 and COI1 increased with increasing temperature. Some JAZ genes
were expressed at the highest level under CK conditions, and some were expressed at the
highest level at 25 ◦C. Two MYC2 genes (GH_A03G0054 and GH_A12G2286) were expressed
at the highest level at 30 ◦C, and the remaining genes were expressed at the highest level
under CK conditions. In the SA biosynthesis pathway, only two PAL genes (GH_A11G3700
and GH_D11G3728) were expressed at the highest level at 25 ◦C, and the remaining ICS
and PAL genes were expressed at the highest level under CK conditions (Figure 6b). In
the SA signal transduction pathway, two NPR1 genes (GH_A09G1355 and GH_D09G1306)
were expressed at the highest level under CK conditions, and the expression levels of the
remaining NPR1 genes increased under different temperature conditions. Among the TGA
genes, three genes (GH_A13G0044, GH_D05G0829 and GH_D11G2343) were expressed at
the highest level under CK conditions, and the expression levels of the remaining genes
increased under different temperature conditions. The PR1 gene was expressed at the
highest level at 15 ◦C and 25 ◦C. In the ET biosynthesis pathway, most of the SAM genes
were expressed at the highest level under CK conditions, and the ACS genes were expressed
at the highest level at 25 ◦C (Figure 6c). Only one ACO gene (GH_D06G1800) was expressed
at the highest level under CK conditions, while the expression levels of the other ACO
genes increased under different temperature conditions. In the ET signal transduction
pathway, most ETR, CTR1, and EIN3 genes were expressed at the highest level at 20 ◦C,
and except for those of GH_A13G1961 and GH_D13G1926, which were expressed at the
highest level under CK conditions, the expression levels of the other ERF genes were all
highest at 25 ◦C.
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2.5. WGCNA

Based on the expression profiles of the 34,955 DEGs, a total of seven coexpression
modules were obtained, and different colors were used to represent different modules
(Figure 7a). The correlations between the modules and the V. dahliae fungus cultured at
different temperatures were calculated, and four (red, turquoise, yellow and black) sig-
nificantly highly correlated modules were identified (r > 0.80, p < 0.01) (Figure 7b). For
each module, the three genes with the highest connectivity were identified as hub genes,
and twelve hub genes were ultimately obtained (Figure 7c–f). The twelve genes included
four genes encoding transcription factors (GH_A11G1273 (bHLH), GH_A09G2571 (ERF),
GH_A07G1621 (MYB), and GH_A07G0019 (WRKY)). GH_D10G0905 encodes an NRT1/PRT
family gene, which is an ABA transporter. GH_A11G1942 encodes a serine/threonine pro-
tein phosphatase. GH_A09G2462 encodes 1-aminocyclopropane-1-carboxylic acid oxidase
(ACO), the rate-limiting enzyme regulating ethylene biosynthesis. GH_D05G3216 encodes
cytochrome P450, GH_A08G1451 encodes S-adenosylmethionine synthase 2, GH_A05G0363
encodes sucrose synthase, GH_A09G0173 encodes beta-1,3-galactosyltransferase, and
GH_D06G2430 encodes ADP-ribosylation factor GTPase-activating protein.
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Figure 7. (a) WGCNA module hierarchical clustering tree diagram; different modules are repre-
sented by different colors. (b) Correlation and significance heatmaps between samples and modules.
(c) Red module gene interaction network diagram. (d) Turquoise module gene interaction network
diagram. (e) Yellow module gene interaction network diagram. (f) Black module gene interaction
network diagram.

2.6. qRT-PCR

The expression patterns of the 12 candidate genes after inoculation with V. dahliae at
different temperatures were detected using qRT-PCR (Figure 8). Compared with those
in the CK treatment, the expression levels of five genes (GH_A05G0363, GH_A08G1451,
GH_A09G2462, GH_A11G1942, and GH_D05G3216) decreased significantly after inoculation
(Figure 8). Compared with those in the CK treatment, the expression levels of four genes
(GH_A05G0363, GH_A08G1451, GH_A09G2462, and GH_A11G1942) were the lowest at
25 ◦C. The expression levels of seven genes (GH_A07G0019, GH_A07G1621, GH_A09G0173,
GH_A09G2571, GH_A11G1273, GH_D06G2430, and GH_D10G0905) increased significantly
after inoculation with V. dahliae (fold change > 4). Except for GH_D10G0905, the other
six genes presented the highest expression levels at 25 ◦C. The transcriptome data of these
12 genes were significantly correlated with the fold difference in the qRT-PCR data
(R = 0.90, p < 0.01). These results indicate that the transcriptome sequencing data are
reliable (Figure S1).
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3. Discussion

Temperature is the main factor limiting the occurrence and spread of V. dahliae. The
optimum temperature for V. dahliae in cotton is 25–28 ◦C. Temperatures below 22 ◦C or above
33 ◦C are not conducive to the onset of the disease, and temperatures above 35 ◦C lead to
latent symptoms [6,7]. Temperature is closely related to the growth and reproduction of
pathogenic fungi [15]. Temperature not only affects the growth of mycelia, but also affects the
spore production, spore shape, size, etc., of pathogens, ultimately affecting their germination,
infection, and spread. In addition, different pathogens and even different subspecies of the
same pathogen require different suitable temperatures to infect the host. We inoculated the
deciduous V. dahliae pathogen Vd-3 onto PDA solid culture media and cultured it at 10 ◦C,
15 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C. We found that the greatest number of microsclerotia formed at
25 ◦C, and the largest colony diameter was observed at this temperature. At 25 ◦C, the cotton
plants were the most severely ill, with wilting of the leaves and browning of the vascular
bundles. More DEGs (28468) were produced at 25 ◦C. Our results showed that 25 ◦C was
most suitable for the growth of Vd-3 and resulted in the highest infection efficiency for cotton.

Chloroplasts are among the most dynamic organelles in plant cells. They play an
active role in defense responses and are essential for intercellular signaling [16]. Studies
have shown that radish leaf curl virus β-satellite infection can destroy the structural and
functional integrity of host chloroplasts, leading to the inhibition of photosynthesis and
the development of symptoms [17]. N receptor interacting protein 1 (NRIP1) is localized
in chloroplasts. When TMV invades, NRIP1 can interact with the N protein and tobacco
mosaic virus effector p50 at the same time and is recruited to the cytoplasm and nucleus,
thereby mediating resistance to TMV [18]. Silencing the expression of the rbcS gene can
also mediate resistance to TMV [19]. Our findings revealed that all DEGs were signifi-
cantly enriched in photosynthesis, chloroplast organization, the photosynthetic electron
transport chain, the glucan metabolic process, and the abscisic acid-activated signaling
pathway, and many DEGs related to photosynthesis pathways were upregulated. There-
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fore, photosynthesis is crucial for cotton resistance to V. dahliae, and many reports have
documented the effects of virus infection on host photosynthesis. Maize dwarf mosaic virus
causes a decrease in chloroplast volume and number, a decrease in chloroplast content,
and a decrease in the photosynthetic rate [20]. The net photosynthetic rate of tobacco
leaves infected with CMV decreases, and the activities of PSI and PSII are inhibited. The
pathway for transporting photosynthetic products is the phloem, and the main form of
transport is sucrose. Sucrose catabolism plays an important role in plant defense against
pathogens [21]. On the one hand, sucrose catabolism can provide carbon skeletons and
energy for plant defense responses [22]. For example, defense responses such as cell wall
thickening, phytoalexin synthesis, and the accumulation of disease-related proteins re-
quire a large amount of sugar [23]. On the other hand, the hexoses (glucose and fructose)
produced by sucrose decomposition can also act as signaling molecules to regulate the
expression of disease-related genes [24]. Although sugar metabolism can increase plant
disease resistance, the hexoses (glucose and fructose) produced by sucrose decomposi-
tion can also provide energy and carbon skeletons for the growth of pathogens, thereby
causing plant disease. Therefore, sugar metabolism plays both positive and negative roles
in the process of plant disease resistance [25]. All DEGs were enriched in the pentose
phosphate pathway, fructose and mannose metabolism, glycolysis/gluconeogenesis, and
galactose metabolism pathways. Sugars can be used by plants for defense reactions or
can be absorbed and utilized by pathogenic bacteria after being decomposed into glucose
and fructose. Two enzymes in plants decompose sucrose, namely, sucrose synthase and
invertase [26]. SS can decompose sucrose into UDP-glucose and fructose and is one of
the key enzymes required for sucrose to enter various metabolic pathways. Among the
candidate genes we discovered, GH_A09G0173 encodes a beta-1,3-galactosyltransferase,
and GH_A05G0363 encodes sucrose synthase. These two genes may be highly important
for the resistance of upland cotton to V. dahliae.

In the process by which plants resist biological adversity, the salicylic acid-mediated
defense response plays a vital role [27]. Studies have shown that the application of ex-
ogenous SA or SA analogs to plants can induce the expression of pathogenesis-related
proteins in plants, increasing their resistance to pathogens [28]. After pathogens are inoc-
ulated into disease-resistant varieties of various crops, such as tobacco, SA accumulates
rapidly and in large quantities, and the expression level of pathogenesis-related proteins
increases accordingly, triggering a series of downstream immune responses [29]. In the
SA biosynthesis pathway, two PAL genes (GH_A11G3700 and GH_D11G3728) were highly
expressed at 25 ◦C, indicating that these two genes play important roles in the dependence
of cotton on the SA pathway to improve resistance to V. dahliae. Notably, GH_A09G2462
encodes 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), the rate-limiting enzyme
that regulates ethylene biosynthesis. These comprehensive results indicate that hormones,
photosynthesis, and sugar metabolism play important roles in the defense of cotton against
V. dahliae. In the future, the key genes in these regulatory pathways can be functionally ver-
ified, and their mechanisms can be analyzed, which are highly important for the resistance
of cotton to V. dahliae.

TFs are believed to play important roles in the disease resistance of plants. By regu-
lating gene expression in host plants, TFs can affect the degree of infection of plants by
pathogens and reduce the harm caused by diseases to plants [30]. For example, some TFs
can promote the production of antimicrobial agents in plants and increase the resistance of
plants to pathogens, and some TFs can regulate the immune system of plants and improve
disease resistance [30]. In addition, some TFs can also regulate the signal transduction
pathways of plants, improve the ability of plants to recognize pathogens, and strengthen
the disease resistance of plants [31]. For example, GbERF1-like has similar expression
characteristics to those of GbERF1 and GbERF2. The overexpression of GbERF1-like genes in
cotton and Arabidopsis can promote the expression of lignin synthesis-related genes and
increase resistance to V. dahliae. GbERF1-like can also interact with the cell wall-related genes
pectin methylesterase inhibitory protein GhPMEI3 and PMEs and can regulate the expres-
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sion of fungus-specific polygalacturonase (VdPG1), thereby increasing cotton resistance to
V. dahliae [32]. The overexpression of the cotton gene GhMYB4, which encodes a negative
regulator of lignin synthesis, reduces lignin synthesis in vivo, leading to changes in cell
wall integrity and the release of more oligogalactosides (OGs), thereby reducing the defense
response of cotton to V. dahliae [33]. Silencing GhWRKY70 can lead to the upregulation of
JA signaling pathway-related gene expression and the downregulation of SA signaling
pathway-related gene expression. The overexpression GhWRKY70 of transgenic Arabidop-
sis thaliana increased the expression of SA-related genes and decreased the expression of
JA response-related genes, thereby reducing the resistance of cotton and A. thaliana to
V. dahliae [34]. GhWRKY70D13 regulates cotton resistance to V. dahliae through the ET and
JA signaling pathways [35]. GhbHLH171 has been found to regulate cotton resistance to
V. dahliae through the JA signaling pathway [36]. As research has progressed, an increasing num-
ber of TFs have been shown to regulate cotton resistance to V. dahliae. We also screened four new
TFs (GH_A11G1273 (bHLH), GH_A09G2571 (ERF), GH_A07G1621 (MYB), and GH_A07G0019
(WRKY)), which may play important roles in the response of cotton to V. dahliae. In the future,
we can focus on cloning these candidate genes, clarifying the regulatory pathways and interac-
tion processes between them, and combining molecular biology and multiomics sequencing to
analyze the mechanism of cotton resistance to V. dahliae comprehensively.

4. Materials and Methods
4.1. Plant Materials

V. dahliae Vd-3, a fungus causing V. dahliae in cotton, was isolated and purified from a
diseased cotton field in the cotton-growing area of Changji Prefecture, Xinjiang, China, in
October 2018. The pathogenic strain was identified as highly pathogenic and preserved
in the laboratory of the Institute of Economic Crops, Xinjiang Academy of Agricultural
Sciences. The cotton variety selected in this study was Xinlu Zao 57, which was provided
by the Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences. Indoor
experiments were conducted at the Xinjiang Academy of Agricultural Sciences in March
2023. The soil and vermiculite were mixed at a mass ratio of 2:1 as a seedling medium
and sterilized at 121 ◦C for 20 min. Full and consistent seeds were selected, disinfected
with 5% sodium hypochlorite for 5 min and 75% alcohol for 30 s, rinsed with sterile water
three times, and placed in a glass culture dish containing filter paper. The culture dish was
placed in an incubator at 24–28 ◦C for germination. Finally, the germinated seeds were
transferred to a 32-well plug tray rich in seedling medium, and the plug tray was moved
to a greenhouse at 25–30 ◦C for seedling cultivation. The light intensity was 4000 lx, and
the photoperiod was 16 h/8 h (day/night). In April 2023, V. dahliae Vd-3 was inoculated
into potato dextrose agar (PDA) medium and cultured at 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, and
30 ◦C for 14 days. After the diameter of each colony was determined, a sterile punch with a
diameter of 5 mm was used to generate a bacterial pellet at the edge of the colony, which
was subsequently inoculated into Czapek’s culture medium. The culture was shaken in a
shaker at 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C at 130 r/min until the fluorescence value of
the fungal mixture was 0.4–0.6 and then filtered with 4 layers of sterile gauze to obtain a
conidial suspension of the pathogen. After centrifugation, the precipitate was collected and
suspended in 0.05 mol/L phosphate buffer at pH 6.5. The conidia content of the pathogen
was detected using a hemocytometer, and the concentration of the suspended conidia was
adjusted to 107 conidia/mL. The toxin protein was isolated from the spores of V. dahliae
Vd-3 grown at 25 ◦C by ultrahigh-pressure ultrasonic fragmentation. When the cotton
seedlings grew 10 true leaves, cotton leaves of the same size and at the same site were
selected for infection with spore toxins cultured at different temperatures (10 ◦C, 15 ◦C,
20 ◦C, 25 ◦C, 30 ◦C) by the in vitro leaf immersion method, and phenotypic chlorophyll
fluorescence imaging of the leaves was performed at different times (0 h, 12 h, 24 h, 36 h,
48 h, and 60 h). The concentration of toxins used in all in vitro leaf toxin immersion tests
was 16 µg/mL. Phosphate buffer treatment was used as a control, and the samples were
placed in a sterile greenhouse at 25 ◦C for culture under weak light. Leaves inoculated with
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bacteria for 48 h at different temperatures (10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C) were sampled,
with 6 biological replicates for each sample (3 for RNA-seq and 3 for qRT-PCR).

4.2. Exploration of the Physiological Changes in Cotton Resistance to Vd-3 Virus-Produced Toxins

An EPSON camera system (EPSON, Nagano-ken, Japan) was used to record the phe-
notypic changes in infected and uninfected cotton seedling leaves, and a stereomicroscope
was used to record the changes in the leaf’s anatomical structure. A chlorophyll fluo-
rescence imaging system was used to image detached leaves infected with toxins. After
30 min of dark adaptation, the cotton leaves were placed in a modulated chlorophyll
fluorescence imaging system (WALZ product, Effeltrich, Germany, model IMAGING-PAM)
to measure the maximum quantum yield (Fv/Fm), actual quantum yield (Y(II)), non-
photochemical quenching (NPQ), quantum yield of nonregulated energy dissipation of
photosystem II (Y(NO)), and other chlorophyll fluorescence parameters, and the fluores-
cence parameters and images were analyzed.

4.3. RNA-Seq Library Construction and Sequencing

RNA was extracted using a polysaccharide and polyphenol plant total RNA extraction
kit (each sample was guaranteed to be approximately 100 mg), and the extraction process
was performed according to the instructions. After RNA extraction, a NanoDrop spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA) was used to determine the purity
(OD260/280), concentration, and whether the nucleic acid absorption peak was normal. The
integrity of the RNA was accurately detected with an Agilent 2100 instrument (Agliment,
Orange, CA, USA). After each sample was qualified, it was transported on dry ice to Xinjiang
Aidesen Biological Co., Ltd. (Urumqi, China) for sequencing. Magnetic beads with oligo(dT)
were used to enrich mRNAs by combining A-T complementary pairing with the poly(A)
tail of the mRNA. Subsequently, fragmentation buffer was added to shear the mRNA into
short fragments. Using the mRNA as a template, random hexamers were used to synthe-
size the first-strand cDNA, and then buffer, dNTPs, and DNA polymerase I were added to
synthesize the second-strand cDNA. The double-stranded cDNA was then purified using
AMPure XP beads (Metware, Wuhan, China). The purified double-stranded cDNA was then
end-repaired, A-tailed, and connected to sequencing adapters. Then, AMPure XP beads
were used for fragment size selection, and PCR enrichment was performed to obtain the
final cDNA library. The library was detected using an Agilent 2100 instrument (Agliment,
Orange, CA, USA) and Q-PCR. The constructed library was sequenced on the Illumina HiSeq
2500 sequencing (Illumina, San Diego, CA, USA) platform.

4.4. RNA-Seq Analysis

After the raw sequence data were obtained, Fastp software (version 0.23.4) was used
to remove the adapter sequences and filter out low-quality and N sequences with a ratio
greater than 5% to obtain clean reads that could be used for subsequent
analysis [37]. HISAT2 was used to align the clean reads to the reference genome of TM-1
(https://www.cottongen.org/species/Gossypium_hirsutum/ZJU-AD1_v2.1, (accesssed on
15 July 2023)) [38,39]. FeatureCounts was used to compare the results for statistics and
quantification [40]. Assessing the correlation of biological replicates is crucial in tran-
scriptome sequencing data analysis. This evaluation not only confirms the consistency
of biological experimental procedures, but also ensures the credibility of differentially
expressed genes and aids in identifying any outliers. The R language PCAtools software
(version 2.16) package was used to decompose the expression data (FPKM) of all genes into
n principal components to describe the characteristics of the original dataset. PC1 repre-
sents the most obvious feature that can be described in the multidimensional data matrix,
and PC2 represents the most significant feature that can be described in the data matrix
except PC1. The ggplot software package was used for visualization. The unnormalized
read count data were used as input data to calculate the p value and fold change value with
DESeq2 software (version 1.44). A p value < 0.05 and a |log2 fold change| > 1 were used
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as screening criteria to obtain DEGs [41]. Enrichment analyses of the DEGs using Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were
conducted with the clusterProfiler software package (version 4.12.6) in R [42].

4.5. WGCNA

The WGCNA package (version 1.73) in R was used to perform a coexpression analysis
of the DEG expression profile with the dynamic branch cutting method [43]. The weight
coefficient β should satisfy a correlation coefficient close to 0.8. In this work, β = 17 was
selected as the weight coefficient. The network was constructed using blockwise modules to
obtain the gene coexpression module (minModuleSize = 30 and Merge Cut Height = 0.25).
The correlation coefficient and p value between the module’s characteristic vector module
eigengene (ME) and the V. dahliae fungus cultured at different temperatures were calculated.
The coexpression network was visualized using Cytoscape software [44].

4.6. qRT-PCR

Based on the cDNA information for each gene of interest, primers were designed in the
specific region of the 5′ or 3′ end of the gene sequence using Primer 5.0 software (Table S1).
Total RNA was extracted using the RNAprep Pure Polysaccharide and Polyphenol Plant
Total RNA Extraction Kit (Tiangen, Beijing, China). The concentration of each RNA sample
was determined using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). The RNA was reverse transcribed using the M-MLV RTase cDNA
Synthesis Kit (TaKaRa, Osaka, Japan) to generate cDNA. Real-time PCR amplification was
performed on a Bio-Rad CFX96 Real-time System. An iTaq Universal SYBR Green Supermix
(Bio-Rad, Hercules, CA, USA) kit was used, and the method provided was followed, with
a total system volume of 20 µL. The reaction procedure was predenaturation at 95 ◦C for
30 s and 40 cycles of denaturation at 95 ◦C for 5 s, annealing at 57 ◦C for 5 s, and extension
at 72 ◦C for 34 s. The results were analyzed by performing a relative quantitative analysis
using the 2–∆∆Ct method, and the internal reference gene used was GhUBQ7 [45].

5. Conclusions

Temperature plays an important role in the growth and invasion of V. dahliae, which
in turn affects the occurrence of V. dahliae in cotton. The optimal temperature for the
growth of V. dahliae Vd-3 hyphae is 25 ◦C, which is suitable for spore production.
RNA-seq revealed that photosynthesis and sugar metabolism processes are essential for
cotton defense against V. dahliae, and twelve key genes related to cotton defense against
V. dahliae at different temperatures were identified, including four genes encoding tran-
scription factors. These research results reveal the effects of temperature on the growth and
infection of pathogens and potential regulatory pathways, providing theoretical support
for the effective prevention and control of V. dahliae and temperature regulation. However,
the current understanding of this relationship in terms of environmental immunity is still
in its early stages, and continued exploration of the potential mechanism of temperature
regulation of cotton resistance to Verticillium wilt is needed to provide a reference for
V. dahliae prevention and control strategies and the breeding of disease-resistant varieties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13192688/s1, Table S1: All primers used in this study.
Table S2: Summary statistics for the RNA-seq analysis of G. hirsutum. Figure S1: Scatter plot of the
correlations between the RNA-seq data and expression levels determined using qRT-PCR.
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