The Use of SGLT-2 Inhibitors and GLP-1RA in Frail Older People with Diabetes: A Personalised Approach Is Required
Abstract
:1. Introduction
2. Methods
3. Frailty and Diabetes
4. Frailty Metabolic Spectrum
5. The New Therapies in Frail Older People
6. Patients’ Characteristics
7. Clinical Implications
8. Conclusions
9. Future Perspectives
10. Key Points
- Frailty in older people with diabetes is a heterogeneous condition with a wide metabolic spectrum.
- The current literature suggests that the new therapies are beneficial in frail older people with diabetes but it inaccurately refers to frailty as one homogenous group.
- The evidence was shown only in frail older people, who were overweight or obese, suggesting that the benefit is likely to be most significant in the sarcopenic obese (SO) frail phenotype, which has an unfavourable metabolic profile.
- There is no evidence to suggest the benefits of the new therapies in the anorexic malnourished (AM) frailty phenotype or care home residents, who were largely excluded from the studies.
- Future studies are still required to further characterise frail older people with diabetes from the outset to prospectively confirm the risk-benefit across different frailty phenotypes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2021, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, A.J.; Abdelhafiz, A.H.; Rodríguez-Mañas, L. Frailty and sarcopenia—Newly emerging and high impact complications of diabetes. J. Diabetes Its Complicat. 2017, 31, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Collard, R.M.; Boter, H.; Schoevers, R.A.; Voshaar, R.C.O. Prevalence of frailty in community-dwelling older persons: A systematic review. J. Am. Geriatr. Soc. 2012, 60, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafiz, A.H.; Sinclair, A.J. Cardio-renal protection in older people with diabetes with frailty and medical comorbidities—A focus on the new hypoglycaemic therapy. J. Diabetes Complicat. 2020, 34, 107639. [Google Scholar] [CrossRef]
- Karagiannis, T.; Tsapas, A.; Athanasiadou, E.; Avgerinos, I.; Liakos, A.; Matthews, D.R.; Bekiari, E. GLP-1 receptor agonists and SGLT2 inhibitors for older people with type 2 diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2021, 174, 108737. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 13. Older Adults: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S244–S257. [CrossRef]
- Evans, M.; Morgan, A.R.; Davies, S.; Beba, H.; Strain, W.D. The role of sodium-glucose co-transporter-2 inhibitors in frail older adults with or without type 2 diabetes mellitus. Age Ageing 2022, 51, afac201. [Google Scholar] [CrossRef]
- Aldafas, R.; Crabtree, T.; Alkharaiji, M.; Vinogradova, Y.; Idris, I. Sodium-glucose cotransporter-2 inhibitors (SGLT2) in frail or older people with type 2 diabetes and heart failure: A systematic review and meta-analysis. Age Ageing 2024, 53, afad254. [Google Scholar] [CrossRef]
- Koufakis, T.; Doumas, M.N.; Bargiota, A.; Kotsa, K.; Maltese, G. Sodium-glucose cotransporter 2 inhibitors in frail, older people with type 2 diabetes and heart failure: Do we have enough evidence to confidently support the use? Expert Rev. Clin. Pharmacol. 2023, 16, 771–774. [Google Scholar] [CrossRef]
- Abdelhafiz, A.H.; Emmerton, D.; Sinclair, A.J. Impact of frailty metabolic phenotypes on the management of older people with type 2 diabetes mellitus. Geriatr. Gerontol. Int. 2021, 21, 614–622. [Google Scholar] [CrossRef]
- Castrejón-Pérez, R.C.; Aguilar-Salinas, C.A.; Gutiérrez-Robledo, L.M.; Cesari, M.; Pérez-Zepeda, M.U. Frailty, diabetes, and the convergence of chronic disease in an age-related condition: A population-based nationwide cross-sectional analysis of the Mexican nutrition and health survey. Aging Clin. Exp. Res. 2017, 30, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, S.; Harada, K.; Bae, S.; Makizako, H.; Doi, T.; Tsutsumimoto, K.; Hotta, R.; Nakakubo, S.; Park, H.; et al. Relationship between chronic kidney disease with diabetes or hypertension and frailty in community-dwelling Japanese older adults. Geriatr. Gerontol. Int. 2017, 17, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Castrejón-Pérez, R.C.; Gutiérrez-Robledo, L.M.; Cesari, M.; Pérez-Zepeda, M.U. Diabetes mellitus, hypertension and frailty: A population-based, cross-sectional study of Mexican older adults. Geriatr. Gerontol. Int. 2017, 17, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Huang, C.; Deng, H.; Wang, H. Diabetes as a risk factor for dementia and mild cognitive impairment: A meta-analysis of longitudinal studies. Intern. Med. J. 2012, 42, 484–491. [Google Scholar] [CrossRef]
- Roshanravan, B. Frailty in CKD–is only seeing worth believing? Am. J. Kidney Dis. 2014, 64, 489–491. [Google Scholar] [CrossRef]
- Howrey, B.T.; Al Snih, S.; Markides, K.S.; Ottenbacher, K.J. Frailty and diabetes among Mexican American older adults. Ann. Epidemiol. 2018, 28, 421–426. [Google Scholar] [CrossRef]
- Abdelhafiz, A.H.; Peters, S.; Sinclair, A.J. Low glycaemic state increases risk of frailty and functional decline in older people with type 2 diabetes mellitus—Evidence from a systematic review. Diabetes Res. Clin. Pract. 2021, 181, 109085. [Google Scholar] [CrossRef]
- Zaslavsky, O.; Walker, R.L.; Crane, P.K.; Gray, S.L.; Larson, E.B. Glucose Levels and Risk of Frailty. J. Gerontol. Ser. A 2016, 71, 1223–1229. [Google Scholar] [CrossRef]
- Ferrucci, L.; Penninx, B.W.J.H.; Volpato, S.; Harris, T.B.; Bandeen-Roche, K.; Balfour, J.; Leveille, S.G.; Fried, L.P.; Guralnik, J.M. Change in Muscle Strength Explains Accelerated Decline of Physical Function in Older Women with High Interleukin-6 Serum Levels. J. Am. Geriatr. Soc. 2002, 50, 1947–1954. [Google Scholar] [CrossRef]
- Sheetz, M.J.; King, G.L. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 2002, 288, 2579–2588. [Google Scholar] [CrossRef]
- Phielix, E.; Schrauwen-Hinderling, V.B.; Mensink, M.; Lenaers, E.; Meex, R.; Hoeks, J.; Kooi, M.E.; Moonen-Kornips, E.; Sels, J.-P.; Hesselink, M.K.; et al. Lower Intrinsic ADP-Stimulated Mitochondrial Respiration Underlies In Vivo Mitochondrial Dysfunction in Muscle of Male Type 2 Diabetic Patients. Diabetes 2008, 57, 2943–2949. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.C.; Zhang, X.; Azhar, G.; Luo, S.; Wei, J.Y. Exposure to High or Low Glucose Levels Accelerates the Appearance of Markers of Endothelial Cell Senescence and Induces Dysregulation of Nitric Oxide Synthase. J. Gerontol. Ser. A 2013, 68, 1469–1481. [Google Scholar] [CrossRef]
- Crane, P.K.; Walker, R.; Hubbard, R.A.; Li, G.; Nathan, D.M.; Zheng, H.; Haneuse, S.; Craft, S.; Montine, T.J.; Kahn, S.E.; et al. Glucose Levels and Risk of Dementia. N. Engl. J. Med. 2013, 369, 540–548. [Google Scholar] [CrossRef]
- Araki, A.; Iimuro, S.; Sakurai, T.; Umegaki, H.; Iijima, K.; Nakano, H.; Oba, K.; Yokono, K.; Sone, H.; Yamada, N.; et al. Non-high-density lipoprotein cholesterol: An important predictor of stroke and diabetes-related mortality in Japanese elderly diabetic patients. Geriatr. Gerontol. Int. 2012, 12, 18–28. [Google Scholar] [CrossRef]
- Veronese, N.; Stubbs, B.; Fontana, L.; Trevisan, C.; Bolzetta, F.; De Rui, M.; Sartori, L.; Musacchio, E.; Zambon, S.; Maggi, S.; et al. Frailty Is Associated with an Increased Risk of Incident Type 2 Diabetes in the Elderly. J. Am. Med. Dir. Assoc. 2016, 17, 902–907. [Google Scholar] [CrossRef]
- Kalyani, R.R.; Varadhan, R.; Weiss, C.O.; Fried, L.P.; Cappola, A.R. Frailty Status and Altered Glucose-Insulin Dynamics. J. Gerontol. Ser. A 2011, 67, 1300–1306. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Chung, J.-Y.; Kang, H.-T.; Lee, D.-C.; Lee, H.-R.; Lee, Y.-J. Body composition and its association with cardiometabolic risk factors in the elderly: A focus on sarcopenic obesity. Arch. Gerontol. Geriatr. 2012, 56, 270–278. [Google Scholar] [CrossRef]
- Watanabe, D.; Yoshida, T.; Watanabe, Y.; Yamada, Y.; Kimura, M.; Kyoto-Kameoka Study Group. A U-Shaped Relationship between the Prevalence of Frailty and Body Mass Index in Community-Dwelling Japanese Older Adults: The Kyoto–Kameoka Study. J. Clin. Med. 2020, 9, 1367. [Google Scholar] [CrossRef]
- Kutz, A.; Kim, D.H.; Wexler, D.J.; Liu, J.; Schneeweiss, S.; Glynn, R.J.; Patorno, E. Comparative Cardiovascular Effectiveness and Safety of SGLT-2 Inhibitors, GLP-1 Receptor Agonists, and DPP-4 Inhibitors According to Frailty in Type 2 Diabetes. Diabetes Care 2023, 46, 2004–2014. [Google Scholar] [CrossRef]
- Butt, J.H.; Jhund, P.S.; Belohlávek, J.; de Boer, R.A.; Chiang, C.-E.; Desai, A.S.; Drożdzż, J.; Hernandez, A.F.; Inzucchi, S.E.; Katova, T.; et al. Efficacy and Safety of Dapagliflozin According to Frailty in Patients with Heart Failure: A Prespecified Analysis of the DELIVER Trial. Circulation 2022, 146, 1210–1224. [Google Scholar] [CrossRef] [PubMed]
- Butt, J.H.; Dewan, P.; Merkely, B.; Belohlávek, J.; Drożdż, J.; Kitakaze, M.; Inzucchi, S.E.; Kosiborod, M.N.; Martinez, F.A.; Tereshchenko, S.; et al. Efficacy and safety of dapagliflozin according to frailty in heart failure with reduced ejection fraction: A post hoc analysis of the DAPA-HF trial. Ann. Intern. Med. 2022, 175, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, K.; Orr, W. Mechanism of Gastroesophageal Reflux in Obstructive Sleep Apnea: Airway Obstruction or Obesity? J. Clin. Sleep. Med. 2016, 12, 87–94. [Google Scholar] [CrossRef]
- Yoshida, Y.; Chen, Z.; Fonseca, V.A. Sex Differences in Cardiovascular Risk Associated with Prediabetes and Undiagnosed Diabetes. Am. J. Prev. Med. 2023, 65, 854–862. [Google Scholar] [CrossRef]
- Kim, D.H.; Schneeweiss, S.; Glynn, R.J.; A Lipsitz, L.; Rockwood, K.; Avorn, J. Measuring frailty in Medicare data: Development and validation of a claims- based frailty index. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 980–987. [Google Scholar] [CrossRef]
- Kim, D.H.; Glynn, R.J.; Avorn, J.; A Lipsitz, L.; Rockwood, K.; Pawar, A.; Schneeweiss, S. Validation of a Claims-Based Frailty Index Against Physical Performance and Adverse Health Outcomes in the Health and Retirement Study. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1271–1276. [Google Scholar] [CrossRef]
- Keller, H.H.; Carrier, N.; Slaughter, S.E.; Lengyel, C.; Steele, C.M.; Duizer, L.; Morrison, J.; Brown, K.S.; Chaudhury, H.; Yoon, M.N.; et al. Prevalence and Determinants of Poor Food Intake of Residents Living in Long-Term Care. J. Am. Med. Dir. Assoc. 2017, 18, 941–947. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.H. Impact of Skeletal Muscle Mass on Metabolic Health. Endocrinol. Metab. 2020, 35, 1–6. [Google Scholar] [CrossRef]
- Pratley, R.E.; Cannon, C.P.; Cherney, D.Z.I.; Cosentino, F.; McGuire, D.K.; Essex, M.N.; Lawrence, D.; Jones, P.L.S.; Liu, J.; Adamsons, I.; et al. Cardiorenal outcomes, kidney function, and other safety outcomes with ertugliflozin in older adults with type 2 diabetes (VERTIS CV): Secondary analyses from a randomised, double-blind trial. Lancet Healthy Longev. 2023, 4, e143–e154. [Google Scholar] [CrossRef]
- Cahn, A.; Mosenzon, O.; Wiviott, S.D.; Rozenberg, A.; Yanuv, I.; Goodrich, E.L.; Murphy, S.A.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; et al. Efficacy and Safety of Dapagliflozin in the Elderly: Analysis From the DECLARE-TIMI 58 Study. Diabetes Care 2020, 43, 468–475. [Google Scholar] [CrossRef]
- Baeza-Trinidad, R.; Mosquera-Lozano, J.D. Safety of SGLT2 inhibitors in very elderly diabetic type 2 patients. Iberoam. J. Med. 2023, 3, 118–122. [Google Scholar] [CrossRef]
- Lunati, M.E.; Cimino, V.; Gandolfi, A.; Trevisan, M.; Montefusco, L.; Pastore, I.; Pace, C.; Betella, N.; Favacchio, G.; Bulgheroni, M.; et al. SGLT2-inhibitors are effective and safe in the elderly: The SOLD study. Pharmacol. Res. 2022, 183, 106396. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Yu, Y.; Sun, Y.; Yu, B.; Shen, W.; Cai, L.; Wang, N.; Wang, B.; Lu, Y. Joint effects of physical frailty and traditional cardiovascular risk factor control on cardiovascular disease in patients with diabetes. J. Nutr. Health Aging 2024, 28, 100342. [Google Scholar] [CrossRef] [PubMed]
- Si, P.E.H.; Parker, S.; Abdelhafiz, D.; Summerbell, A.; Muzulu, S.; Abdelhafiz, A.H. Cardiovascular risk reduction in older people with type 2 diabetes mellitus—A comprehensive narrative review. Diabetes Res. Clin. Pract. 2024, 211, 111662. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, Z.; Wang, Y.; Song, D.; Zhu, D. Effect of sodium-glucose transporter 2 inhibitors on sarcopenia in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1203666. [Google Scholar] [CrossRef]
- Donini, L.M.; Poggiogalle, E.; Piredda, M.; Pinto, A.; Barbagallo, M.; Cucinotta, D.; Sergi, G. Anorexia and Eating Patterns in the Elderly. PLoS ONE 2013, 8, e63539. [Google Scholar] [CrossRef]
- Marques, M.; Faria, A.; Cebola, M. Body mass index and body composition in institutionalized older adults with malnutrition, sarcopenia and frailty. Eur. J. Public Health 2019, 29, 23–24. [Google Scholar] [CrossRef]
- Goulet, E.D.; Hassaine, A.; Dionne, I.J.; Gaudreau, P.; Khalil, A.; Fulop, T.; Shatenstein, B.; Tessier, D.; Morais, J.A. Frailty in the elderly is associated with insulin resistance of glucose metabolism in the postabsorptive state only in the presence of increased abdominal fat. Exp. Gerontol. 2009, 44, 740–744. [Google Scholar] [CrossRef]
- Henry, R.R.; Wallace, P.; Olefsky, J.M. Effects of weight loss on mechanisms of hyperglycemia in obese non-insulin-dependent diabetes mellitus. Diabetes 1986, 35, 990–998. [Google Scholar] [CrossRef]
- Lim, E.L.; Hollingsworth, K.G.; Aribisala, B.S.; Chen, M.J.; Mathers, J.C.; Taylor, R. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011, 54, 2506–2514. [Google Scholar] [CrossRef]
- Abdelhafiz, A.H.; Koay, L.; Sinclair, A.J. The Emergence of Frailty May Lead to a State of Burnt Out Type 2 Diabetes. J. Frailty Aging 2016, 5, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafiz, A.; Bisht, S.; Kovacevic, I.; Pennells, D.; Sinclair, A. Insulin in Frail, Older People with Type 2 Diabetes—Low Threshold for Therapy. Diabetology 2022, 3, 369–383. [Google Scholar] [CrossRef]
- Hu, Y.; Pan, Z.; De Bock, M.; Tan, T.X.; Wang, Y.; Shi, Y.; Yan, N.; Yetisen, A.K. A wearable microneedle patch incorporating reversible FRET-based hydrogel sensors for continuous glucose monitoring. Biosens. Bioelectron. 2024, 262, 116542. [Google Scholar] [CrossRef] [PubMed]
(a) | ||
---|---|---|
Characteristics | Frail (N = 5710) | Non-Frail (N = 50,843) |
Age, mean (SD) | 72.83 (5.63) | 71.33 (4.66) |
Gender, female (%) | 3627 (63.52) | 20,246 (39.82) |
Mean (SD) CFI | 0.28 (0.03) | 0.13 (0.02) |
Mean (SD) CCS | 5.59 (2.88) | 0.74 (1.54) |
Overweight (%) | 693 (12.14) | 4837 (9.51) |
Obesity (%) | 2829 (49.54) | 15,000 (29.50) |
OSA (%) | 1813 (31.75) | 5628 (11.07) |
GORD | 2773 (48.56) | 9050 (17.80) |
Hyperlipidaemia (%) | 5128 (89.81) | 42,054 (82.71) |
Hypertension (%) | 5631 (98.62) | 43,826 (86.20) |
Coronary atherosclerosis (%) | 3759 (65.83) | 7401 (14.56) |
Unstable angina (%) | 489 (8.56) | 326 (0.64) |
Acute MI (%) | 385 (6.74) | 248 (0.49) |
AF (%) | 1705 (29.86) | 2265 (4.45) |
Heart failure (%) | 2309 (40.44) | 1257 (2.47) |
Cardiomyopathy (%) | 538 (9.42) | 672 (1.32) |
Other cardiovascular disease (%) | 2904 (50.86) | 3664 (7.21) |
Coronary procedure (%) | 278 (4.87) | 247 (0.49) |
History of CABG or PCI (%) | 1689 (29.58) | 2242 (4.41) |
Cerebral atherosclerosis (%) | 593 (10.39) | 214 (0.42) |
Transient ischemic attack (%) | 582 (10.19) | 397 (0.78) |
Ischemic stroke (%) | 1882 (32.96) | 2046 (4.02) |
Other cerebrovascular disease (%) | 1575 (27.58) | 887 (1.74) |
Cerebrovascular procedure (%) | 41 (0.72) | 21 (0.04) |
PVD (%) | 1737 (30.42) | 3111 (6.12) |
Lower limb amputation (%) | 98 (1.72) | 111 (0.22) |
Other atherosclerosis (%) | 179 (3.13) | 266 (0.52) |
CKD (%) | 1928 (33.77) | 3982 (7.83) |
Hypertensive nephropathy (%) | 1225 (21.45) | 1508 (2.97) |
NASH or NAFLD (%) | 484 (8.48) | 2321 (4.57) |
(b) | ||
Characteristics | Frail (N = 8474) | Non-Frail (N = 39,675) |
Age, mean (SD) | 73.92 (6.35) | 70.93 (4.47) |
Gender, female (%) | 5795 (68.39) | 17,764 (44.77) |
Mean (SD) CFI | 0.28 (0.03) | 0.13 (0.02) |
Mean (SD) CCS | 5.87 (2.91) | 0.89 (1.61) |
Overweight (%) | 809 (9.55) | 3152 (7.94) |
Obesity (%) | 4829 (56.99) | 14,724 (37.11) |
OSA (%) | 3030 (35.76) | 5567 (14.03) |
GORD | 4169 (49.20) | 6984 (17.60) |
Hyperlipidaemia (%) | 7583 (89.49) | 32,866 (82.84) |
Hypertension (%) | 8364 (98.70) | 34,539 (87.05) |
Coronary atherosclerosis (%) | 5315 (62.72) | 4928 (12.42) |
Unstable angina (%) | 643 (7.59) | 220 (0.55) |
Acute MI (%) | 528 (6.23) | 137 (0.35) |
AF (%) | 2297 (27.11) | 1562 (3.94) |
Heart failure (%) | 3616 (42.67) | 947 (2.39) |
Cardiomyopathy (%) | 731 (8.63) | 438 (1.10) |
Other cardiovascular disease (%) | 4263 (50.31) | 2802 (7.06) |
Coronary procedure (%) | 303 (3.58) | 149 (0.38) |
History of CABG or PCI (%) | 2177 (25.69) | 1427 (3.60) |
Cerebral atherosclerosis (%) | 846 (9.98) | 158 (0.40) |
Transient ischemic attack (%) | 752 (8.87) | 301 (0.76) |
Ischemic stroke (%) | 2666 (31.46) | 1494 (3.77) |
Other cerebrovascular disease (%) | 2304 (27.19) | 692 (1.74) |
Cerebrovascular procedure (%) | 53 (0.63) | 10 (0.03) |
PVD (%) | 2717 (32.06) | 2541 (6.40) |
Lower limb amputation (%) | 191 (2.25) | 132 (0.33) |
Other atherosclerosis (%) | 261 (3.08) | 224 (0.56) |
CKD (%) | 3785 (44.67) | 5309 (13.38) |
Hypertensive nephropathy (%) | 2462 (29.05) | 2131 (5.37) |
NASH or NAFLD (%) | 671 (7.92) | 1927 (4.86) |
Characteristics | Most Frail (N = 1491) | Non-Frail (N = 2354) | p Value |
---|---|---|---|
Mean (SD) age | 72.7 (8.8) | 70.1 (10.3) | <0.001 |
Age ≥ 76 years (%) | 593 (39.8) | 785 (33.3) | <0.001 |
Gender, male (%) | 841 (56.4) | 1308 (55.6) | 0.79 |
FI | ≥0.311 | ≤0.210 | |
Mean (SD) HbA1c | 7.1% (1.6) | 6.2% (1.2) | <0.001 |
Mean (SD) BMI | 32.1 (6.2) | 28.1 (5.8) | <0.001 |
Mean (SD) creatinine, μmol/L | 117.3 (34.8) | 91.1 (24.2) | <0.001 |
Mean (SD) eGFR, mL/min/1.73 m2 | 52.1 (17.4) | 68.7 (18.0) | <0.001 |
eGFR < 60 mL/min/1.73 m2 (%) | 1070 (71.8) | 697 (29.6) | <0.001 |
Type 2 DM (%) | 1081 (72.5) | 558 (23.7) | <0.001 |
OSA (%) | 261 (17.5) | 57 (2.4) | <0.001 |
Dyslipidaemia (%) | 1294 (86.8) | 969 (41.2) | <0.001 |
Hypertension (%) | 1459 (97.9) | 1814 (77.1) | <0.001 |
AF (%) | 976 (65.5) | 1188 (50.5) | <0.001 |
Angina (%) | 678 (45.5) | 227 (9.6) | <0.001 |
MI (%) | 643 (43.1) | 319 (13.6) | <0.001 |
CABG/PCI (%) | 855 (57.3) | 381 (16.2) | <0.001 |
Heart failure hospitalisation (%) | 750 (50.3) | 821 (34.9) | <0.001 |
Heart failure > 5 years (%) | 526 (35.3) | 534 (22.7) | <0.001 |
NYHA class III/IV (%) | 535 (35.8) | 410 (17.4) | <0.001 |
Any coronary artery disease | 1146 (76.9) | 694 (29.5) | <0.001 |
Stroke (%) | 280 (18.8) | 92 (3.9) | <0.001 |
Stroke/TIA (%) | 363 (24.3) | 115 (4.9) | <0.001 |
PVD (%) | 278 (18.6) | 44 (1.9) | <0.001 |
Any atherosclerosis (%) | 1250 (83.8) | 812 (34.5) | <0.001 |
Non-coronary revascularisation (%) | 81 (5.4) | 7 (0.3) | <0.001 |
Gout (%) | 287 (19.2) | 89 (3.8) | <0.001 |
Characteristics | Non-Frail (N = 2392) | More Frail (N = 1606) | Most Frail (N = 744) |
---|---|---|---|
Mean (SD) age | 63.6 (11.6) | 68.8 (9.4) | 69.8 (9.0) |
Gender, male (%) | 1844 (77.1) | 1225 (76.3) | 564 (75.8) |
FI | ≤0.210 | 0.211–0.310 | ≥0.311 |
Median (IQR) HbA1c | 5.9 (5.6–6.4) | 6.2 (5.8–7.0) | 6.7 (6.0–7.7) |
Mean (SD) BMI | 26.9 (5.7) | 28.9 (5.8) | 30.6 (6.1) |
Mean (SD) creatinine, μmol/L | 94.7 (34.8) | 109.8 (30.8) | 124.2 (36.4) |
Mean (SD) eGFR, mL/min/1.73 m2 | 73.0 (18.4) | 60.9 (17.4) | 53.0 (16.6) |
eGFR < 60 mL/min/1.73 m2 (%) | 568 (23.7) | 831 (51.7) | 527 (70.8) |
Type 2 DM (%) | 694 (29.0) | 882 (54.9) | 563 (75.7) |
OSA (%) | 57 (2.4) | 88 (5.5) | 125 (16.8) |
Dyslipidaemia (%) | 1024 (42.8) | 1185 (73.8) | 660 (88.7) |
Hypertension (%) | 1394 (58.3) | 1416 (88.2) | 712 (95.7) |
AF (%) | 736 (30.8) | 744 (46.3) | 405 (54.4) |
Angina (%) | 255 (10.7) | 491 (30.6) | 366 (49.2) |
MI (%) | 677 (28.3) | 895 (55.7) | 519 (69.8) |
CABG/PCI (%) | 610 (25.5) | 893 (55.6) | 536 (72.0) |
HF hospitalisation (%) | 1100 (46.0) | 788 (49.1) | 361 (48.5) |
HF > 5 years (%) | 836 (34.9) | 643 (40.0) | 375 (50.4) |
NYHA class III/IV (%) | 631 (26.4) | 569 (35.4) | 341 (45.8) |
Ischaemic cause of HF (%) | 959 (40.1) | 1120 (69.7) | 593 (79.7) |
Stroke (%) | 113 (4.7) | 194 (12.1) | 159 (21.4) |
PVD (%) | 61 (2.6) | 105 (6.5) | 158 (21.2) |
Syncope (%) | 72 (3.0) | 82 (5.1) | 77 (10.3) |
Gout (%) | 131 (5.5) | 206 (12.8) | 151 (20.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinclair, A.J.; Abdelhafiz, A.H. The Use of SGLT-2 Inhibitors and GLP-1RA in Frail Older People with Diabetes: A Personalised Approach Is Required. Metabolites 2025, 15, 49. https://doi.org/10.3390/metabo15010049
Sinclair AJ, Abdelhafiz AH. The Use of SGLT-2 Inhibitors and GLP-1RA in Frail Older People with Diabetes: A Personalised Approach Is Required. Metabolites. 2025; 15(1):49. https://doi.org/10.3390/metabo15010049
Chicago/Turabian StyleSinclair, Alan J., and Ahmed H. Abdelhafiz. 2025. "The Use of SGLT-2 Inhibitors and GLP-1RA in Frail Older People with Diabetes: A Personalised Approach Is Required" Metabolites 15, no. 1: 49. https://doi.org/10.3390/metabo15010049
APA StyleSinclair, A. J., & Abdelhafiz, A. H. (2025). The Use of SGLT-2 Inhibitors and GLP-1RA in Frail Older People with Diabetes: A Personalised Approach Is Required. Metabolites, 15(1), 49. https://doi.org/10.3390/metabo15010049