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Abstract: The increasing dependence on Wi-Fi for device-to-device communication in
industrial environments has introduced significant security and privacy challenges. In
such wireless networks, rogue access point (RAP) attacks have become more common,
exploiting the openness of wireless communication to intercept sensitive operational data,
compromise privacy, and disrupt industrial processes. Existing mitigation schemes often
rely on dedicated hardware and cryptographic methods for authentication, which are
computationally expensive and impractical for the diverse and resource-limited devices
commonly found in industrial networks. To address these challenges, this paper introduces
a robust and lightweight Wi-Fi device identification scheme, named the P-A scheme,
specifically designed for industrial settings. By extracting hardware fingerprints from the
phase and amplitude characteristics of channel state information (CSI), the P-A scheme
offers an efficient and scalable solution for identifying devices and detecting rogue access
points. A lightweight neural network ensures fast and accurate identification, making
the scheme suitable for real-time industrial applications. Extensive experiments in real-
world scenarios demonstrate the effectiveness of the scheme, achieving 95% identification
accuracy within 0.5 s. The P-A scheme offers a practical pathway to safeguard data integrity
and privacy in complex industrial networks against evolving cyber threats.

Keywords: Wi-Fi device identification; Wi-Fi security; rogue access point detection; channel
state information

1. Introduction
The rapid application of Wi-Fi technology in industrial environments has introduced

significant security and privacy risks. As industrial systems increasingly rely on Wi-Fi
for device-to-device communication, the attack surface continues to expand, exposing
sensitive operational data to cyber threats. Among these threats, Rogue Access Point (RAP)
attacks stand out as one of the most persistent and damaging. As illustrated in Figure 1,
attackers can create a RAP with the same service set identifier (SSID) and basic service set
identifier (BSSID) as a legitimate access point (AP), tricking devices into connecting and
enabling subsequent attacks such as DNS spoofing and keystroke inference. These attacks
not only compromise data integrity but also harm the privacy and operational reliability of
industrial systems. RAP attack detection has, therefore, become a critical component in
securing industrial wireless networks and the broader Internet of Things (IoT) system.

Although various wireless device identification schemes have been proposed to ad-
dress RAP attacks, current schemes face critical limitations, such as low detection rates,
limited scalability, and poor adaptability to industrial IoT environments. Traditional
cryptography-based schemes, which rely on digital certificates to authenticate devices [1],
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become increasingly impractical as network size and complexity grow. Given the inherent
consistency, invariance, and difficulty of forgery, device hardware fingerprints extracted
from channel state information (CSI) present a promising alternative for wireless device
identification. However, existing research on hardware fingerprinting has not fully ad-
dressed the challenges in industrial environments. For example, Liu et al. [2] suggested
using phase errors as fingerprints, but Lu et al. [3,4] discovered the drift in phase errors,
which compromises detection accuracy. Another study [5] proposed mapping CSI to images
for deep-learning-based detection, but this approach increases computational and storage
costs, limiting its practical applicability in resource-constrained industrial environments. In
summary, current hardware fingerprinting methods face challenges such as poor stability,
insufficient accuracy, and excessive computational overhead.

Figure 1. Illustration of RAPs and freeloading.

In this paper, we propose a novel CSI-based RAP detection scheme, termed the P-A
scheme, suitable for industrial Wi-Fi networks. The P-A scheme leverages a joint P-A
fingerprint derived from phase and amplitude characteristics of CSI as the device hardware
fingerprint and incorporates a lightweight neural network, called the P-A network, for
accurate device identification and RAP attack detection. Specifically, we introduce two new
filtering techniques to extract phase error fingerprints (P fingerprints) and amplitude matrix
fingerprints (A fingerprints) from CSI, which are combined to form the joint P-A fingerprint.
Our scheme is designed to meet the stringent requirements of industrial applications,
including scalability, efficiency, and resilience to dynamic conditions. Extensive real-world
experiments demonstrate the superior performance of the proposed scheme. In summary,
we have made the following contributions:

1. In this paper, we propose two novel Wi-Fi device identification fingerprints tailored
for industrial environments: the P and A fingerprints, extracted from the phase and
amplitude characteristics of CSI. Extensive experiments conducted in real-world sce-
narios demonstrate that combining these fingerprints into a joint P-A fingerprint
significantly enhances device identification accuracy, addressing challenges in detect-
ing RAP attacks.

2. We introduce the P-A scheme, which leverages the joint P-A fingerprint as a hardware-
based identifier and employs a lightweight convolutional neural network, referred to
as P-A networks, to achieve precise and efficient device identification. This approach
is particularly suitable for resource-constrained industrial settings.

3. Comprehensive experiments under various real-world conditions validate the robust-
ness and reliability of the P-A scheme. The scheme achieves an identification accuracy
of up to 95% within a detection time of just 0.5 s. These results underscore the scheme’s
robustness and practicality in dynamic and heterogeneous industrial environments.
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The rest of this paper is structured as follows. In Section 2, related work is introduced.
Section 3 describes the background knowledge. Next, Section 4 outlines the setup and
execution of our replication experiment. Then, the proposed mechanism is described in
Section 5. In Section 6, we evaluate the proposed method through extensive experiments.
Finally, we conclude this paper in Section 8.

2. Related Work
The use of physical layer features, such as radio frequency (RF) signals, for wireless

device identification has gained significant attention in recent years. Shen et al. [6] analyzed
fine-grained time-frequency features of long-range signals using RF signals and frequency
spectrum. They discovered that drift in the instantaneous CFO could lead to classification
errors, reducing system performance. To address this, they developed a hybrid classifier
based on a convolutional neural network (CNN) to distinguish signals from different
devices. Das et al. [7] proposed an LSTM-based deep learning classifier that leverages
physical layer I/Q sampling to learn the hardware flaws of low-power wireless devices,
effectively identifying high-power attack devices as well. Baldini et al. [8] proposed a device
identification scheme for wireless IoT devices based on RF signals. These schemes require
specialized collection devices to gather sufficient RF signals for device authentication,
leading to cumbersome operations and high costs, which limits their practical application.

Many researchers have investigated using CSI signal characteristics for device au-
thentication. Hua et al. [9] proposed a scheme that evaluates the CFO from the CSI and
uses the stripe slope as a device fingerprint. However, this approach is highly sensitive
to environmental factors and requires the device to remain stationary for 10 s during CSI
collection to minimize environmental impact. Liu et al. [2] proposed a real-time device
identification approach that uses nonlinear phase errors from the CSI as device fingerprints.
The phase error is caused by I/Q imbalance and suboptimal crystal oscillators in each
device’s Wi-Fi NIC. However, the phase error exhibits a drift phenomenon [3,4], which
significantly impacts the accuracy of phase error-based approaches.

Several CSI-based device fingerprinting methods have been proposed for IoT device
identification and RAP detection. However, most of these methods have limitations that
hinder their practical application. For instance, Kandel et al. [10] proposed using the
relative phase error between the RF chains of the device as a fingerprint, but this method is
limited to stable environments and specific hardware. Similarly, Liu et al. [11] proposed
two fingerprint features: the non-linear power amplifier fingerprint and the frame interval
distribution fingerprint, but both require additional collection and stationary detection
equipment. Meanwhile, Yu et al. [12] ensured communication security between the central
gateway and wireless sensor nodes by using the three parameters in the CFO stripe slope
image as fingerprints. However, existing wireless device fingerprint detection technologies
have greatly limited their practical applications due to high cost, poor stability, and the
need for additional collection equipment.

Manually extracting hardware features is labor-intensive. To address this challenge,
some researchers have integrated CSI with machine learning techniques. For example,
Zaman et al. [13] employed an LSTM network to process CSI and authenticate device
identities. Wang et al. [14] trained a CNN to extract local features from CSI and a regression
neural network (RNN) to capture continuous features across different carrier frequencies.
They combined the two networks to capture both local and continuous features, which
were then applied to user authentication. Chen et al. [15] identified mobile devices at the
packet level using a neural network with real-time update functionality. Germain et al. [16]
introduced extra noise into CSI measurements and employed generative adversarial net-
works for identification. Liao et al. [17] obtained CSI through minimum mean variance
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and identified it using a CNN. Germain et al. [18] processed CSI data using two variants
of RNN and conditional generative adversarial networks. Dai et al. [19] employed SVM
for identification and divided the Wi-Fi signal coverage area to create a fingerprint library
for devices in different regions. Wang et al. [5] authenticated wireless devices based on
their location. They divided the device’s CSI by region and treated the real and imaginary
components of the CSI element as two channels input into a deep learning network for
training and identification.

However, the above schemes present two main issues [20,21]. Firstly, directly using
CSI to train the network model is inefficient and resource-intensive, making it unsuitable
for resource-constrained devices. Secondly, using regional differences in signal coverage as
fingerprints is limited to fixed equipment, whereas most network terminals are now mobile.
In conclusion, designing a practical, robust, and lightweight Wi-Fi device identification
approach remains a significant challenge.

3. Background
This section provides background on the proposed scheme, including CSI, nonlinear

phase errors and non-linear power amplifiers.

3.1. CSI

Today, Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division
Multiplexing (OFDM) technologies are widely used in wireless networks to enhance band-
width and transmission rates [22]. However, these technologies can also introduce issues
such as mutual signal interference and multipath effects. To address these challenges, the
IEEE 802.11 protocol family introduced a physical layer property known as CSI. CSI is used
to assess the characteristics of wireless communication links, offering a comprehensive
understanding of the effects of scattering, fading, and power decay on the transmission of
wireless signals between the transmitter and receiver.

Daniel Halperin et al. [23] introduced a tool called CSI Tool, which modifies the
driver of a wireless network card. This tool allows commercial Wi-Fi devices to capture
CSI. As a result, CSI can now be used for indoor positioning, motion recognition, device
identification, and other applications [24]. In this paper, we modify the driver of the
Intel5300 wireless network card to collect CSI, which is then applied to our proposed Wi-Fi
device identification scheme. We assume that the received and transmitted signal vectors
on both communication sides are denoted as Y and X, respectively. The channel model can
then be expressed as follows:

Y = H × X + N (1)

where H is the CSI matrix and N is the Gaussian noise. The CSI measurement value
represents sampled data for Channel Frequency Response on different subcarriers. H can
be represented by the following model:

H( fk) = |H( fk)| · ej∠H( fk) (2)

where H( fk) represents the CSI of the subcarrier whose center frequency is fk. The absolute
value |H( fk)| represents the amplitude on the kth subcarrier. ∠H( fk) represents the phase
value on the kth subcarrier.

3.2. Nonlinear Phase Errors

Under ideal conditions, the carrier frequency between the Wi-Fi transmitter and
receiver should remain consistent. However, a slight offset arises due to imperfections
in the device hardware. This frequency offset alters the signal phase. Thus, Liu et al. [2]
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emphasized that nonlinear phase errors caused by I/Q imbalance and suboptimal crystal
oscillators can act as fingerprints for real-time device authentication. The phase error
formula is given as follows:

E = Φ − (2πλ · K + Z∗) (3)

where Φ is the phase that satisfies flat gradient filtering ▽Φ = [Φ2 − Φ1/K2 −
K1, . . . , Φi+1 − Φi/Ki+1 − Ki . . .], choose λ to make E−28 + E28 = 0, K is the subcarrier
index, Z∗ ≈ (Φ1 + Φ−1)/2. According to the research [3,4], the phase error fingerprint
exhibits a drift phenomenon. Our empirical experiments indicate that some Wi-Fi devices
exhibit a tomographic phenomenon in their phase error fingerprints, which may negatively
affect prior schemes.

3.3. Power Amplifier Non-Linear Fingerprint

Wireless signals possess two fundamental attributes: phase and amplitude. Amplitude
refers to the signal strength or power, which can decrease after channel transmission. To
adjust the amplitude, the receiver is equipped with amplifiers. Liu et al. [11] found that
the instability of the power amplifier in wireless devices generates a nonlinear fingerprint,
which can serve as a unique identifier for the device. We denote the CSI value at the
subcarrier index f at time t as H( f , t), and the signal amplitude model measured at the
receiving terminal can be expressed as follows (4):∣∣H̀( f , t)

∣∣ = |H( f , t)|+ GPA(t) + GLNA + GVGA(t) + n (4)

where
∣∣H̀( f , t)

∣∣ are the sum of the gains of the amplifiers. |H( f , t)| represents the propa-
gation fading. GPA(t), GLNA, GVGA, respectively, represent the power gain of the Power
Amplifier (PA), Low-Noise Amplifier (LNA), and Variable-Gain Amplifier (VGA). To obtain
the power amplifier non-linear fingerprint, we can use the following formula after filtering
out irrelevant influencing factors by calculating the weighted mean and variance.

σ2(GPA) = σ2(
∣∣Ĥ∣∣)− σ2(GVGA) (5)

Nevertheless, our experiment reveals that the PA fingerprint is susceptible to fluctua-
tions in the dynamic environment, leading to an unstable fingerprint.

4. Preliminaries
This section outlines the setup and execution of our replication experiment, detailing

the preparation, and the results observed.

4.1. Experiment Preparation

For the empirical study, data collection is conducted using a Lenovo T430 laptop. This
device, equipped with an Intel5300 wireless network card and running on Ubuntu 14.04,
enables CSI collection through modifications to the Intel5300 driver and configuration of
the CSI Tool.

To simulate wireless access environments, we randomly select four commercial Wi-Fi
routers as access points. These routers include the Mi R1CL, Tplink WR842N, Tenda F3,
and Mercury MW325R, which feature MT7628, QCA9531, RTL8192ER, and MT7628KN
chipsets, respectively.

Data collection was conducted in a 150-square-meter (10 m × 15 m) enclosed student
laboratory, arranged with four rows and five columns of desks. The data collection setup
required positioning the laptop and Wi-Fi units approximately 3 m apart on adjacent tables,
ensuring no physical obstructions and maintaining a controlled environment throughout
the process.
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4.2. Experiment Procedure

CSI Collection: To collect CSI data, we connect the collection device to the tested
Wi-Fi devices and initiate two separate terminal sessions. The first terminal sends a ping
command to the Wi-Fi device at 0.02-s intervals, while the second terminal executes the
data capture command within the CSI Tool (version: 7.3.1.28). A complete CSI collection
cycle is completed upon the initiation and conclusion of the log_to_ f ile program. During
this process, the collection device is set to receive response frames and systematically log
the corresponding CSI data. This procedure is carefully managed to ensure the collection
phase lasts approximately 15 s.

CSI Analyzation: The CSI data contain vital information, including the number
of transmitting (Tx) and receiving (Rx) antennas, as well as the crucial CSI matrix. The
dimensions of the CSI matrix are expressed as Tx × Rx × 30. Given the variability of Tx

and Rx, the matrix dimensions are not uniform. We specifically filter and retain matrices
of size [2, 3, 30]. Each element in these matrices is complex, and we calculate the phase
value using the arctangent of each element, while concurrently deriving the amplitude by
determining the absolute value.

Fingerprint Reproduction: Using the phase and amplitude values derived in the
previous step, we apply Formula (3) to calculate the nonlinear phase error fingerprint
and Formula (5) for the power amplifier nonlinear fingerprint. We then generate visual
representations in the form of a subcarrier-phase error image and a distribution map for
the power amplifier nonlinear fingerprint, as shown in Figures 2 and 3.

Figure 2. Phase errors of four tested devices.

Figure 3. Amplitude nonlinear fingerprints distribution of four tested devices.
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4.3. Experimental Results

Figure 2 illustrates the phase error diagram across subcarriers for four Wi-Fi devices
under evaluation. In each diagram, the vertical axis represents the phase error, while the
horizontal axis indicates the subcarrier index. The observed variability in phase errors
within specific bounds supports the findings of prior research [3,4]. Additionally, a notable
tomographic pattern emerges in the phase error data, challenging traditional function
fitting methods due to its non-derivative nature. Using average or normalized phase errors
as distinctive identifiers would overlook critical data characteristics, potentially reducing
identification accuracy and limiting the technology’s practical applications.

Figure 3 depicts the distribution of averaged power amplifier nonlinear fingerprints
for the same Wi-Fi devices. Following the methodology proposed by Liu et al. [11], we
combined two sets to derive a single fingerprint for each device. The x-axis corresponds to
the data batch, with a total of ten batches of Figure 3 CSI analyzed. The y-axis displays the
nonlinear fingerprint, revealing significant stability issues and unpredictable fluctuations.
These irregularities could impair the fingerprint’s reliability due to the unstructured nature
of the fluctuations.

In summary, to more effectively exploit nonlinear phase errors and power amplifier nonlin-
ear fingerprints, we introduce an innovative identification strategy for Wi-Fi devices, called
the P-A scheme. This approach involves distinct processing of phase errors and amplitude
matrices to create P and A fingerprints, respectively. We also propose a CNN model, called
P-A Networks, designed specifically for training and identifying these fingerprints.

5. The Proposed Mechanism
In this section, we introduce a novel identification scheme for Wi-Fi device identifi-

cation, termed the P-A scheme. This scheme leverages two key signal attributes—phase
and amplitude—from which it derives two distinct fingerprints: the P (phase) and A (am-
plitude) fingerprints. An efficient Convolutional Neural Network, the P-A network, is
proposed as the classifier of these fingerprints. This approach is adept not only at detecting
rogue access point attacks but also at identifying conventional Wi-Fi devices.

The benefits of the P-A scheme are twofold: First, it encompasses two effective finger-
print generation algorithms along with a lightweight CNN, minimizing computational and
memory demands. Second, it is designed for cloud server execution, requiring detection
clients only to acquire and upload CSI. Acquiring CSI merely requires a software update
to the client’s device driver, without the need for hardware modifications or additional
computational load. Therefore, this scheme is particularly well-suited for deployment on
resource-constrained devices, with the computational burden being largely shouldered by
the server.

The deployment architecture of the scheme is shown in Figure 4. To emulate the server
environment, a personal computer with standard performance is employed to host the P-A
scheme (The server is optional, meaning data collection and processing can be conducted
entirely locally). The client device role is assumed by a separate collection laptop. When
device identification is requested, the client gathers and forwards the CSI of the Wi-Fi signal
to the server. The server delivers the identification outcome within approximately 0.5 s. If
the target device is legitimate, it is allowed access to the network; otherwise, unauthorized
devices trigger an alert to the client.
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Figure 4. The P-A scheme structure.

The P-A scheme consists of four primary modules, as illustrated in Figure 5. The first
module handles data collection and preprocessing. The second module processes the phase
error and amplitude matrix to extract the P and A fingerprints. The third module adapts
these fingerprints for CNN analysis, culminating in the construction and training of the
P-A networks to yield identification results. The final module makes the final judgment.

Figure 5. Main modules of the P-A scheme.

5.1. Data Collection and Preprocessing Module

This module primarily performs three core functions: CSI collection, CSI analysis, and
phase and amplitude calculation.

In this module, the first step is CSI collection. A detection client connects to the target
Wi-Fi device. The detection client then initializes two terminals. One terminal sends a
ping command to the target Wi-Fi device at 0.02-s intervals, while the other executes the
log_to_ f ile function from the CSI Tool to facilitate automatic CSI data acquisition.

The second step involves CSI analysis. The CSI includes various sampling details,
such as the number of transmitting antennas (Tx), receiving antennas (Rx), and the CSI
matrix itself. Subsequently, a filtration process is applied to the CSI data based on matrix
dimensions. This process isolates and extracts matrices with dimensions [2, 3, 30], which
are then stored in an npy file format. This binary file format, designed for data storage,
is generated using Python scripts. Our scheme leverages Python, which is efficient in
loading npy files during network training, significantly enhancing the speed of training.
Additionally, storing processed data in the npy format eliminates the need for repetitive
recalculations in each identification phase, thereby reducing computational requirements.

The final step involves calculating the phase and amplitude from the npy files. CSI
matrices are consolidated into a list, which is traversed to calculate the phase of each
complex element using the arc tangent function, and the amplitude by determining the
absolute value of the complex numbers. This methodology ensures the preservation of
original phase and amplitude data positions relative to their slots in the CSI matrix, an
essential consideration since phase error depends on the arrangement of the 30 sub-carriers,
and the amplitude matrix exhibits spatial characteristics aligned with the CSI matrix. The
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processed phase and amplitude data are then converted into P and A fingerprints by the
subsequent module, which are used as training inputs for the P-A networks.

5.2. Fingerprint Generation Module

This module is a pivotal element within the system, employing a CNN to identify
fingerprints. Its significance lies in the need to derive fingerprints with valid characteristics
from CSI. This module applies distinct processing techniques for phase error and amplitude
matrices, ultimately generating effective P and A fingerprints.

5.2.1. P-Fingerprint

The P fingerprint is the filtered phase error image. Its production is divided into
three steps: calculating the filtering threshold, filtering the phase error interference, draw-
ing the image, and storing it as the P fingerprint.

The first step is calculating the filtering threshold. Upon observation, interference
items in the same set of phase errors often fluctuate considerably, and their distribution
differs from that of a typical fingerprint. Therefore, standard deviation and median are used
for filtering. First, the phase matrix is traversed, and phase error is calculated according to
Formula (1). This results in L groups of phase error matrices, denoted as the E matrix, with
dimensions [L, 30]. Next, the standard deviation of each group of fingerprints along the
first dimension is calculated and stored as a list, denoted as D. Finally, the median of all
phase errors over the 30 subcarriers is calculated along the second dimension and stored as
the median list M.

The second step involves filtering the phase error interference term. First, list D is tra-
versed. If the standard deviation Di is less than the overall mean average(D), the maximum
absolute difference between Ei,j and the median Mj is calculated. If the maximum value is
less than the threshold y, the phase error is considered qualified and retained for subse-
quent identification. Extensive experiments have shown that when y is 0.4, Algorithm 1
yields the best filtering effect. Values may vary under different experimental conditions.

Algorithm 1 Filtering the phase errors

Require: Phase error matrix E; Standard Deviation D; Median M
Ensure: Filtered Phase error E

1: for i ← 0 to L do
2: if Di < averaged(D) then
3: for j ← 0 to 30 do
4: maxdi f f erence = max(abs(Ei,j − Mj))
5: end for
6: if maxdi f f erence < y then
7: Filtered.add(Ei,j)
8: end if
9: end if

10: end for
11: Output Filtered Phase error E;

Unfiltered interfering terms in the phase error can affect the sharpness of the phase
error image, thereby reducing accuracy. Therefore, accurately filtering these interference
items is crucial to minimize their impact on the accuracy of the P fingerprint. The filtering
algorithm is presented in Algorithm 1, and the filtered image is shown in Figure 6. As
shown in Figure 6, the filtered phase error image appears clearer.

The third step is drawing the image and storing it as a P fingerprint. We use the
matplotlib drawing tool to draw all the filtered phase errors in a single graph to form a P



Electronics 2025, 14, 513 10 of 23

fingerprint. The width of each phase error curve in the graph is 0.08 cm, and the color is
uniformly red, the image is saved as 900 × 700 pixel size in png format.

(a) Non-filtered phase error of tested Tenda device

(b) Filtered phase error of tested Tenda device

Figure 6. Phase errors filtered by Algorithm 1.

5.2.2. A Fingerprint

The A fingerprint replaces the distractor items in the amplitude matrix with the
median and the power ampli f ier non-linear f ingerprint in the study [11], to form a matrix
with spatial characteristics. The process consists of three steps: calculating the filtering
threshold and eigenvalues, filtering and constructing the amplitude matrix, and storing
the amplitude matrix as the A fingerprint. The amplitude on the same receiving antenna
remains consistent for signals from a pair of wireless transmitting-receiving devices but
varies between adjacent antennas. Therefore, the amplitude matrix exhibits specific spatial
characteristics, denoted as matrix S, with dimensions [2, 3, 30], and there are L groups in
total. Due to the heavy disturbance in the raw amplitude data, we must exclude distractor
items and enhance the spatial features as much as possible.

The first step involves calculating the filtering threshold and eigenvalues. The filtering
threshold includes the mean value matrix A, the standard deviation matrix V, and the
median matrix M. The eigenvalues consist of the amplitude non-linear fingerprint Q and
the median matrix M. The median matrix M serves as both the filtering threshold and
the eigenvalue. For each [2, 3, 30] amplitude matrix S, the first dimension represents the
number of transmit antennas, the second represents the number of receive antennas, and
the third corresponds to 30 subcarriers. We traverse the matrix S along the first and second
dimensions, calculate the weighted mean of the amplitudes corresponding to subcarrier
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indices along the third dimension, and obtain an array of [2, 3]. L groups form a matrix Q
with dimensions [L, 2, 3]. Similarly, the mean matrix A and the standard deviation matrix
V can be calculated, with dimensions [L, 2, 3]. The matrix M corresponds to the median of
all amplitude data for each subcarrier. The median matrix M is obtained by traversing the
amplitude matrix, with dimensions [2, 3, 30].

The second step involves filtering and constructing the amplitude matrix. The ampli-
tude matrix S is traversed, and when the absolute value of the difference between Si,j,k,l and
the median Mj,k,l exceeds the threshold y1, it is identified as a distractor and replaced with
Mj,k,l . When the absolute value of the difference between Si,j,k,l and the average value Ai,j,k

exceeds y2 times the average standard deviation, it is considered a distractor and replaced
with Qi,j,k. The values of y1 and y2 are set to 5 and 0.8, respectively. Empirical experiments
have shown that these values optimize the performance of the scheme. These values may
vary under different experimental conditions. After the replacement is complete, the new
amplitude matrix is constructed. The filtering algorithm is shown in Algorithm 2. The
amplitude values for different antenna pairs of Tplink were checked, as shown in Figure 7,
demonstrating that the filtering method performs effectively.

(a) Non-filtered amplitude of tested Tplink device

(b) Filtered amplitude of tested Tplink device

Figure 7. Amplitude filtered by Algorithm 2.
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Algorithm 2 Filtering the amplitude matrix

Require: Amplitude matrix S; Weight means Q; Standard deviation V; Average A; Median
M;

Ensure: Filtered amplitude matrix S
1: for i ← 0 to L do
2: for j ← 0 to 2 do
3: for K ← 0 to 3 do
4: for l ← 0 to 30 do
5: if abs(Si,j,k,l − Mi,j,k) > y1 then
6: Si,j,k,l = Mj,k,l
7: end if
8: if abs(Si,j,k,l − Ai,j,k) > y2 × average(V) then
9: Si,j,k,l = Qi,j,k

10: end if
11: end for
12: end for
13: end for
14: end for
15: Output Filtered amplitude matrix S;

The third step involves storing the amplitude matrix as the A fingerprint. The dimen-
sions of the filtered amplitude matrix remain unchanged; it consists of L groups of [2, 3, 30]
matrices, all of which together form the A fingerprint. All matrices are saved as a npy file,
which offers advantages such as fast reading, avoiding repeated calculations, and reducing
computational costs.

5.3. P-A Networks Module

This section introduces the standardization process for the two fingerprints and the
structure of the P-A networks. Two sets of models are responsible for processing the P
fingerprint and A fingerprint, respectively, with slightly distinguishable structures.

The P fingerprint and A fingerprint are converted into a data type suitable for process-
ing by the convolutional network. An index is created for all fingerprint data along with a
unique identification tag for the device, allowing for easy access to the data and correspond-
ing tags. First, the P fingerprint is read and opened, converted into a three-channel model,
uniformly resized to 128 × 128 pixels, and then transformed into a tensor vector for or-
thogonalization. Next, the A fingerprint is read and opened, converted into tensor vectors,
orthogonalization is performed, and finally transformed into a vector of [2 × L, 30, 3].

The P-A networks model used is illustrated in Figure 8. Two networks are employed:
the P-network and the A-network. The P fingerprint is input into the P-network for
training and identification, while the A fingerprint is input into the A-network. Both
networks consist of convolutional and linear layer modules. Each convolution unit in the
convolution module sequentially applies four functions: convolution, batch normalization,
ReLU activation, and max pooling. Five such units are included in the total. The P-network
and A-network share the structure of the convolution module. A linear layer unit consists
of a linear layer followed by a ReLU activation function. The linear layer module of the
P-network contains two linear units and one linear layer, while the A-network’s linear layer
module consists of four linear units and one linear layer.
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Figure 8. The structure of the P-A networks.

The proposed scheme employs a CNN as the fingerprint classifier, primarily for
two reasons. First, the P fingerprint is an image type, whereas the A fingerprint is a
three-dimensional matrix. The second dimension of the matrix is treated as the three-
channel attribute of the image, thus making it possible to regard it as an image type.
Second, convolutional networks are particularly well-suited for handling time series and
image data [25], making them ideal for this identification task.

5.4. Judgment Module

This module primarily makes judgments based on the outputs of the P-A networks.
In the proposed P-A scheme, the P-network and A-network identify the P fingerprint and
A fingerprint, respectively, and output the predicted device label. Approximately 300 P
fingerprint images and 1000 A fingerprint matrices can be calculated from the collected CSI
data of a single Wi-Fi device to train the P-A networks. Experimental results have shown
that only 20 P fingerprints and 100 A fingerprints are needed to complete the identification
process. The predicted device label is output after being identified by the P-A network.
The number of correctly predicted labels is divided by the total number of fingerprints to
calculate the prediction accuracy of the two fingerprints, and the prediction rates of the
two fingerprints are combined to determine whether the device is legitimate. Based on our
experience, a device is judged as legitimate when the sum of the prediction rates of the
P and A fingerprints is greater than 1.7, and the prediction rate of a single fingerprint is
greater than 0.85. If the prediction rate of one fingerprint is lower than 0.85, the device will
be regarded as illegal, regardless of the prediction rate of the other fingerprint, as shown in
Table 1.

Table 1. Judgment Rules.

P-Finger A-Finger P-A Finger Result

>0.85 >0.85 >1.7 permission

any <0.85 any warning

<0.85 any any warning

6. Evaluation
This part first introduces the setup of the evaluation experiment and then evaluates

the performance of the proposed scheme from the four aspects of accuracy, speed, stability,
and system overhead. Stability includes time stability, location stability, and environmental
stability. Finally, the P-A scheme is compared with several mainstream schemes.

6.1. Setup of the Evaluation Experiment

For the experiment hardware, we used a laptop equipped with the CSI Tool, the model
LenovoT430, equipped with a wireless network card Intel5300, for the data collection. We
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used a PC, the model is OptiPlex 5060-China HDD Protection, the processor is Intel(R)
Core(TM) i5-8500T, and the running memory RAM is 8 GB, to simulate the cloud server. A
total of 22 wireless devices were used as testing devices. The brands, models, and quantities
are shown in Table 2.

Table 2. Wi-Fi Device Information.

Brand Model Quantity

360 T2 4

Tplink WR842N 4

Honor XD16 2

Tenda F3 4

Fast FW325R 4

Mercury MW325R 4

For the experiment environment, a 10 m × 15 m student laboratory is selected as the
experimental site, and there are four rows and five columns of tables and chairs, as shown
in Figure 9. We keep the collection device and the wireless device at a distance of three
meters and place them on the desktop with no obstruction in the middle. The collection
time is 8 to 10 s, and the collection process keeps the environment stable.

Figure 9. Five position relationships.

For the experimental evaluation, the collection device simulates a client and uploads
the collected CSI to the server running the P-A scheme. The server caches the CSI data,
calculates the P and A fingerprints, processes them with the P-A networks, and outputs
the accuracies. Finally, the accuracies of the two fingerprints are combined to generate a
judgment result, which is then returned to the client.

6.2. Accuracy

To verify the performance of the P-A scheme in identifying rogue devices, a total
of 30 rounds of evaluation experiments were conducted. In each round, the 22 wireless
devices were randomly divided into two groups. One group simulates legitimate devices,
while the other simulates malicious devices. In the simulation experiment, the scheme
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stores the fingerprint information of the legitimate group, without recording the fingerprint
of the illegal group. The scheme then randomly connects to each device’s signal and
identifies it. If the identity of the legitimate or illegal device is successfully identified, it is
marked as a success; otherwise, it is marked as a failure. First, the prediction rates of the P
and A fingerprints are used individually for identification. If the prediction rate is greater
than 0.85, the identification is deemed successful. Second, the two prediction rates of the
combined P-A fingerprints (Table 1) are used for identification. To calculate the device
detection accuracy, the following formula is used:

Accuracy =
Ncorrectly_identi f ied

Ntotal_devices
× 100% (6)

where Ncorrectly_identi f ied represents the number of devices successfully identified as either
legitimate or malicious, and Ntotal_devices represents the total number of devices involved
in the detection process.

In each round of the evaluation, the P-A scheme determines the accuracy by dividing
the number of successfully identified devices by the total number of devices. The accuracy
from 10 detection trials is averaged to obtain the final accuracy for each round. The results
are presented in Figure 10. As shown in this figure, the accuracy of using the combined
P-A fingerprints is significantly higher than that of using a single fingerprint. The accuracy
of the combined P-A fingerprints can reach 95%, while the accuracies of the P and A
fingerprints are stable at 89.5% and 91.5%, respectively.

Figure 10. The accuracy of the P-A scheme.

6.3. Speed

We input CSI data of different volumes into the P-A scheme and evaluate the running
speed through the time spent during the identification. We directly recorded the detection
time during the experiments using a timer in the identification process. This approach
ensures an accurate measurement of the time required for device identification.

The durations considered are 2 s, 4 s, 6 s, 8 s, 10 s, 15 s, and 20 s. CSI data of different
volumes are input into the P-A scheme, and the running speed is evaluated based on the
time spent during identification. It is assumed that the P-A networks have already been
trained, so the training process does not account for the time spent. The identification time
and accuracy for 22 devices are shown in Table 3. As the time for collecting CSI increases, the
identification accuracy of the devices increases, and the corresponding system identification
time also increases. When the CSI collection time reaches 8 to 10 s, the P-A scheme achieves
its optimal accuracy of about 95.9%. At this point, the identification time of the system is
approximately 0.56 s. Therefore, the shortest data collection time for the P-A scheme is
about 8 s, and the optimal identification speed is approximately 0.56 s per device.



Electronics 2025, 14, 513 16 of 23

Table 3. Identification time and corresponding accuracy of P-A scheme under different CSI collec-
tion times.

CSI Collection Time (s) Identification Time (s) Accuracy Rate (%)

2 0.17 42.0
4 0.19 67.0
6 0.37 86.0
8 0.56 95.9
10 0.66 95.9
15 0.82 94.9
20 1.12 95.0

6.4. Stability

This section evaluates the stability of the proposed scheme from three aspects: time,
location, and environment. Different scenarios are arranged to collect CSI in order to
evaluate the stability across various factors. To verify the stability of both fingerprints
simultaneously, the trained P-A networks are used to identify the joint P-A fingerprints
in the CSI data from different scenarios. The reliability of the fingerprint, and thus the
stability of the P-A system, is assessed based on the identification accuracy.

6.4.1. Time Stability

We selected five time periods and collected five batches of data to verify the time
stability of the P-A system. To eliminate influencing factors other than time, CSI was
collected every three days, resulting in a total of five batches, recorded as T1, T2, T3, T4, and
T5. Using the P-A scheme, we conducted device identification for the five batches of data.
First, we used the P and A fingerprints separately for identification and then combined
them for joint identification.

The results, as shown in Figure 11, demonstrate that the accuracy of the P-A system in
identifying joint P-A fingerprints across five time periods remained stable at approximately
95.5%, while the accuracy of P and A fingerprints stabilized at 89.5% and 91.5%, respectively.
This indicates that the scheme is not significantly affected by the time factor.

Figure 11. The time stability of the P-A scheme.

In addition, we further analyzed the impact of CSI collection time on the identification
accuracy and time efficiency of the P-A scheme. Table 3 illustrates that as the CSI collection
time increases, the accuracy of the P-A scheme improves significantly, reaching 95.9% at 8 s.
However, when the collection time is extended beyond 10 s, the accuracy remains stable,
with a slight fluctuation observed between 94.9% and 95.9%. Meanwhile, the identification
time spent increases linearly from 0.17 s at 2 s of collection time to 1.12 s at 20 s. This
suggests that 8 to 10 s is the optimal range for achieving high accuracy and time efficiency.
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6.4.2. Position Stability

We determined five positional relationships in a 10 m × 15 m laboratory to verify the
position stability of P-A. The five position relationships are shown in Figure 9, marked
as L1, L2, L3, L4, and L5, respectively. We collect CSI at these five positions and keep
the laboratory steady to ensure that the position condition is the unique variable. We
use the P-A scheme to identify CSI from each position and output the accuracy of the
22 devices. First, we use P and A fingerprints to verify the device’s identity. Then, combine
the two fingerprints to verify. The result is shown in Figure 12. It can be found that the
accuracy of the joint P-A fingerprints is stable at 95%, while the accuracy of the P and
A fingerprints is stable at 89.5% and 91.5%, respectively, which demonstrates that the
detection accuracy of the P-A scheme would not be significantly reduced.

Figure 12. The position stability of the P-A scheme.

6.4.3. Environment Stability

We simulated two scenarios to verify the environmental stability of the P-A scheme,
as shown in Figure 13. Two scenarios were conducted in a closed laboratory. In the stable
environment, the collection device and the tested Wi-Fi device maintained a fixed distance
of 5 m, and the indoor environment remained steady during the collection process. In the
dynamic environment, the collection device and the tested device were kept at the same
position and distance, but the experimenters randomly walked among the devices, moved
tables and chairs, and frequently opened and closed the doors and windows to simulate
real-world application scenarios such as human movement and vehicle activity [26,27].

Figure 13. The environmental stability of the P-A scheme.

The results indicate that the P fingerprint is weakly affected by environmental changes,
with accuracy decreasing slightly from 89.6% to 87.90%. However, the A fingerprint is
more sensitive to environmental factors, with accuracy dropping significantly from 91.45%
to 80.70%. This environmental impact on the A fingerprint also caused the joint P-A
fingerprint accuracy to decrease from 95.40% to 90.70%.
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To address this issue, we further analyzed the impact of extending the CSI collection
time in suboptimal environmental conditions (E2). As shown in Figure 14, increasing the
collection time can effectively mitigate the adverse effects of environmental disturbances.
When the collection time is extended to 20 s, the accuracy of the A fingerprint recovers
to approximately 90.5%, the P fingerprint accuracy improves to 89%, and the joint P-A
fingerprint accuracy resumes at about 94%.

Figure 14. Influence of collection duration on fingerprint accuracy in suboptimal environments.

Combining this with our earlier analysis in Table 3, it is evident that collection time is
a critical parameter affecting the detection accuracy. The results indicate that while longer
collection times improve accuracy, particularly in challenging environments, there is a
trade-off with identification efficiency. For instance, as shown in Table 3, the identification
accuracy plateaus at 95.9% when the collection time exceeds 8 s, but the identification time
increases linearly, reaching 1.12 s at 20 s of collection time.

These findings highlight that the P-A scheme demonstrates robust performance under
various environmental conditions and collection durations. To balance accuracy and
efficiency, we recommend a collection time of 8 to 10 s in stable environments and up to
20 s in noisy or dynamic environments to ensure high detection accuracy.

6.5. System Overhead

We evaluate the P-A system overhead of the client device and the server from program
space occupancy, cache data occupancy, and CPU occupancy. We use a laptop (Lenovo
T430) to simulate the client device and a PC (OptiPlex 5060-China HDD Protection) to
simulate the cloud server.

For the program space occupancy, the client device needs to be modified as the driver
of the NIC and responsible for collecting and uploading CSI to the server. We accomplish
the above functions with a script of less than 50 KB. The server finishes the majority of the
P-A scheme, in which the program occupies the server’s memory of about 60 KB. Although
there may be slight divergences in different operating systems, the program in the client
and server will not consume too much storage space.

Regarding cache data occupancy, during identification the client needs to temporarily
store the collected CSI for 8 to 10 s, occupying approximately 30 KB. During the training
phase of the P-A networks, the client uploads the CSI individually and clears the uploaded
data, maintaining a memory cost of approximately 30 KB. The server needs to store a few
temporary fingerprints for identification but stores a large quantity of training data during
the training phase. The storage cost of a phase error fingerprint image is approximately
32 KB, and every ten amplitude matrices occupy approximately 15 KB. Through extensive
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experiments, we have determined that the P-A networks require at least 300 phase error
images and 1000 sets of amplitude matrices to learn a device’s features, occupying approxi-
mately 9.5 MB and 1.5 MB of storage, respectively. We assume that a client has ten wireless
devices that need to be authenticated, resulting in a total cached data size of approximately
200 MB. In practical applications, clients rarely need to authenticate more than ten wireless
devices, and typically, only a limited number of datasets need to be collected. Furthermore,
after the training of the P-A network is completed, the space occupied by the cached data
will be freed. The identification stage requires only 20 phase error images and 100 sets of
amplitude matrices, occupying approximately 790 KB of cache, which imposes minimal
resource constraints on the server.

Regarding CPU occupancy, the client device is a Lenovo T430 laptop from 2012, with
an i5-3210M processor and 2 GB of RAM, simulating the client responsible for collecting and
updating CSI to the server. The server is a PC model OptiPlex 5060-China HDD Protection,
with an Intel(R) Core(TM) i5-8500T processor and 8 GB of RAM. During CSI collection,
the client device’s CPU utilization is approximately 15%. We collected CSI data from
22 devices, with a total size of 240 MB, and the data were fed into the P-A scheme. During
the training process, the server’s CPU utilization ranges from 28% to 30%, with a training
time of 30 min. Identifying a device takes approximately 0.5 s. The experimental results
show that the scheme does not require enormous computational power, thus reducing
the server’s burden. The server performs most of the work, leaving the lighter task of
collecting and uploading CSI to the client. Thus, the proposed scheme can be deployed on
resource-constrained entities.

6.6. Comparison with Related Works

Since we obtained the source code from [9,11], we conducted a lot of experiments
comparing the P-A scheme with these two approaches. Specifically, a Lenovo T430 laptop
was used to simulate the client. When the client is connected to the tested Wi-Fi devices, we
collect their CSI and use phase error, amplitude error, and the P-A scheme for identification
in a stable environment. Next, we re-experiment by opening and closing doors and
windows while the experimenter moves around. A large number of experimental results
were statistically analyzed, as shown in Figure 15. Compared to phase error and amplitude
error, the P-A scheme has stronger anti-interference capabilities and integrates advanced
convolutional networks. The P-A scheme can achieve ideal identification performance
in dynamic environments, while the performance of the other two methods decreases
significantly. Three mobile devices were then included in the experiment: Honor P30 Pro,
iPhone NNGX2CH, and iPad MYLD2CH. The Lenovo T430 laptop simulates a hotspot,
allowing mobile devices to connect to it and collect CSI. The P-A scheme was used to detect
the identity of three mobile devices, and the experimental results show that it can also
identify mobile devices with an accuracy of 90%, preventing freeloading attacks.

In addition to [9,11], we also analyzed and compared the performance of the P-A
scheme with the recent four works; the result is shown in Table 4. Pu et al. utilized an
improved Client Server-based sparse recovery method to achieve rogue AP localization
and anomaly detection. However, their validation was conducted only under a single noise
condition and failed to achieve fine-grained AP identification, merely providing a rough
estimation of device location. Compared to our approach, we conducted validations under
noisy environments, human movement, and device mobility, with the accuracy dropping by
about 4% at most (as shown in Figure 13). Dara et al.’s approach requires pre-establishing a
database for the intrusion detection system, which not only introduces additional database
maintenance overhead but also demands higher computational power from the deployed
devices to support the system. In contrast, our approach eliminates the need for a database;
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P-A fingerprints are extracted and identified using a lightweight network. Lin et al.’s
method experienced a significant 10% accuracy drop in dynamic environments with human
movement and lacked systematic evaluation under noisy conditions. In comparison, our
approach, as shown in Figure 13, demonstrates comprehensive performance under various
noisy environments, with minor accuracy drops easily mitigated by extending the CSI
collection time (as shown in Figure 14). Liu et al.’s method relies on device location
information to detect RAPs, which becomes challenging when malicious and benign
APs are in close proximity. In contrast, as shown in Figure 12, our approach maintains
an approximately 95% detection accuracy for P-A fingerprints across different locations,
without noticeable fluctuations, highlighting the robustness of our scheme.

Figure 15. Comparison of Schemes [9,11].

Table 4. Comparison between P-A scheme and existing scheme.

Related Works Framework Input Data Lightweight Fine-Grained Robust Accuracy

Pu et al. [28] OWAP clustering RSS value ✓ 82%
Dara et al. [29] Isolation forest Traffic ✓ 87%
Lin et al. [30] Two-step AP CSI and FID ✓ ✓ 96.55%
Liu et al. [31] RAIM RSSI 67–97%
P-A scheme P-A network P-A value ✓ ✓ ✓ 95%

7. Limitations and Future Work
The proposed P-A scheme, while demonstrating commendable performance in terms

of accuracy and efficiency, does present several limitations that could hinder its applica-
bility in certain environments. Firstly, the accuracy of the scheme is dependent on the
duration of the CSI collection. While extending the collection time improves the accuracy,
it also introduces a trade-off with system efficiency. In noisy environmental conditions,
such as those with significant interference or dynamic movements, the A fingerprint is
notably sensitive to environmental changes. This vulnerability is less pronounced in stable
environments but still affects overall performance in real-world settings. Consequently, to
maintain both accuracy and efficiency, the collection time needs to be carefully adjusted
based on the specific environmental context. Additionally, while the P-A scheme performs
adequately in stable conditions, its robustness in highly variable or noisy environments
remains a challenge. Therefore, the scheme’s environmental sensitivity calls for further
refinement to ensure consistent performance in a broader range of real-world scenarios.

To address these challenges, our future work will focus on incorporating additional
signal features such as Received Signal Strength Indicator (RSSI) and Time of Flight (ToF)
to further enhance the robustness and accuracy of our approach. Additionally, to reduce
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the reliance on CSI, we aim to explore multi-sensor fusion techniques that combine data
from multiple sources. Then, we plan to investigate advanced CSI processing techniques
to improve the stability and quality of the data, enabling our system to perform effec-
tively across a broader range of environments. In our future work, we will explore the
possibility of designing new hardware configurations and signal processing methodolo-
gies that can address these limitations and further extend the capabilities of our device
identification framework.

8. Conclusions
In this paper, we have introduced a novel CSI-based RAP detection scheme, called

the P-A scheme, designed specifically for the challenging conditions of industrial Wi-Fi
networks. Our approach leverages two innovative hardware fingerprints—P fingerprints
derived from phase errors and A fingerprints from amplitude characteristics—combined
into a joint P-A fingerprint. This unique combination addresses the critical limitations of
existing methods by enhancing stability, accuracy, and computational efficiency in dynamic
and resource-constrained industrial environments.

The P-A scheme introduces a lightweight convolutional neural network, the P-A
network, which ensures precise and efficient device identification and RAP attack detection,
even under varying real-world conditions. Extensive experimental results demonstrate that
our scheme achieves remarkable identification accuracy of up to 95% with a detection time
of just 0.5 s. In addition, the process from data collection to fingerprint recognition only
takes about 170 KB of memory. In the future, we will focus on studying more promising
multi-sensor fusion technologies to extend the P-A scheme. In summary, our work provides
a scalable and adaptable framework for securing industrial IoT systems against evolving
cyber threats.
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