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Abstract: Urban infrastructures have become imperative to human life. Any damage to these
infrastructures as a result of detrimental activities would accrue huge economical costs and severe
casualties. War in particular is a major anthropogenic calamity with immense collateral effects
on the social and economic fabric of human nations. Therefore, damaged buildings assessment
plays a prominent role in post-war resettlement and reconstruction of urban infrastructures. The
data-analysis process of this assessment is essential to any post-disaster program and can be carried
out via different formats. Synthetic Aperture Radar (SAR) data and Interferometric SAR (InSAR)
techniques help us to establish a reliable and fast monitoring system for detecting post-war damages
in urban areas. Along this thread, the present study aims to investigate the feasibility and mode
of implementation of Sentinel-1 SAR data and InSAR techniques to estimate post-war damage in
war-affected areas as opposed to using commercial high-resolution optical images. The study is
presented in the form of a survey to identify urban areas damaged or destroyed by war (Islamic State
of Iraq and the Levant, ISIL, or ISIS occupation) in the city of Mosul, Iraq, using Sentinel-1 (S1) data
over the 2014–2017 period. Small BAseline Subset (SBAS), Persistent Scatterer Interferometry (PSI)
and coherent-intensity-based analysis were also used to identify war-damaged buildings. Accuracy
assessments for the proposed SAR-based mapping approach were conducted by comparing the
destruction map to the available post-war destruction map of United Nations Institute for Training
and Research (UNITAR); previously developed using optical very high-resolution images, drone
imagery, and field visits. As the findings suggest, 40% of the entire city, the western sectors, especially
the Old City, were affected most by ISIS war. The findings are also indicative of the efficiency of
incorporating Sentinel-1 SAR data and InSAR technique to map post-war urban damages in Mosul.
The proposed method could be widely used as a tool in damage assessment procedures in any
post-war reconstruction programs.

Keywords: post-war destruction mapping; synthetic aperture radar (SAR) data; interferometric SAR
(InSAR); Sentinel-1

1. Introduction

Urban environments are complex systems that support human life and must constantly
be monitored in order to avoid catastrophic loss of infrastructures and lives [1]. Cities have
been destroyed throughout history by various processes, both natural and anthropogenic.
War in particular gives rise to many of these cases anywhere it takes place, often causing
irreparable damage to urban infrastructures. However, an accurate, reliable, cost-effective,
and fast post-war mapping-monitoring system would facilitate the process of assessing
damages inflicted by war on urban infrastructures. Along this line, the following elaborates
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on the importance of war-damage assessment for urban infrastructures and makes mention
of the existing tools used for monitoring the severity of damages.

In the past decade, new generations of satellite sensors have been launched and
several automated techniques have been developed for the study of urban areas, exploiting
both active synthetic aperture radar (SAR) and passive sensors [2,3]. Many of these studies
address the issue of change detection in urban areas, incorporating SAR images with
different approaches such as using multi-pass interferometric data in 3D reconstruction
and monitoring buildings, particularly those affected by systematic displacements related
to natural hazards, specifically landslides [4]. For instance, using SAR and VHR (Very High
Resolution) optical images to quantify damages caused by the 2003 Bam earthquake in
Iran [5] and using multi-SAR data to study the 2009 L’Aquila earthquake in Italy [6].

In another case, urban destruction detection of the civil war in Syria (2011–2017) was
carried out using optical images [7]. They used the Gray-Level Co-Occurrence Matrix
(GLCM) and two texture-based metrics (correlation and homogeneity) to identify the
damaged buildings in Aleppo. In another related study, the principal components (PCs) of
multiple textural features and image correlation were tested to detect the changes associated
with the building collapse caused by an earthquake that hit L’Aquila city (Italy) on 6 April
2009 [8]. Artificial intelligence-based algorithms such as deep learning [9], polarimetric
SAR data [10] and updating of buildings database [11] are all among other case studies that
have been used for the quantitative estimation of structural damages to buildings. Very
high-resolution images from the IKONOS and QuickBird satellites have also been utilized
to detect and quantify structural damages to buildings [12,13]. However, post-disaster
building damage detection using very high-resolution optical images and field visits are
costly and face certain constraints such as cloudiness and satellite revisit period.

Coherence and intensity information of SAR data [14] can also be utilized along
with optical data [15] to detect changes in urban infrastructures. Coherence is used as a
measure of damage in buildings. Cases of the use of this measure can be seen in [16,17],
where coherence coefficient before and after earthquake events were used to estimate
building damage. The studies showed that a shorter perpendicular baseline provides a
clear decorrelation in the damaged areas than a longer baseline [18,19], facilitating the
process of damage detection. As a result, S1 data with a short spatial baseline (usually
less than 250 m) and revisit-time of 12/6 days provide a promising opportunity for urban
damage detection.

The primary objective of the Differential SAR Interferometry (DInSAR) technique is to
extract the phase displacement component, while excluding residual phase components
and especially noise. Although DInSAR enables the detection and quantification of land
surface deformations with a precision in the order of millimeters [20], it does encounter
several limitations and challenges; Spatio-temporal decorrelation [21] and atmospheric
artifacts [22] are the two main restraints on the DInSAR technique leading to different
errors of assessment. Permanent Scatterer Interferometry (PSI) [23] and Small BAseline
Subset (SBAS) [24] have been developed to remove or mitigate the deficiencies of DInSAR.
PSI is especially suited to the monitoring of urban areas—mainly consisting of man-made
structures—as well as for vegetated regions using corner reflectors [25]. SBAS on the other
hand, is primarily adapted for natural terrains, which lack an adequate number of PS pixels
or may be partially covered by vegetation [26]. It is important to note that atmospheric
artifacts cause phase delays in interferograms that can be generally mitigated through
either phase-based methods, weather-oriented models [27] and GPS data [28].

Accordingly, the present study intends to use open-access SAR-S1 data with a medium
resolution and revisit time of six days for post-war damage detection as an inexpensive tool
for detecting building damages with no restrictions in terms of cloud cover and spectral
resolution.

The proposed model uses SAR data to detect post-war damaged areas of Mosul,
Iraq. Mosul, Iraq’s second largest city, was overrun by ISIS on 4 June 2014 and was under
exclusive control of ISIS for 29 months [29]. As collateral damage, the city’s major civil
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infrastructures were almost completely annihilated. The majority of destruction was made
by the militant group ISIS, although airstrikes and military operations to recapture the city
caused further damages as well. The amount of debris in the aftermath was estimated at 11
million tons [30], with the majority of damages inflicted upon the western sectors of Mosul
(more than 90% destruction), particularly the Old City, with relatively limited damages
seen in eastern Mosul [30]. The first steps mentioned towards the reconstruction of the area
in the framework of the Mosul debris management program of the United Nation was to
assess and clear the debris left as remnants of war. In the World Bank Report’s assessment,
the housing stock in Ninawa was most affected by the incursion, attributing 43% of the total
share of reported damages to housing assets and the central urban area, which incurred
58% of the total damage (affected residential area: 2645 km2). The estimated damage was
8001 billion Iraqi dinars [31]. The estimated figures demonstrate the need for an accurate,
reliable and fast estimation of war-affected areas in the damage assessment procedure
of any post-war reconstruction program. It should be noted that InSAR system is only
capable of detecting displacement changes in order of few centimeters, depending on sensor
wavelength between two successive acquisitions. Therefore, here we do not address the
detection of the total destruction of a building, which can reach up to a vertical subsidence
of several meters. Rather, we attempt to use InSAR as a tool to generally and relatively
detect the extent of the war-affected areas. We hypothesize that the changes in vertical
height of buildings caused by war can be associated with displacement changes detected
using InSAR techniques to estimate damaged areas, of course, if no other displacement
signals have contributed to the InSAR-based displacement estimation (e.g., land subsidence
induced by groundwater depletion).

With the base premise of there being only one relevant study provided by UNITAR—a
remote-based study to estimate inflicted damage using high-resolution images—that could
be used to validate the results in this study, the present work offers findings of a novel,
proposed assessment and analysis of post-war damage in Mosul using InSAR observations.
To this end, SBAS, PSI and coherence-intensity-based change detection techniques have
been applied to S1 data (2014–2017) to identify the post-war damage zones in Mosul. The
results have been compared and validated with the UNITAR damage map of the city. This
study will present a new insight into the capabilities of different InSAR-based techniques
and take the advantage of S1 data to provide a fast, reliable, and cost-effective solution for
initial urban damage estimation needed for post-war rehabilitation programs planning by
decision-makers.

2. Materials and Methods
2.1. Study Area and Data

Mosul is a major city in the Ninawa Governorate of northern Iraq, located at the west
bank of Tigris River. The metropolitan encompasses a relatively substantial territorial
span on the left and right banks of the river, and is home to various ethnicities and
religions. Mosul’s population was estimated at 1,846,500 in 2014. From an economic
perspective, the main products of the city include marble and oil. A detailed map of
the city showing its main land uses and zonal division is presented in Figure 1A. In
2014, Mosul became the target of an incursion by ISIS, who seized control of the city,
starting a humanitarian crisis which led to the internal displacement of 5 million Iraqis
and occasioned the immense destruction of infrastructure and services. The government
regained control after the Battle of Mosul in 2016–2017 although the city was heavily
damaged during the recapture operation. Following the war, humanitarian aids initiated
programs to provide emergency assistance for the rehabilitation and reconstruction of
infrastructure and public facilities in Mosul. Numerous efforts were made, enabling
conditions for the safe return of the displaced population to their homes. Estimation of
damages was amongst other humanitarian endeavors in Mosul. At the close of war, the
Iraqi Government requested the support of World Bank Group (WBG) to undertake a
Damage and Needs Assessment (DNA) with the aim of estimating the effects and impacts



ISPRS Int. J. Geo-Inf. 2021, 10, 140 4 of 17

of the crisis on key infrastructure as well as service delivery, livelihood, social wellbeing,
productivity, and cross-cutting sectors, and to identify recovery and reconstruction needs
in Iraq [31]. Accordingly, a multi-disciplinary team formed by members of UN-Habitat and
UNESCO was tasked with developing an initial planning framework for the reconstruction
of Mosul with the support of the local government [32]. The proposed undertaking
included the use of drone imagery, satellite images and field visits to create a post-war
damage map. The findings revealed that a total of 1690, 3241, and 9455 buildings were
damaged and categorized as destroyed, with severe and negligible damage within the
Old City [32]. In another estimation performed by the UNITAR–UNOSAT, they identified
a total of 19,888 affected structures within the city. Approximately 4773 of these were
destroyed, 8233 severely damaged and 6882 moderately (Figure 1B) damaged. As the
generated map (UNITAR) shows, the majority of damages occurred in the western sectors
of Mosul with the most severe damage sustained in the Old City. The proposed map
shows severely and moderately damaged and completely destroyed buildings identified
by optical satellite imagery.

2.2. SBAS- and PSI-Based Deformation Detection

SARscape® (Switzerland) was used to process S1-A/B data in order to measure the
amount of deformation using SBAS, PSI, and coherence-intensity-based change detection
techniques, for the post-war damage assessment of Mosul city.

The following steps were taken in the SBAS processing phase [24] (Figure 2): (1) cre-
ation of connection graphs using temporal (one month) and spatial baseline (20% of the
critical baseline of S1 data (i.e., 5 km)) thresholds for each sensor; the critical baseline is the
distance between two satellite passes that if exceeded results in a complete loss of coherence
in the interferograms; (2) interferometric processing by the registering of slave images to
master image in order to generate interferograms; the process included the calculation of a
local nonparametric shift estimate using DEM and orbital information incorporated with
the application of a set of windows (64 × 64 in range and 128 × 128 in azimuth) on the
master image to compute the cross-correlation function. To increase the signal-to-noise
ratio of the interferograms for a more reliable coherence estimation, a multi-looking factor
of 4 × 1 was applied (i.e., pixel size of ~14 m × 14 m on the ground from the original pixel
spacing of 2.3 × 13.9 m). The Goldstein filter was also assigned on the interferograms and
the Minimum Cost Flow method was employed for unwrapping [33]; (3) re-flatting and
refinement of unwrapped interferograms using a third-degree polynomial to remove ramps
(orbital errors) and constant phase offset; (4) first phase of inversion for the estimation of
initial ground deformation following the removal of height residual (due to DEM error);
(5) second phase of inversion for the removal of atmospheric artefacts by assigning a two
dimensional spatial low-pass filter and a temporal high-pass filter to estimate final ground
deformation; and (6) georeferencing of final deformations map.
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Figure 2. Workflow of the Small BAseline Subset (SBAS) and Permanent Scatterer Interferometry
(PSI) processing in six steps.

The steps in PSI processing [34] were similar to SBAS processing with the following
distinctions in PSI: (1) the connection graph is a star-like graph and the master image is
selected based on the highest stack coherence adopted for the S1 data to maximize the sum
correlation of all interferograms [25], and (2) in the PS candidate searching step, the initial
PSs are selected based on the dispersion index [34] as a proxy for phase stability, and in the
re-flattening and refinement steps, several coherent pixels (>0.9) with movement rates of
zero were selected for the constant phase offset removal (Figure 2).

2.3. Coherence-Based Change Detection

Local coherence (γ̂) represents the complex cross-correlation coefficient of a SAR image
pair (u1i, u2i) estimated using N independent image samples over a small window of the
size-range 0 (the interferometric phase is only noise) to 1 (complete absence of phase noise):

γ̂ =
∑N

i=1 u1iu∗2i√
∑N

i=1|u1i|2
√

∑N
i=1|u2i|2

(1)

3. Results
3.1. DInSAR City Monitoring (SBAS–PSI)

Results of SBAS and PSI processing for Mosul are presented in Figure 3. The four
rectangles in the displacement maps in Figure 3A illustrate examples of the destructed
areas, indicating an increase in distance between the satellite and buildings (blue and
purple colors). The rectangles include areas selected to be checked on the high-resolution
optical imageries (30 cm) of the WorldView-3 (VNIR) taken from Digital Glob. Pixels with
negative values in the SBAS and PSI displacement map could be associated with ruined
regions including destroyed buildings. The color range in the corner of each map indicates
the severity of destruction, with the blue and purple range of color implying higher
severity (greater increase in the distance between the satellite and urban infrastructures).
As evident in the resultant maps, the highest volume of destruction occurred in the area
encompassed by rectangle “c” (purple colors), corresponding to the Old City of Mosul. A
comparison of regions identified as damaged areas (enclosed within the three rectangles)
on maps (Figure 3A,B) with optical images taken before and after the ISIS incursion and



ISPRS Int. J. Geo-Inf. 2021, 10, 140 8 of 17

subsequent war shows the accuracy of areas marked by negative values in the SBAS and
PSI displacement maps as damaged regions.
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Figure 3. Results of SBAS and PSI damage assessment for Mosul. (A) SBAS displacement map and (B) PSI displacement
map. Positive (negative) values indicate a decrease (increase) in the distance between satellite and objects on the ground.
Below the displacement maps are the WorldView-3 (VNIR) high resolution images taken from DigitalGlobe for the purpose
of visual comparison of estimated damages in the three selected rectangles. The corresponding zones of “a”, “b” and “c” of
SBAS displacement map have also been displayed.

We here analyzed several samples of displacement time-series to investigate the
correspondence between abrupt SBAS-displacements and the dates coinciding with, e.g.,
war operations, bombings, or other events. The results are then compared with the UNITAR
maps. The analysis initially begins with the Old City area (Figure 4A: zoomed rectangular
“c” in Figure 3A), which sustained the most damage as the collateral of war, especially
during the recapture operation of Mosul. For this purpose, five pixels were selected as
samples (i.e., a, b, c, d, and e), each corresponding to areas which seemingly received serious
damages (Figure 4A). The UNITAR points of the destroyed buildings were than overlaid
on the SBAS displacements map (Figure 4B). As the results suggest, the displacement
time-series extracted for the five selected points show similar trends in damage to that of
the UNITAR, with differences in magnitude (Figure 4C). Figure 4C also depicts different
phases of the military operations launched to liberate the city (Battle of Mosul, 2016–
2017), including (1) phase one (October–December 2016); (2) phase two (December 2016–
February 2017); and (3) phase three (February–July 2017) shown in purple, green and pink,
respectively. During the first phase, international coalition forces started entering the city
from the east, advancing towards the Syrian border. Phase two consisted of the recapture
of eastern Mosul on January 2017. The city was then fully retaken as part of phase three on
July 2017, albeit many post-victory clashes prolonged to 2018.
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Figure 4. Trends in SBAS-displacement and their relation to war events. (A) Zoomed view of
rectangle "c" on Figure 3A with five selected points. (B) The damaged buildings detected by the
UNITAR-UNOSAT classified as the destroyed buildings (red points) superimposed over the SBAS-
displacement map. The SBAS pixels with no corresponding red points have been masked. (C) SBAS-
displacement time series images of the selected points on Figure 4A plotted along with the time-span
of the three phases of the recapture operation of Mosul; phase 1 (purple), phase 2 (green), and phase
3 (pink). Further information on the timeline of the retake operation of Mosul can be found in Battle
of Mosul on Wikipedia.
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The aftermath brought on by the use of heavy ground weapons such as artilleries and
airstrikes in the Mosul battles brought immense destruction to residential areas and urban
infrastructures. As can be seen from Figure 4C, the displacement time-series show three
distinctive trends of damage: slight increase (less changes/damages) from the time the
city was seized by ISIS to before the first phase of the recapture operation; and intense
increase (intense changes/damages) from the beginning of the first phase of the recapture
operation through 2018. The deceasing trend observed in the time- series displacements
are in consonance with the three phases of the recapture operation. Raster pixels in the
SBAS displacement map, corresponding to red points (destroyed buildings), have mostly
negative values, indicative of the damaged residential areas in the SBAS map (Figure 4B).

During the next steps of analysis, the obtained SBAS results were compared with
the three different damage classes provided by UNITAR (i.e., moderate, severe damage,
and destroyed). The comparison was made for the Al-Shafaa district in Mosul, which
sustained the most damage after the Old City (Figure 5A: zoomed rectangular “d” in
Figure 3A). Two images of the Al-Shafaa district are depicted in this study, the first is a
WorldView-3 Imagery taken in 18 February 2017 with the pixel size of 40 cm (Figure 5A)
and the second is a GeoEye-1 Imagery taken in 4 August 2017 with the pixel size of 50 cm
(Figure 5B). The status of healthy and damaged buildings is clearly observable in both
high-resolution images. The SBAS displacement map, corresponding to Figure 5A,B, has
been presented along with the three classes of the UNITAR points (Figure 5C). Fifty-five
points are seen overlaid over the post-war image (Figure 5B), showing the severity of
damages categorized as moderate damage (green points), severe damage (orange points),
and destroyed buildings (red points). Several conclusions can be drawn by superimposing
the UNITAR points over the SBAS displacement map. All SBAS pixels corresponding to
the UNITAR points have negative values (an increase in distance between satellite and
objects on the ground) implying that SBAS is generally successful in detecting damaged
buildings. In some cases, the red and orange points located over the purple (pixel value
between −23 mm and −47 mm) and dark blue (between −20 mm and −30 mm) pixels
suggest that more severe damages led to more negative values, albeit this is not the case
for all points. The finding could be used as an indicator of the feasibility and efficiency
of employing InSAR, particularly high-resolution SAR images, for damage assessment of
buildings. We here used the UNITAR data as the ground truth to evaluate the accuracy
of the SBAS result. Both results could be also considered as two complementary pieces of
information. On one hand UNITAR provides pointwise information over damage of each
single building in details, but on the other hand SBAS presents a dense map of changes
associated with the urban damages not only limited to the buildings but also include
damages to other urban infrastructures such as streets. As a result, integration of both
information could bring us more precise and comprehensive estimation of the extent and
degree of the war-affected areas.
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Figure 5. Cross comparison of the UNITAR result with the SBAS displacement map. (A) WorldView-3
Imagery (18 February 2017) and (B) GeoEye-1 Imagery (4 August 2017) of the Al-Shafaa district
(Copyright: DigitalGlobe, Inc. and Source: Department of State, Humanitarian Information Unit,
NextView License). (C) SBAS displacement map with three classes of damaged severity shown in
colored dots, courtesy of UNITAR-UNOSAT. The source for the UNITAR-UNOSAT map is avail-
able at: http://unosat-maps.web.cern.ch/unosat-maps/IQ/CE20140613IRQ/UNOSAT_A3_Mosul_
damage_assessment_4August2017_Landscape2_o.pdf (accessed date: 15 November 2020).

3.2. Coherence-Based Change Detection

The coherency map of Mosul city, calculated between first and second S1 data
(Figure 6A), corresponding to the 4 October and 9 November 2014 (pre-war period), was
used to obtain an overall profile of the city’s damage status before the ISIS takeover. An-
other coherency map, calculated between the first and last (35th: 25 August 2017) images,
was used to detect changes in urban infrastructures as the result of war (Figure 6B). The
distinctions between the two coherency maps are clearly tangible and visually interpretable.
Regions with high coherency values (dark blue areas in Figure 6A) appear to fade out and
lose coherency in the direction of the left bank of the river (light blue areas in Figure 6B).
As an additional step, intensity information (average of the backscatter) of the S1 data was
used to generate an RGB color composite for the visualization and identification of coherent
temporal changes. Figure 6C,D have been produced using the first and second S1 data in

http://unosat-maps.web.cern.ch/unosat-maps/IQ/CE20140613IRQ/UNOSAT_A3_Mosul_damage_assessment_4August2017_Landscape2_o.pdf
http://unosat-maps.web.cern.ch/unosat-maps/IQ/CE20140613IRQ/UNOSAT_A3_Mosul_damage_assessment_4August2017_Landscape2_o.pdf
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the pre-war period and the first and 35th S1 data in post-war period, respectively. In both
maps, master and salve intensities are shown respectively in red and green bands, with
coherency assigned to the blue band (called hereafter MAC). In the MAC maps, the color
combinations confirm that the most important changes have been identified by variations
in coherence. In the pre-war MAC map (Figure 6C), the color yellow is used to indicate only
similar master-slave intensity, and white is used to indicate similar master-slave intensity
and high coherency. In the post-war MAC map (Figure 6D), the loss of coherency (blue
color) is clearly observed and the superiority of yellow-green color manifests itself particu-
larly in the western bank of the river (Old City). The yellow color in the post-war MAC
is an indication of the same master and slave intensity, corresponding to low coherence
regions. The higher frequency of green pixels as opposed to yellow ones demonstrates
that the backscattering of destroyed regions on the slave image has increased (referring to
volume scattering mechanism). Red color pixels represent regions where the backscattering
on the master image was higher than on the slave image. The red pixels are mainly related
to agricultural lands and certain areas with low coherency that were destroyed after the
war.
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In order to bypass changes in non-urban areas, all regions with coherence values lower
than 0.3 (mainly related to vegetated areas, farmlands and bare soil) were masked in the
coherence change detection phase to ensure that only changes of high coherent objects such
as buildings contributed to the coherence analysis. Firstly, the coherence map between
the first and second images in the time-series set of images was generated as a reference
map of healthy urban infrastructures (Figure 7C). In the second place, the coherence map
between the first and last images was generated and regions with coherency reduction and
loss were extracted as damaged areas of war. The obtained map was then compared with
Figure 7C in a pixel-by-pixel fashion. The coherence value of pixels showing a considerable
reduction were considered as war-affected areas (see Figure 7D).
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Figure 7. Estimation of damaged regions in Mosul. (A) SBAS and (B) PSI displacement maps masked for pixel values higher
than −1; (C) Coherence-masked map calculated between the first and second images masked for pixel values lower than
0.3, indicating man-made structures and (D) damaged and undamaged areas extracted from the coherency map estimated
from images at positions 1–2 and 1–35.

4. Discussion

War-affected areas could be identified with the underlying assumption that negative
values in the SBAS and PSI displacement map correspond to an increase in the distance
between satellite and objects on the ground, and associated with destroyed urban infras-
tructures. Of course, other factors may influence the displacement values derived by
PSI-SABS such as contribution of phase changes induced by probable land subsidence
due to overexploitation of ground water. Nevertheless, the possibility of the presence of
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such factors was ignored for the study area, as no related evidence has been reported for
the city of Mosul. Accordingly, the destruction map of the city was made by masking
values higher than −1 mm in the PSI–SABS displacement maps to ensure that an increase
between satellite and buildings is considered. These masked values correspond to de-
creases in height of buildings due to destruction. As such, the war-induced destructions
in urban structures could be detected by accounting for temporal changes in the pre- and
post-war coherency maps. Of course, the entire changes in height of buildings caused
by war, reaching a few meters at most, cannot be detected by InSAR techniques given
the half-wavelength limitation of the SAR system to estimate displacements between two
consecutive acquisitions. Hence, only part of the real reduction in height of buildings can
be captured by InSAR. The final masked PSI–SBAS displacement maps have been provided
in Figure 7A,B.

The final results were evaluated against damaged map of the Mosul city (UNI-
TAR), created using high-resolution optical imagery including, GeoEye-1 (4 August 2017),
WorldView-3 (8 February 2017), and WorldView-2 (15 November 2013) (Figure 1B). Based
on the findings of this study, a total of 19,888 affected structures were identified within
the city, of which an approximate 4773 were destroyed, 8233 severely damaged, and
6882 moderately damaged. Around 7620 of cases occurred within the Old City of Mosul.

Results from the SBAS-PSI displacement and coherence-based change detection maps
agree with the UNITAR map, in terms of identified damaged regions, especially in the
old city. Nevertheless, the PSI map provided a denser point-wise map of the city (130,075
points) compared to the “UNITAR” map (20,787 points). The difference in PS pixels was
mainly attributable to buildings and other man-made urban infrastructures. While the
damaged map obtained by the coherence analysis (Figure 7D) presents a high agreement
with the UNITAR map, the severity and extent of damages were estimated at much higher
rates. The coherence changes detected between the first and last images show the war-
damage, expanding to 65,450 km2 in size or nearly 40% of the urban area of Mosul.

Although the UNITAR maps were used for cross comparison, the lack of accurate
ground data such as building height has made it difficult for linking LOS InSAR displace-
ment with the amount of building damages incurred. One shortcoming of the medium-
spatial resolution S1 data is its incapacity to map urban damage at the building scale. Using
high-resolution SAR data, such as TerraSAR-X, with different polarizations, would provide
further information on each damaged building.

5. Conclusions

This study presented an analysis of post-war-affected areas of Mosul City using S1
data. The proposed methodology used SBAS, PSI systems along with coherence- and
intensity-based change detection techniques to map the destroyed zones. The results
showed that 40% of the city’s infrastructure is affected by the collateral damage of war.
Compared with the previous damage assessment map provided by UNITAR, it seems that
the UNITAR map of damaged buildings is an underestimation of the actual zones destroyed
and the extent of war-damaged areas in the city. One reason for this underestimation could
be related to the fact that the UNITAR considered only the damaged residential buildings
and urban infrastructure while coherence analysis detected the damages to all kinds of man-
made structures (coherence > 0.3) in the city. This study showed that S1 data, especially
coherence change detection, can be generally used to detect war-induced damages and
can be used as a robust tool to provide reliable information for decision-makers to plan
post-war reconstruction programs or other disaster control procedures.

Despite the lack of distinction between different types of damages (e.g., slight, moder-
ate, and severe damage), due to the fact that a sudden decrease in building height cannot
be detected by InSAR (half-wavelength limitation), the study showed that it is possible to
link building height variations with changes in coherence values to create an empirical
model for determining damage severity, provided that ground data is available. This could
be an issue to be followed in future research.
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