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Abstract: This study aims to investigate the effects of various design parameters on the actuation
performance of a pneumatic network actuator (PNA), optimise its structure using the finite element
method (FEM), and subsequently quantify the performance of the resulting actuator topology
experimentally. The effects of the structural parameters, including the operation pressure, the wall
thickness and the gap between the chambers, bottom layer thickness, and the geometry of the channel
cross section, on the deformation and bending angle of the actuator were evaluated to optimise the
performance of the pneumatic actuator. A Global Analysis of Variance (ANOVA) was performed to
investigate how the variables affect the mechanical output of the actuator and, thus, the significance
of variables affecting the deformation (and bending angle) of the pneumatic actuator was identified.
After the parameter optimisation, a pneumatic channel with a 4.5 mm bottom layer thickness, 1.5 mm
wall thickness, and 1.5 mm gap between sequential chambers is recommended to perform optimised
bending motion for the pneumatic network actuator. The optimised FE model results were verified
experimentally. This design optimisation method based on the FEM and ANOVA analysis can be
extended to the topology optimisation of other soft actuators.
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1. Introduction

The emerging field of soft robotics aims to establish robotic systems primarily made of soft
materials (E < 100 MPa) to perform complicated locomotion in various environments and to interact
with and adapt to their physical environments in a safer and better way than their predecessors
(i.e., conventional robotic systems made of hard materials) without requiring advanced feedback
control techniques. The performance of the soft robotic systems strongly depends on the performance
of their actuators. Soft actuators are expected to be soft and compliant like natural muscles [1–4],
which cannot be provided by traditional actuators such as electric motors. To develop an artificial
muscle that has a similar function to natural muscle is one of the main challenges in soft robotics.

Pneumatic actuators are widely used in robotics and automation. They are cheap, lightweight and
safe during human–robot interactions, and can deliver high power densities with a remarkable
mechanical output [5,6]. Pneumatic actuators offer better soft actuation features than do conventional
actuators due to their convenience and simplicity. With the recent progress in soft and processable
smart materials, soft actuation concepts that make use of pneumatic networks in a slender body
have been proposed [5–9]. Such pneumatic actuators can generate bending and linear movements,
offering high potential to be employed in soft robotics and medical applications due to their inherent
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compliance and safety. A pneumatic actuation methodology based on PneuNets’ concept can generate
a simple bending motion with only one pressure source [10]. The PneuNets geometry and mechanics
have been investigated using a simple theoretical model [11]. This model has the potential to be used as
a design principle for designing soft pneumatic autonomous actuators. The effect of material properties
and chamber geometry on the performance of the actuator is described. The movements of this soft
actuator are generated by pressurising the internal PneuNets, and the configuration of the actuator
is determined by the structure of the channels. Air is selected as the power source for its unique
features, such as compressibility, ease of storage, low viscosity, and ability to provide rapid actuation
process. The same methodology has been used in a multigait quadrupedal soft robot [12]. These robots,
like some animals (such as squids, starfish, and worms), have no rigid internal skeletons. The soft
robot described in [13] combines microfluidics and the PneuNets concept. The pneumatic systems
are used for activation and the colour-filled microfluidics channels in the thin silicone surface are
used for camouflage. Various applications using these kinds of actuators have been reported [7,14,15].
A large pneumatically actuated soft robot (0.65 m in length) with an embedded controller, battery,
and miniature compressors was developed in [16]. This soft robot can carry its power system and
adapts to various environments. The main difference between the large robot and the PneuNets
robots is that there is a small gap between the adjacent channels. It can provide a higher work output
and rapid movement. Mosadegh et al. [5] made some improvements in the PneuNets actuators and
developed a rapid response actuator made of silicone rubber. They compared the slow and rapid
actuation using pneumatic networks and showed a novel pattern of actuation which was sufficiently
durable. Several similar actuation mechanisms that can perform a bending movement have been
reported [17–22].

The soft pneumatic network actuators that can generate significant deflection have considerable
potential for medical applications, especially for prosthetic and rehabilitation devices. However,
the bending performance of these kinds of actuators strongly depends on the design parameters of
the channels. Therefore, there is a need for an efficient method to optimise the bending angle of the
pneumatic network actuators. The aim of this study is to optimise the structure of the pneumatic
network actuator. Different designs of the pneumatic channels are used to quantify the effects of
the critical design parameters. The overall soft actuator design is optimised using the finite element
method to fulfil the required bending performance. A methodology based on statistical analysis
(ANOVA) is employed to optimise the performance of a pneumatic actuator proposed for use in
soft robotic applications. Section 2 presents the parametric investigation of the pneumatic actuator
to obtain an optimised structure that can generate large bending angles. In Section 3, we describe
the fabrication method. The comparison of the experimental and simulation results is presented in
Section 4. Conclusions and future work are described in Section 5.

2. Parametric Investigation for Structure Optimisation of the Actuator

The finite element analysis method is widely used in design optimisation. The objective of this
section is (i) to develop a finite element model that can predict the mechanical output or bending
performance of the pneumatic actuator; (ii) to investigate the effects of primary parameters; and (iii) to
optimise the structure of the actuator, which is in a one-end fixed, other-end free configuration—like
a cantilever beam. The FE modelling was conducted in ANSYS Workbench using Static Structural
Analysis. The left surface of the soft actuator was fixed, acting as the fixed boundary, and the pressure
inputs were applied equally on the inner surfaces of each chamber. Large deformation effects were
taken into account in the finite element model.

2.1. The Structure of the Actuator

The pneumatic actuator described in this study consists of a series of channels arranged in a row,
also known as a pneumatic network actuator [5,6,9]. When the actuator is inflated, the channels will
expand, causing the actuator to deform in the longitudinal direction. The actuator consists of two
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layers—the upper active layer and the passive bottom layer—as shown in Figure 1a. When compressed
air is inputted to the channels, the active layer will deform, as shown in Figure 1c. Upon increasing the
input pressure, a significant increase in the deformation and bending angle is observed. There is an
approximately linear relationship between the pressure and bending angle, as revealed in Figure 1b,
under this pressure range.

Robotics 2018, 7, x FOR PEER REVIEW  3 of 16 

 

increasing the input pressure, a significant increase in the deformation and bending angle is 
observed. There is an approximately linear relationship between the pressure and bending angle, as 
revealed in Figure 1b, under this pressure range. 

 
Figure 1. (a) Longitudinal cross section of the actuator; (b) The effect of the input pressure on bending 
angle; (c) The bending angle under different input pressures. 

2.2. Material Selection 

Silicone rubber has been chosen as the actuator material for a number of reasons. This material 
is inexpensive, can be moulded into a variety of shapes with a low actuation pressure or stress, and 
it exhibits the properties desirable for the actuator. Figure 2 shows that with an increase in Young’s 
modulus, the bending deformation will decrease. As shown in Figure 2, when the Young’s modulus 
is 0.1 MPa, the deformation is twice that at 0.2 MPa; this then turns into an exponentially decreasing 
trend. There is an inverse relationship between the Young’s modulus of the materials and the 
deformation of the actuator under high pressures. 

Figure 1. (a) Longitudinal cross section of the actuator; (b) The effect of the input pressure on bending
angle; (c) The bending angle under different input pressures.

2.2. Material Selection

Silicone rubber has been chosen as the actuator material for a number of reasons. This material
is inexpensive, can be moulded into a variety of shapes with a low actuation pressure or stress, and
it exhibits the properties desirable for the actuator. Figure 2 shows that with an increase in Young’s
modulus, the bending deformation will decrease. As shown in Figure 2, when the Young’s modulus is
0.1 MPa, the deformation is twice that at 0.2 MPa; this then turns into an exponentially decreasing trend.
There is an inverse relationship between the Young’s modulus of the materials and the deformation of
the actuator under high pressures.
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Figure 2. The bending angle change with Young’s modulus of the actuator material.

The material should have a reasonable stiffness to provide enough bending angle and blocking
force to perform grasping tasks for soft robotic gripper applications. In addition, the bursting of
pneumatic channels should be considered when selecting materials. Figure 3 illustrates that the
actuator made from various silicone rubbers that have different moduli of elasticity generate different
bending angles under the same test pressure (20 kPa).

There are several methods to test the mechanical measurement of soft metrical characterisation.
In [23], the measurement of the three elastomers Sylgard 184, Smooth-Sil 950, and Ecoflex 00-30 was
demonstrated. In this study, the silicone rubber M4601 is used as the test material. Due to the composite
structure of the actuators with pneumatic networks inside, the effective modulus of elasticity of the
actuator is different from the specific modulus of elasticity of the material. The effective modulus of
elasticity was adopted in the simulations of the actuator. M4601 has an effective modulus of elasticity
of 386.66 kPa, which was proposed and identified in [24] using numerical and experimental results, and
some physical properties of the material are listed in Table 1. The modulus of elasticity for hyperelastic
materials is not constant, and the movement of the actuator is nonlinear.
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Table 1. Typical general characteristics of M4601 (Barnes Products Pty Ltd, Sydney, Australia.).

Property Value

Elongation at break 700%
Mix ratio at 9:1

Hardness Shore A 28

2.3. Analysis of Variance (ANOVA)

Several parameters of the pneumatic actuator are studied in the finite element model. To reduce
the simulation and experimental efforts to a manageable size, only the bottom layer thickness, the gap
between the adjacent channels, the wall thickness of the channels, and the shape of the cross section
are considered for the design optimisation of the proposed actuator concept. To examine how the
actuator geometry affects the actuator bending angle (and strain), the overall length of 140 mm and
width of 20 mm of the actuator are kept constant. The overall volume of 512 m3 and the surface area of
each channel are also held constant.

To investigate how the variables affect the deformation of the actuator and which variables affect
the deformation significantly, a Global Analysis of Variance (ANOVA) using Minitab 17 was performed.
The parameters listed in Table 2 were used in the simulation. The effects of all variables were analysed
using the full factorial design module. To reduce the size of the calculation, three groups of simulations
were carried out. In this analysis, the bottom layer thickness (4.5–6 mm), wall thickness (1–1.75 mm),
and gap sizes (1–1.75 mm), each with four levels, were tested with an input pressure of 20 kPa under
the same simulation environment. Sixty-four different parameters considered in the simulation results
were used in the analysis. The residual plot for the bending angle shown in Figure 4a illustrates
the distribution of the data from the simulation results. A random pattern is also presented in the
graph of residual versus case numbers, as shown in Figure 4b, indicating that the ANOVA results
are reasonable.
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Figure 4. (a) Residual histogram for bending angle (degree); (b) Residuals versus fits for bending
angle (degree).

Table 2. Variables employed in the simulation process.

Parameters Levels

Wall thickness (mm) 1 1.25 1.5 1.75
Bottom layer thickness (mm) 4.5 5 5.5 6

Gap between the adjacent
channels (mm) 1 1.25 1.5 1.75

The ANOVA results are summarised in Table 3. The F value represents the mean square error to
the residual, which determines the importance of one factor. The P value represents the significance



Robotics 2018, 7, 24 6 of 16

degree. The analysis is performed at 5% significance level, so when P is less than 5%, the parameter
has a significant effect on the variable result. The F value of the bottom layer thickness is 332.91; this is
the most significant factor which influences the bending angle, followed by the wall thickness and,
finally, the gap size.

Table 3. ANOVA results for the bending angle versus wall thickness, gap size, and bottom thickness.

Source Degree of Freedom F-Value p-Value

Bottom layer thickness 3 332.91 <5%
Gap size 3 13.36 <5%

Wall thickness 3 185.55 <5%

2.4. Effect of Bottom Layer Thickness

The parametric optimisation for the thickness of the unpressurised bottom layer is based on the
model shown in Figure 5. M4601 Silicone rubber was used in the experimental work. Its modulus of
elasticity was set as E = 0.387 MPa in the simulation results. The other parameters were kept constant,
except for the lower layer thickness. The gap size and wall thickness were 1.5 mm, which was constant
in this simulation setting. To further investigate the effect of the most significant parameter obtained
through the ANOVA results, an extensive value range of bottom layer thickness was adopted. Figure 5
shows that the bending angle follows a parabolic relationship with the bottom layer thickness. For a
smaller bottom layer thickness, the bending angle increases when the bottom layer is increased from 3
mm to 4.5 mm. The bending angle reaches the maximum value of approximately 172 degrees for a
bottom layer thickness of 4.5 mm. However, the bending angle decreases with the further increase
in the bottom layer thickness from 4.5 mm to 8.5 mm. We postulate that this is primarily due to the
fact that the area moment of inertia has increased with these values of the bottom layer thickness,
creating more resistance to bending than increasing the bending angle. Consequently, if the bottom
layer is the only design variable that should be considered, a bottom layer of 4.5 mm that can provide
the largest bending angle is the optimised value.
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2.5. Effect of Gap between Adjacent Channels

Figure 6 shows the variation of the bending angle with the gap between the adjacent channels,
where the bending angle of the actuator shows a decreasing trend with the gap size. A smaller gap can
be expected to generate a larger bending angle so that a smaller gap could be used. When 0.5 mm and
1 mm gaps are used, the adjacent channels will touch each other. However, there will not be contact
between the adjacent channels when 2 mm gaps are applied. Though the interaction force between the
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channels can potentially generate larger bending angles, it may also cause damage to the channels.
Therefore, to avoid the bursting problem and to achieve a relatively large bending angle, a 1.5 mm gap
is more appropriate in this design.Robotics 2018, 7, x FOR PEER REVIEW  7 of 16 
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2.6. Effect of Channel Wall Thickness

The second design parameter considered is the wall thickness (the distance between the pneumatic
channel and outside surface) of each channel, changing from 1.0 mm to 1.75 mm. Figure 7 presents
the effect of the wall thickness on bending angles: when a decrease in the wall thickness occurs,
the bending angle becomes larger in a linear fashion.
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The whole actuator is in the form of a cantilever beam when it is actuating and generating bending
motion. Figure 8 shows the cross section of the actuator chamber, where a, b, a0, b0, t, and w represent
the inside dimensions, outside dimensions, bottom layer thickness, and wall thickness, respectively. a,
b, and t are kept constant in this analysis to investigate the effect of wall thickness. The deformation of
the chamber is caused by the offset e between the centre of pressure (P) and the neutral axis (N.A.) [22],
as shown in Figure 8, and the cantilever will bend towards the neutral axis. The radius of curvature is
given by

1
R

=
P Ae

EI
(1)

where R, P, A, E, and I are the radius of the curvature, pressure, area of inside the channel, modulus of
elasticity, and area moment of inertia of the deflected beam or actuator, respectively. The change in
wall thickness can also result in a change in the area moment of inertia, which will affect the curvature.
In this research, R, P, A, and E are all kept constant. Therefore, the radius of curvature is mainly
affected by the ratio e/I. The dimensions of the cross section are shown in Figure 8, and the centre of
pressure and neutral axis (N.A.) are given by

P =
∑n

i=1 AiYi

∑n
i=i Ai

=
b
2

(2)

N.A. =
∑n

i=1 AiYi

∑n
i=i Ai

=

1
2 a0b2

0 − ab
(

t + 1
2 b
)

a0b0 − ab
(3)

a0 = a + 2w (4)

b0 = b + t + w. (5)

The area moment of inertia I about the centroid axis of a cross section is given by

I =
∫

y2dA (6)

where y is the perpendicular distance from axis x to the element dA. There is a distance between
the centroid axes of the outside rectangle and inside rectangle. Therefore, a parallel axis theorem is
employed to obtain the moment of inertia of the cross section about its centroid axis. The theorem is
given by

Ix = Ix1 + Ad2 (7)



Robotics 2018, 7, 24 9 of 16

where Ix1 is the moment of inertia about its own centroid axis and Ix is the moment of inertia about any
parallel axis with a distance of d. In the simulations, the wall thickness is varied from 1 mm to 1.75 mm
with thickness increments of 0.25 mm. Then, the distance between the centre of pressure and the neutral
axis e and area moment of inertia I are calculated. The results are shown in Figure 9; as the wall thickness
increases, the e/I ratio becomes smaller, which means that the bending angle becomes smaller. These
results agree with the simulation results in Figure 7.
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The wall thickness is an important variable since a thin wall will easily rupture whereas a thick
wall requires a relatively high pressure to generate the same bending angle. However, when a thin
wall thickness is applied, it is relatively easy for the chambers to be damaged. Thus, these two factors
should be considered together when choosing the wall thickness. The wall should be thin enough
to generate full bending and thick enough to bear the actuation pressure. To select a proper wall
thickness, the wall thickness and bottom layer thickness are considered together, as shown in Figure 10.
These results indicate that, before the maximum point, the results in Figure 10 are mainly affected
by the bottom layer thickness. The bottom layer thickness affects the bending angle more than the
wall thickness, which agrees to an acceptable degree with the ANOVA results. However, a 1 mm wall
thickness and 4.5 mm bottom layer thickness can be expected to generate the largest bending angle.
Since a low-cost 3D printing method is used to fabricate the actuator, the fabrication accuracy and
bursting issues should be considered; hence, a 1.5 mm wall thickness is preferred in this design. Based
on the analysis of the simulation results and several experimental testing results, 4.5 mm bottom layer
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thickness, 1.5 mm wall thickness, and 1.5 mm gap size are recommended to be used in the pneumatic
actuator design.Robotics 2018, 7, x FOR PEER REVIEW  10 of 16 
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2.7. Effect of Cross Section

Figure 11 shows the variation of the bending angle with the channel cross sections that consist of
(1) rectangular cross section; (2) honeycomb cross section; (3) half-round cross section; and (4) round
cross section, which is illustrated in Figure 11b. Figure 11 shows that the bending angle can be affected
by the cross section, while the actuator with round cross section can provide the least bending, and the
actuators with rectangular, honeycomb and half-round cross sections can provide similar bending
angles under the same input pressure. The volume of the channels is kept constant. The thickness
of the bottom layer of 4.5 mm, the wall thickness of 1.5 mm, and a total length of 104 mm are also
held constant. However, the volume of the entire structure is different. The bending angle θ is directly
proportional to the ratio of the total channel volume (Vc) to the total (i.e., overall) structural volume
(Vs). It must be noted that for a pneumatic actuation system based on flexible chambers, the input
work is the gauge pressure multiplied by the change in the chamber volume. The pressure is constant
for all the cross sections, which leaves the volume change as the primary variable to compare and
quantify the bending performance of the various cross sections. Our numerical results show that the
ratio of Vc/Vs for the round cross section is the smallest, which makes the actuator with round cross
section generate the lowest bending performance (i.e., angle).

When the pressure is below 25 kPa, the bending angle shows a nearly linear relationship with
the pressure. When the pressure is over 25 kPa, the adjacent channels will touch and push each other.
Due to their interaction forces, the relationship between bending angle and pressure ceases to be linear
because a more complicated interaction may occur under higher pressures.
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3. Fabrication of the Soft Pneumatic Actuator

The fabrication process for the pneumatic actuator is shown in Figure 12, and the fabricated
actuator is shown in Figure 12d. The pneumatic actuator consists of two layers that are moulded
separately and then combined after curing. The upper layer is the active layer, composed of several
channels; the lower layer is the passive layer. The liquid silicone rubber was poured separately into
moulds that were prepared using a low-cost 3D printer. These two parts were cured at a certain
temperature, and a thin layer of the uncured silicone rubber was used as the glue to bond these two
pieces together. The fabrication steps are as follows:

1. Prepare the 3D-printed mould: 3D printing, which is a rapid manufacturing method, can print
almost any 3D object with a reasonable size and provides convenience for fabricating actuators
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with various structures. A low-cost 3D printer was used to fabricate the mould, as shown in
Figure 12a. The mould consists of three parts.

2. Prepare two silicone rubbers: the silicone and curing agent were mixed, with a 9:1
volume-to-weight ratio. The mixed liquid was then poured into the 3D-printed moulds for
moulding and curing. The stirring and pouring processes generate a lot of air bubbles, which lead
to leaking problems for the structure. Therefore, after the two parts were well mixed and the
mixed liquid was placed into the mould, a vacuum pump was used to remove the air bubbles.

3. Curing: the mould and liquid were put into the oven until these two parts of the main body
were cured at a particular temperature (the M4601 was cured at 70 degrees centigrade for 20 min;
curing time depends on the temperature).

4. Remove the two parts of the actuator from the mould. Combine the two parts using uncured
silicone rubber as the glue.
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Figure 12. Fabrication procedure and the moulded actuators: (a) 3D printer (3D Printing. Systems,
UP Plus 2); (b) fabrication procedure; (c) 3D-printed mould; (d) the moulded actuator.

4. Comparison of Simulation and Experimental Results

Experiments were conducted to verify the simulation results. The optimised parameters selected
in Section 2 were used in the experiment samples. The pneumatic actuator was actuated by a miniature
pump. The actuators with rectangular, honeycomb, half-round, and round cross sections were
fabricated using the process outlined in Figure 12, and then the bending angles under the same
pressure were compared. For each cross section, three measurements were performed, and the average
value was selected as the final result. The simulation and experimental results agree well, as shown
in Figure 13. The actuator with the round cross section can provide the smallest bending angle.
It appears that there is a deviation of 19–30 degrees between the simulation and experimental results,
as shown in Figure 13c,d. That means that the predicted bending angle is larger than the experimental
result. Since the simulation is conducted under a relatively ideal environment, some pressure losses,
for example, in the pneumatic network and associated pipes, are not considered in the simulation
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conditions and results. This issue and some other experimental errors cannot be avoided and may
result in the offset between the experimental results and simulation results. The blocking force was
tested and the results are shown in Figure 14. A 6-axis multi-axis force sensor (K6D Multicomponent
Sensor, ME-Meßsysteme GmbH, Neuendorfstr, Germany) was used to measure the force generated by
the tip of the finger, which is the blocking force. One end of the actuator was fixed to act as a cantilever
beam. As the input pressure increases, there will be an increase in the output force. Before 30 kPa,
the gradient increases slightly. When a relatively small pressure is applied to the actuator, the bending
angle is small, and the blocking force is mainly caused by the weight of the actuator. The gradient
increases significantly after 30 kPa. The sensor generates a resistance to the bending movements of the
actuator when the input pressure is large enough. The actuator will make contact with the sensor base
and bend in an arch, as shown in Figure 14. When inflated, the upper layer of the actuator extends and
moves forward. The bending movements and contact with the sensor can be attributed to the increase
in the blocking force.
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Figure 13. The comparison of the experimental and simulation results for the bending angle:
(a) bending shape of a rectangular cross section actuator; (b) the experimental results with four different
cross sections; (c) a comparison of the experimental and simulation results with a rectangular cross
section; (d) a comparison of the experimental and simulation results with a half-round cross section.
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5. Conclusions

This paper has presented a design optimisation method utilising finite element modelling to
optimise a soft pneumatic actuator structure. The effects of various actuator parameters were studied
to obtain a better understanding of the actuation performance for the slender pneumatic actuator
to be used for soft robotic applications. By using the developed static structural model for the
pneumatic network actuator, the critical design parameters were numerically evaluated, including
the effects of input pressure, wall thickness, bottom layer thickness, distance between sequential
chambers, and cross-sectional shape of the channels on the actuator deformation. ANOVA analysis
was performed to systematically identify the significance of variables affecting deformation and, thus,
the bending angle of the pneumatic actuator. After the FE simulations, the soft actuator with optimised
parameters was fabricated. Experiments were conducted to quantify the performance of the optimised
soft actuator. Simulation results correlate with experimental tests. The optimisation method followed
in this study can easily be prolonged to develop various soft robotic structures to improve design
performance prior to fabrication. The overarching objective of this study was to develop flexible fluidic
actuators. This optimisation method will be extended to the design of the pneumatic actuators to
be strategically placed on a hand and finger rehabilitation glove. We will report on this study in the
near future.
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