Visualizations Out of Context: Addressing Pitfalls of Real-Time Realistic Hazard Visualizations
Abstract
:1. Introduction
- The perceived status and legitimacy of visualizations. The question of status includes whether viewers perceive these visualizations as products of scientific or technical processes, and how factors such as labeling, association with an institution, or visual quality affect those perceptions [20,24].
- The extent to which contextual, social, cultural, and situational factors are considered in shaping the design and implementation of visualizations.
2. Background
3. Elaboration of the Issues
3.1. Perceived Status and Its Influence on Perceptions of Legitimacy
3.2. Obscuring Uncertainty
3.3. Use of Persuasive Media to Communicate Uncertain Future Events
4. Steps to More Broad Use of Simulation-Based 3D Hazard Visualizations
- Query perceptions of the likelihood of an event and the severity of an event separately to not conflate perceptions of risk with probability alone.
- Where possible, distinguish between confidence in the projection, the probability of the event, and other forms of uncertainty.
- Account for contextual factors, such as relative expertise, and recognize that contextual factors transform perceptions of technical uncertainty and probability in addition to risk.
- Identify visualization objectives at the outset of processes, recognizing that expert stakeholders that typically shape visualizations and audiences have distinct perceptions of risk and priorities [57].
- Involve audiences in scoping what is visualized and developing or shaping modeling inputs as suggested in earlier sections of this paper. Although much attention has been paid to the notion of creating user/audience controllable visualizations, users/audiences should shape what is controlled and the extent of scenario choices [79];
- Conduct post-surveys that measure the perception visualizations and their effects on perception in conditions that approximate use, including using representative samples. Compare results to the identified objectives [26].
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, R.; Emanuel, K. Climate Change and Hurricane-Like Extratropical Cyclones: Projections for North Atlantic Polar Lows and Medicanes Based on CMIP5 Models. J. Clim. 2017, 30, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Morrow, B.H.; Lazo, J.K.; Rhome, J.; Feyen, J. Improving storm surge risk communication: Stakeholder perspectives. Bull. Am. Meteorol. Soc. 2015, 96, 35–48. [Google Scholar] [CrossRef]
- Morrow, B.H.; Lazo, J.K. Emergency Managers On-Line Survey on Extratropical and Tropical Cyclone Forecast Information: Hurricane Forecast Improvement Program/Storm Surge Roadmap; NCAR Technical Note NCAR/TN-497: Boulder, CO, USA, 2013; Available online: https://opensky.ucar.edu/islandora/object/technotes%3A508/datastream/PDF/view (accessed on 24 July 2019). [CrossRef]
- Stempel, P.; Ginis, I.; Ullman, D.; Becker, A.; Witkop, R. Real-Time Chronological Hazard Impact Modeling. J. Mar. Sci. Eng. 2018, 6, 134. [Google Scholar] [CrossRef]
- Spaulding, M.L.; Grilli, A.; Damon, C.; Crean, T.; Fugate, G.; Oakley, B.; Stempel, P. STORMTOOLS: Coastal Environmental Risk Index (CERI). J. Mar. Sci. Eng. 2016, 4, 54. [Google Scholar] [CrossRef]
- Rickard, L.N.; Schuldt, J.P.; Eosco, G.M.; Scherer, C.W.; Daziano, R.A. The proof is in the picture: The influence of imagery and experience in perceptions of hurricane messaging. Weather. Clim. Soc. 2017, 9, 471–485. [Google Scholar] [CrossRef]
- Keller, C.; Siegrist, M.; Gutscher, H. The role of the affect and availability heuristics in risk communication. Risk Anal. 2006, 26, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, S.R. Landscape visualisation and climate change: The potential for influencing perceptions and behaviour. Environ. Sci. Policy 2005, 8, 637–654. [Google Scholar] [CrossRef]
- Kostelnick, J.C.; McDermott, D.; Rowley, R.J.; Bunnyfield, N. A cartographic framework for visualizing risk. Cartographica Int. J. Geogr. Inf. Geovisualization 2013, 48, 200–224. [Google Scholar] [CrossRef]
- Bostrom, A.; Anselin, L.; Farris, J. Visualizing seismic risk and uncertainty. Ann. N. Y. Acad. Sci. 2008, 1128, 29–40. [Google Scholar] [CrossRef]
- Morgan, M.G.; Fischhoff, B.; Bostrom, A.; Atman, C.J. Risk Communication: A Mental Models Approach; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar] [CrossRef]
- Weber, E.U. What shapes perceptions of climate change? Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 332–342. [Google Scholar] [CrossRef]
- Nicholson-Cole, S.A. Representing climate change futures: A critique on the use of images for visual communication. Comput. Environ. Urban Syst. 2005, 29, 255–273. [Google Scholar] [CrossRef]
- O’Neill, S.; Nicholson-Cole, S. “Fear Won’t Do It” Promoting Positive Engagement With Climate Change Through Visual and Iconic Representations. Sci. Commun. 2009, 30, 355–379. [Google Scholar] [CrossRef]
- Schroth, O.; Pond, E.; Sheppard, S.R. Integration of Spatial Outputs from Mathematical Models in Climate Change Visioning Tools for Community-Decision Making on the Landscape Scale. In Proceedings of the DLA-Digital Landscape Architecture, Dessau and Bernburg, Germany, 26–28 May 2011; pp. 246–255. [Google Scholar]
- White, D.D.; Wutich, A.; Larson, K.L.; Gober, P.; Lant, T.; Senneville, C. Credibility, salience, and legitimacy of boundary objects: Water managers’ assessment of a simulation model in an immersive decision theater. Sci. Public Policy 2010, 37, 219–232. [Google Scholar] [CrossRef]
- Becker, A. Using boundary objects to stimulate transformational thinking: Storm resilience for the Port of Providence, Rhode Island (USA). Sustain. Sci. 2017, 12, 477–501. [Google Scholar] [CrossRef]
- Schroth, O. From Information to Participation: Interactive Landscape Visualization as a Tool for Collaborative Planning; VDF Hochschulverlag AG: Zürich, Switzerland, 2010; Volume 6. [Google Scholar]
- Deitrick, S.; Edsall, R. Mediated Knowledge and Uncertain Science: Maps in Communicating Climate Change in Mass Media. In Proceedings of the 24th International Cartographic Conference, Santiago, Chile, 15–21 November 2009. [Google Scholar]
- Bica, M.; Demuth, J.L.; Dykes, J.; Palen, L. Communicating Hurricane Risks: Multi-Method Examination of Risk Imagery Diffusion. 2019. Manuscript submitted for publication. [Google Scholar] [CrossRef]
- Sheppard, S.R. Making climate change visible: A critical role for landscape professionals. Landsc. Urban Plan. 2015, 142, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, S.R. Visualizing Climate Change: A Guide to Visual Communication of Climate Change and Developing Local Solutions; Routledge: Abingdon Oxon, UK, 2012. [Google Scholar] [CrossRef]
- Fogg, B.; Tseng, H. The elements of computer credibility. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Pittsburgh, PA, USA, 15–20 May 1999; pp. 80–87. [Google Scholar] [CrossRef]
- Yates, J.F.; Stone, E.R. The risk construct. In Risk-Taking Behavior; Yates, J.F., Ed.; John Wiley: Chinchester, UK, 1992; pp. 1–25. [Google Scholar]
- Leshner, A.; Scheufele, D.; Bostrom, A.; Bruine de Bruin, W.; Cook, K.; Dietz, T.; Hallman, W.; Henig, J.R.; Hornik, R.; Maynard, A.; et al. Communicating Science Effectively: A Research Agenda; National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Sheppard, S.R.; Cizek, P. The ethics of Google Earth: Crossing thresholds from spatial data to landscape visualisation. J. Environ. Manag. 2009, 90, 2102–2117. [Google Scholar] [CrossRef]
- Lovett, A.; Appleton, K.; Warren-Kretzschmar, B.; Von Haaren, C. Using 3D visualization methods in landscape planning: An evaluation of options and practical issues. Landsc. Urban Plan. 2015, 142, 85–94. [Google Scholar] [CrossRef]
- Couclelis, H. The certainty of uncertainty: GIS and the limits of geographic knowledge. Trans. Gis 2003, 7, 165–175. [Google Scholar] [CrossRef]
- Moser, S.C. Reflections on climate change communication research and practice in the second decade of the 21st century: What more is there to say? Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 345–369. [Google Scholar] [CrossRef]
- Brecht, H. Geo-technologies in hurricane research. Cartogr. Geogr. Inf. Sci. 2007, 34, 153–154. [Google Scholar] [CrossRef]
- Fenech, A.; Chen, A.; Clark, A.; Hedley, N. Building an adaptation tool for visualizing the coastal impacts of climate change on Prince Edward Island, Canada. In Climate Change Adaptation in North America; Springer: New York, NY, USA, 2017; pp. 225–238. [Google Scholar] [CrossRef]
- Sneath, S. Predicting flood locations, depths, is aim of new computer simulation. In NOLA.com | The Times Picayune; NOLA Media Group: New Orleans, LA, USA, 2017. [Google Scholar]
- McCann, J.; Schumann, S.; Fugate, G.; Kennedy, S.; Young, C. Ocean SAMP: The Rhode Island Ocean Special Area Management Plan-Managing Ocean Resources Through Coastal and Marine Spatial Planning. A Practitioner’s Guide; University of Rhode Island Coastal Resources Center: Narragansett, RI, USA, 2012. [Google Scholar] [CrossRef]
- Crean, T. RI Shoreline Change Special Area Management Plan. Available online: http://www.beachsamp.org (accessed on 16 August 2018).
- Sheppard, S.R.; Shaw, A.; Flanders, D.; Burch, S.; Schroth, O. Bringing Climate Change Science to the Landscape Level: Canadian Experience in Using Landscape Visualisation Within Participatory Processes for Community Planning. In Landscape Ecology for Sustainable Environment and Culture; Springer: New York, NY, USA, 2013; pp. 121–143. [Google Scholar] [CrossRef]
- Trumbo, J. Essay: Seeing science: Research opportunities in the visual communication of science. Sci. Commun. 2000, 21, 379–391. [Google Scholar] [CrossRef]
- Salter, J.; Robinson, J.; Wiek, A. Participatory methods of integrated assessment—A review. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 697–717. [Google Scholar] [CrossRef]
- Kuffner, A. Rising Seas, Rising Stakes. Providence Journal, 20 November 2016. [Google Scholar]
- Howe, P.D. Hurricane preparedness as anticipatory adaptation: A case study of community businesses. Glob. Environ. Chang. 2011, 21, 711–720. [Google Scholar] [CrossRef]
- Crampton, J.W.; Krygier, J. An introduction to critical cartography. ACME Int. E-J. Crit. Geogr. 2005, 4, 11–33. Available online: https://acme-journal.org/index.php/acme/article/view/723 (accessed on 24 July 2019).
- Ullman, D.S.; Ginis, I.; Huang, W.; Nowakowski, C.; Chen, X.; Stempel, P. Assessing the Multiple Impacts of Extreme Hurricanes in Southern New England, USA. Geosciences 2019, 9, 265. [Google Scholar] [CrossRef]
- Retchless, D.P. Sea level rise maps: How individual differences complicate the cartographic communication of an uncertain climate change hazard. Cartogr. Perspect. 2014, 17–32. [Google Scholar] [CrossRef]
- NOAA Digital Coast. Available online: https://coast.noaa.gov/slr/#/layer/slr/4/-7963929.398098727/5068391.795277364/15/satellite/none/0.8/2050/interHigh/midAccretion (accessed on 20 September 2017).
- Muehlenhaus, I. The design and composition of persuasive maps. Cartogr. Geogr. Inf. Sci. 2013, 40, 401–414. [Google Scholar] [CrossRef]
- Kahan, D.M. Ideology, motivated reasoning, and cognitive reflection: An experimental study. SSRN Electron. J. 2012. [Google Scholar] [CrossRef]
- Walsh, L. ‘Tricks,’Hockey Sticks, and the Myth of Natural Inscription: How the Visual Rhetoric of Climategate Conflated Climate with Character. In Image Politics of Climate Change: Visualizations, Imaginations, Documentations; Schneider, B., Nocke, T., Eds.; Transcript Verlag: Bielefeld, Germany, 2014; Volume 55, pp. 81–104. [Google Scholar] [CrossRef]
- Walsh, L. Visual Invention and the Composition of Scientific Research Graphics: A Topological Approach. Writ. Commun. 2017. [Google Scholar] [CrossRef]
- Walsh, L. The visual rhetoric of climate change. Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 361–368. [Google Scholar] [CrossRef]
- Farman, J. Mapping the digital empire: Google Earth and the process of postmodern cartography. New Media Soc. 2010, 12, 869–888. [Google Scholar] [CrossRef]
- Couture, M. Realism in the design process and credibility of a simulation-based virtual laboratory. J. Comput. Assist. Learn. 2004, 20, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Orland, B.; Budthimedhee, K.; Uusitalo, J. Considering virtual worlds as representations of landscape realities and as tools for landscape planning. Landsc. Urban Plan. 2001, 54, 139–148. [Google Scholar] [CrossRef]
- Liu, S.B.; Palen, L. The new cartographers: Crisis map mashups and the emergence of neogeographic practice. Cartogr. Geogr. Inf. Sci. 2010, 37, 69–90. [Google Scholar] [CrossRef]
- Appleton, K.; Lovett, A. GIS-based visualisation of rural landscapes: Defining ‘sufficient’realism for environmental decision-making. Landsc. Urban Plan. 2003, 65, 117–131. [Google Scholar] [CrossRef]
- Lange, E. The limits of realism: Perceptions of virtual landscapes. Landsc. Urban Plan. 2001, 54, 163–182. [Google Scholar] [CrossRef]
- Schroth, O.; Hayek, U.W.; Lange, E.; Sheppard, S.R.; Schmid, W.A. Multiple-case study of landscape visualizations as a tool in transdisciplinary planning workshops. Landsc. J. 2011, 30, 53–71. [Google Scholar] [CrossRef]
- MacFarlane, R.; Stagg, H.; Turner, K.; Lievesley, M. Peering through the smoke? Tensions in landscape visualisation. Comput. Environ. Urban Syst. 2005, 29, 341–359. [Google Scholar] [CrossRef]
- Sheppard, S.R. Guidance for crystal ball gazers: Developing a code of ethics for landscape visualization. Landsc. Urban Plan. 2001, 54, 183–199. [Google Scholar] [CrossRef]
- Witkop, R.; Becker, A.; Stempel, P.; Ginis, I. Developing Consequence Thresholds for Storm Models Through Participatory Processes: Case Study of Westerly Rhode Island. Front. Earth Sci. 2019, 7. [Google Scholar] [CrossRef]
- Zanola, S.; Fabrikant, S.I.; Çöltekin, A. The effect of realism on the confidence in spatial data quality in stereoscopic 3D displays. In Proceedings of the 24th International Cartography Conference, Santiago, Chile, 15–21 November 2009; pp. 15–21. [Google Scholar]
- MacEachren, A.M. Visualizing uncertain information. Cartogr. Perspect. 1992, 13, 10–19. [Google Scholar] [CrossRef]
- Kruse, R.; Schwecke, E.; Heinsohn, J. Uncertainty and Vagueness in Knowledge Based Systems: Numerical Methods; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Coulbourne, B.; Headen, F.L.; Jones, C.; Kennedy, A.; Pagano, M.; Ramanathan, K.; Rogers, S.; Soucy, J.; Young, J. North Atlantic Coast Comprehensive Study: Resilient Adaptation to Increasing Risk; Physical Damage Function Summary Report; United States Army Corps of Engineers, 2015. Available online: https://www.nad.usace.army.mil/CompStudy/ (accessed on 24 July 2019).
- Wynne, B. Sheep farming after Chernobyl: A case study in communicating scientific information. Environ. Sci. Policy Sustain. Dev. 1989, 31, 10–39. [Google Scholar] [CrossRef]
- Walsh, L.; Walker, K.C. Perspectives on Uncertainty for Technical Communication Scholars. Tech. Commun. Q. 2016, 25, 71–86. [Google Scholar] [CrossRef]
- Monmonier, M. How to Lie with Maps, 3rd ed.; University of Chicago Press: Chicago, IL, USA, 2018. [Google Scholar] [CrossRef]
- Elzer, S.; Green, N.; Carberry, S.; Hoffman, J. Incorporating perceptual task effort into the recognition of intention in information graphics. In Proceedings of the International Conference on Theory and Application of Diagrams, Cambridge, UK, 22–24 March 2004; pp. 255–270. [Google Scholar] [CrossRef]
- Frost, E.A. Transcultural Risk Communication on Dauphin Island: An Analysis of Ironically Located Responses to the Deepwater Horizon Disaster. Tech. Commun. Q. 2013, 22, 50–66. [Google Scholar] [CrossRef]
- Tufte, E.R.; Weise Moeller, E. Visual Explanations: Images and Quantities, Evidence and Narrative; Graphics Press: Cheshire, CT, USA, 1997; Volume 36. [Google Scholar]
- Latour, B. Visualization and Cognition: Drawing things together. In Representation in Scientific Activity; Lynch, M., Woolgar, S., Eds.; MIT Press: Cambridge, MA, USA, 1990; pp. 19–68. [Google Scholar]
- Sheppard, S.R.; Shaw, A.; Flanders, D.; Burch, S. Can visualization save the world? Lessons for landscape architects from visualizing local climate change. In Proceedings of the Digital Design in Landscape Architecture, Anhalt University of Applied Sciences, Dessau, Germany, 29–31 May 2008; pp. 29–31. [Google Scholar]
- Moser, S.C.; Dilling, L. Communicating climate change: Closing the science-action gap. In The Oxford Handbook of Climate Change and Society; Oxford University Press: Oxford, UK, 2011; pp. 161–174. [Google Scholar] [CrossRef]
- Sheppard, S.R.; Shaw, A.; Flanders, D.; Burch, S.; Wiek, A.; Carmichael, J.; Robinson, J.; Cohen, S. Future visioning of local climate change: A framework for community engagement and planning with scenarios and visualisation. Futures 2011, 43, 400–412. [Google Scholar] [CrossRef]
- Star, S.L. This is not a boundary object: Reflections on the origin of a concept. Sci. Technol. Hum. Values 2010, 35, 601–617. [Google Scholar] [CrossRef]
- Stephens, S.H.; DeLorme, D.E.; Hagen, S.C. Evaluating the Utility and Communicative Effectiveness of an Interactive Sea-Level Rise Viewer Through Stakeholder Engagement. J. Bus. Tech. Commun. 2015, 29, 314–343. [Google Scholar] [CrossRef]
- Griffin, A.L.; White, T.; Fish, C.; Tomio, B.; Huang, H.; Sluter, C.R.; Bravo, J.V.M.; Fabrikant, S.I.; Bleisch, S.; Yamada, M.; et al. Designing across map use contexts: A research agenda. Int. J. Cartogr. 2017, 3, 90–114. [Google Scholar] [CrossRef]
- Henrich, J.; Heine, S.J.; Norenzayan, A. The weirdest people in the world? Behav. Brain Sci. 2010, 33, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.L.; Sheppard, S.R.J. Culture and communication: Can landscape visualization improve forest management consultation with indigenous communities? Landsc. Urban Plan. 2006, 77, 291–313. [Google Scholar] [CrossRef]
- Stephens, S.H. Designer perceptions of user agency during the development of environmental risk visualization tools. In Proceedings of the 35th ACM International Conference on the Design of Communication, Halifax, NS, Canada, 11–13 August 2017; pp. 1–7. [Google Scholar]
- Harold, J.; Lorenzoni, I.; Shipley, T.F.; Coventry, K.R. Cognitive and psychological science insights to improve climate change data visualization. Nat. Clim. Chang. 2016, 6, 1080. [Google Scholar] [CrossRef]
- Smallman, H.S.; John, M.S. Naive Realism: Misplaced Faith in Realistic Displays. Ergon. Des. 2005, 13, 6–13. [Google Scholar] [CrossRef]
- Kostelnick, C.; Hassett, M. Shaping Information: The Rhetoric of Visual Conventions; Southern Illinois University Press: Carbondale, IL, USA, 2003. [Google Scholar]
Outside of Reflexive Processes (e.g., Workshops) | Inside Reflexive Processes | |
---|---|---|
Status and legitimacy | Unclear whether model driven visualizations are distinguishable from other forms of visual rhetoric [20]. | Perceived saliency and legitimacy is enhanced by stakeholder input and transparency of technical processes [16]. |
Uncertainty | Certainty regarding outcomes and resolution of models is overstated implying greater degrees of knowledge than exist [29]. | Perceptions of risk are developed and qualified through interaction between stakeholders and experts [12]. |
Use | Exceeds the boundaries of frameworks for visualizing risk [10]. | Guided by well established guidelines and best practices [30]. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stempel, P.; Becker, A. Visualizations Out of Context: Addressing Pitfalls of Real-Time Realistic Hazard Visualizations. ISPRS Int. J. Geo-Inf. 2019, 8, 318. https://doi.org/10.3390/ijgi8080318
Stempel P, Becker A. Visualizations Out of Context: Addressing Pitfalls of Real-Time Realistic Hazard Visualizations. ISPRS International Journal of Geo-Information. 2019; 8(8):318. https://doi.org/10.3390/ijgi8080318
Chicago/Turabian StyleStempel, Peter, and Austin Becker. 2019. "Visualizations Out of Context: Addressing Pitfalls of Real-Time Realistic Hazard Visualizations" ISPRS International Journal of Geo-Information 8, no. 8: 318. https://doi.org/10.3390/ijgi8080318
APA StyleStempel, P., & Becker, A. (2019). Visualizations Out of Context: Addressing Pitfalls of Real-Time Realistic Hazard Visualizations. ISPRS International Journal of Geo-Information, 8(8), 318. https://doi.org/10.3390/ijgi8080318