CPS-RAUnet++: A Jet Axis Detection Method Based on Cross-Pseudo Supervision and Extended Unet++ Model
Abstract
:1. Introduction
- We propose a novel strategy to transform wind field vector data into images, utilizing RGB channels to represent wind speed and the two directional components of unit wind velocity, respectively. This method enables the model to capture wind field features with greater accuracy and overcomes the limitations of traditional numerical meteorological models that rely on single-channel or simplified numerical inputs.
- We integrated the improved attention gate into the dense skip connections of U-Net++, enabling dynamic feature selection within these connections. By emphasizing key regional features and suppressing irrelevant background noise, the attention gate enhances the model’s ability to focus on critical areas. For jet stream axis detection, characterized by multi-scale and dynamic features, this mechanism significantly improves the model’s capacity to capture fine-grained local details of the jet stream axis alongside broader wind field patterns. Furthermore, we optimized the ResNet18 backbone by incorporating DropConnect within its Basic Blocks. This addition enhances the modulation of information flow between convolutional layers, resulting in more adaptive and dynamic feature fusion, ultimately boosting the model’s overall performance and generalization capabilities.
- We combined the cross pseudo supervision semi-supervised learning method with an extended U-Net++ model, integrating pseudo-label generation and filtering mechanisms to significantly enhance the model’s ability to learn from unlabeled data and reduce its reliance on high-quality labeled samples.
- To correct errors in the sequence of jet stream central axis points, we developed an eight-neighbor connection algorithm. This algorithm effectively addresses issues such as axis distortion caused by scattered connections.
2. Related Work
3. Methodology
3.1. Dataset and Preprocessing
Data Augmentation
3.2. Structure of the Semi-Supervised Method
3.3. Loss Function
3.4. Residual Block with DropConnect
3.5. Separable Convolutional Attention Gate
3.6. RAUNet++
3.7. Deep Supervision and Pruning
3.8. Eight-Neighbor Connection Algorithm Based on Jet Stream Center Axis Points
Algorithm 1 Eight-Neighbor Connection Algorithm for Jet Stream Center Axis Points. |
|
4. Experiments
4.1. Experimental Setup
4.2. Evaluation Metrics
4.3. Training Process
4.4. Comparison with Other Semi-Supervisory Methods
4.5. Ablation Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kidston, J.; Scaife, A.A.; Hardiman, S.C.; Mitchell, D.M.; Butchart, N.; Baldwin, M.P.; Gray, L.J. Stratospheric influence on tropospheric jet streams, storm tracks, and surface weather. Nat. Geosci. 2015, 8, 433–440. [Google Scholar] [CrossRef]
- Stendel, M.; Francis, J.; White, R.; Williams, P.D.; Woollings, T. The jet stream and climate change. In Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 327–357. [Google Scholar]
- Ahmed, F.; Adnan, S.; Latif, M. Impact of jet stream and associated mechanisms on winter precipitation in Pakistan. Meteorol. Atmos. Phys. 2020, 132, 225–238. [Google Scholar] [CrossRef]
- Barnes, E.A.; Screen, J.A. The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 277–286. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Wang, P.; Wang, C.; Wang, D. Study on Identification of Low-Level Jet and Automatic Drawing Method of Jet Axis. Meteorology 2018, 44, 952–960. [Google Scholar]
- Colominas, M.A.; Meignen, S.; Pham, D.H. Fully adaptive ridge detection based on STFT phase information. IEEE Signal Process. Lett. 2020, 27, 620–624. [Google Scholar] [CrossRef]
- Molnos, S.; Mamdouh, T.; Petri, S.; Nocke, T.; Weinkauf, T.; Coumou, D. A network-based detection scheme for the jet stream core. Earth Syst. Dyn. 2017, 8, 75–89. [Google Scholar] [CrossRef]
- Yang, E.G.; Kim, H.M.; Kim, D.H. Development of East Asia Regional Reanalysis based on advanced hybrid gain data assimilation method and evaluation with E3DVAR, ERA-5, and ERA-Interim reanalysis. Earth Syst. Sci. Data 2022, 14, 2109–2127. [Google Scholar] [CrossRef]
- Eusebi, R.; Vecchi, G.A.; Lai, C.Y.; Tong, M. Realistic Tropical Cyclone Wind and Pressure Fields Can Be Reconstructed from Sparse Data Using Deep Learning. Commun. Earth Environ. 2024, 5, 8. [Google Scholar] [CrossRef]
- Ekmekci, I.; Oner, H.; Sen, Y. Prediction of circular jet streams with artificial neural networks. In Proceedings of the 2012 International Symposium on Innovations in Intelligent Systems and Applications, Trabzon, Turkey, 2–4 July 2012; pp. 1–5. [Google Scholar]
- Phermphoonphiphat, E.; Tomita, T.; Numao, M.; Fukui, K. A study of upper tropospheric circulations over the northern hemisphere prediction using multivariate features by ConvLSTM. In Proceedings of the 23rd Asia Pacific Symposium on Intelligent and Evolutionary Systems, Hiroshima, Japan, 18–20 November 2019; Springer: Cham, Switzerland, 2020; pp. 130–141. [Google Scholar]
- Hakim, G.J.; Masanam, S. Dynamical tests of a deep-learning weather prediction model. In Artificial Intelligence for the Earth Systems; American Meteorological Society: Boston, MA, USA, 2024. [Google Scholar]
- Van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef]
- Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.; Raffel, C.A.; Cubuk, E.D.; Kurakin, A.; Li, C.L. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. Adv. Neural Inf. Process. Syst. 2020, 33, 596–608. [Google Scholar]
- Dansana, J.; Kabat, M.R.; Pattnaik, P.K. Improved 3D Rotation-based Geometric Data Perturbation Based on Medical Data Preservation in Big Data. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 5. [Google Scholar] [CrossRef]
- Li, K.; Chen, X.; Wu, K.; Liu, H.; Dai, F.; Yang, T.; Yu, J.; Wang, K. Analysis of the Relationship between Upper-Level Aircraft Turbulence and the East Asian Westerly Jet Stream. Atmosphere 2024, 15, 1138. [Google Scholar] [CrossRef]
- Spensberger, C.; Spengler, T.; Li, C. Upper-tropospheric jet axis detection and application to the boreal winter 2013/14. Mon. Weather Rev. 2017, 145, 2363–2374. [Google Scholar] [CrossRef]
- Kern, M.; Hewson, T.; Sadlo, F.; Westermann, R.; Rautenhaus, M. Robust detection and visualization of jet-stream core lines in atmospheric flow. IEEE Trans. Vis. Comput. Graph. 2017, 24, 893–902. [Google Scholar] [CrossRef]
- Zhou, Z.; Cao, L.; Liao, J.; Gu, J.; Zhang, T.; Pan, C. Overview of Hydrometeorological Information: Observation, Fusion, and Reanalysis. Meteorology 2022, 48, 272–283. [Google Scholar]
- Gan, J.; Qi, H.; Hu, W.; Shu, H.; Luo, F.; He, T.; Yin, Q.; Lai, R. A method for calculating jet streamlines in atmospheric wind field. J. Sichuan Univ. (Nat. Sci. Ed.) 2020, 57, 1084–1089. [Google Scholar]
- Lee, D.H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on Challenges in Representation Learning, ICML; The Science and Information Organization: New York, NY, USA, 2013; Volume 3, p. 896. [Google Scholar]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In International Conference on Machine Learning; PMLR: McKees Rocks, PA, USA, 2020; pp. 1597–1607. [Google Scholar]
- Miyato, T.; Maeda, S.; Koyama, M.; Ishii, S. Virtual adversarial training: A regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 1979–1993. [Google Scholar] [CrossRef]
- Versaci, M.; Angiulli, G.; La Foresta, F.; Laganà, F.; Palumbo, A. Intuitionistic fuzzy divergence for evaluating the mechanical stress state of steel plates subject to bi-axial loads. Integr. Comput. Aided Eng. 2024, 31, 363–379. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, Y.; Zeng, G.; Wang, J. Semi-supervised semantic segmentation with cross pseudo supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2613–2622. [Google Scholar]
- Tanha, J.; Van Someren, M.; Afsarmanesh, H. Semi-supervised self-training for decision tree classifiers. Int. J. Mach. Learn. Cybern. 2017, 8, 355–370. [Google Scholar] [CrossRef]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.S.; Asari, V.K. The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches. arXiv 2018, arXiv:1803.01164. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders for medical image segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.W.; Wu, J. Unet 3+: A full-scale connected unet for medical image segmentation. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1055–1059. [Google Scholar]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. In European Conference on Computer Vision; Springer Nature Switzerland: Cham, Switzerland, 2022; pp. 205–218. [Google Scholar]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018, Proceedings 4; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 3–11. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. In Advances in Neural Information Processing Systems; NeurIPS: Denver, CO, USA, 2018; Volume 31. [Google Scholar]
- Wang, L.; Wang, C.; Sun, Z.; Chen, S. An improved dice loss for pneumothorax segmentation by mining the information of negative areas. IEEE Access 2020, 8, 167939–167949. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wan, L.; Zeiler, M.; Zhang, S.; Sun, J. Regularization of neural networks using dropconnect. In Proceedings of the International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 1058–1066. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Wang, L.; Lee, C.Y.; Tu, Z.; Lazebnik, S. Training deeper convolutional networks with deep supervision. arXiv 2015, arXiv:1505.02496. [Google Scholar]
- Tarvainen, A.; Valpola, H. Mean Teachers Are Better Role Models: Weight-Averaged Consistency Targets Improve Semi-Supervised Deep Learning Results. In Advances in Neural Information Processing Systems; NeurIPS: Denver, CO, USA, 2017; Volume 30. [Google Scholar]
- Yu, L.; Wang, S.; Li, X.; Fu, C.W.; Heng, P.A. Uncertainty-Aware Self-Ensembling Model for Semi-Supervised 3D Left Atrium Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2019: 22nd International Conference, Shenzhen, China, 13–17 October 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 605–613. [Google Scholar]
- Qiao, S.; Shen, W.; Zhang, Z.; Wang, B.; Yuille, A. Deep Co-Training for Semi-Supervised Image Recognition. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 135–152. [Google Scholar]
- Xiao, Y.; Chen, C.; Fu, X.; Wang, L.; Yu, J.; Zou, Y. A Novel Multi-Task Semi-Supervised Medical Image Segmentation Method Based on Multi-Branch Cross Pseudo Supervision. Appl. Intell. 2023, 53, 30343–30358. [Google Scholar] [CrossRef]
Type | Transformation | Labeled Data (Weak) | Unlabeled Data (Strong) |
---|---|---|---|
Horizontal Flip | Flips images horizontally | ✓ | ✓ |
Color Jitter | Adjusts brightness, contrast, and saturation | ✗ | ✓ |
Gaussian Blur | Applies a 3 × 3 kernel blur | ✗ | ✓ |
Ratios of Labeled Data | Methods | Dice (%) | DR (%) | IoU (%) | Pre (%) |
---|---|---|---|---|---|
5% | MT | 65.31 | 58.23 | 48.55 | 54.86 |
DCT | 61.44 | 60.37 | 48.13 | 52.32 | |
UAMT | 66.92 | 57.38 | 53.19 | 62.14 | |
CPS | 64.87 | 59.45 | 50.94 | 58.26 | |
CPS-RAUnet++ | 65.31 | 67.15 | 57.43 | 63.59 | |
10% | MT | 64.59 | 64.04 | 50.11 | 57.51 |
DCT | 64.77 | 61.78 | 51.12 | 56.71 | |
UAMT | 68.91 | 62.78 | 54.69 | 62.12 | |
CPS | 68.35 | 61.65 | 53.84 | 61.38 | |
CPS-RAUnet++ | 72.86 | 69.86 | 59.78 | 66.95 | |
20% | MT | 67.91 | 64.86 | 52.35 | 58.93 |
DCT | 65.49 | 64.12 | 51.88 | 57.87 | |
UAMT | 70.56 | 63.52 | 56.23 | 63.16 | |
CPS | 70.83 | 67.08 | 55.61 | 63.01 | |
CPS-RAUnet++ | 76.83 | 71.78 | 60.17 | 74.51 | |
30% | MT | 67.93 | 66.60 | 53.91 | 60.78 |
DCT | 70.59 | 64.67 | 55.37 | 66.13 | |
UAMT | 71.64 | 64.21 | 56.85 | 65.81 | |
CPS | 74.03 | 68.75 | 59.45 | 66.89 | |
CPS-RAUnet++ | 79.19 | 78.67 | 69.01 | 80.28 |
Methods | Dice (%) | Dice Deviation with Ours (%) | DR (%) | DR Deviation with Ours (%) | IoU (%) | IoU Deviation with Ours (%) | Pre (%) | Pre Deviation with Ours (%) |
---|---|---|---|---|---|---|---|---|
U-Net | 65.25 | 13.94 | 64.11 | 14.56 | 53.81 | 15.20 | 63.26 | 17.02 |
Unet++ | 72.03 | 7.16 | 70.59 | 8.08 | 60.30 | 8.71 | 70.37 | 9.91 |
Attention-Unet++ | 71.68 | 7.51 | 69.35 | 9.32 | 62.11 | 6.90 | 73.34 | 6.94 |
RAUnet++ | 74.23 | 4.96 | 74.11 | 4.56 | 64.98 | 4.03 | 75.51 | 4.77 |
CPS-RAUnet++ | 79.19 | / | 78.67 | / | 69.01 | / | 80.28 | / |
Loss | Dice (%) | DR (%) | IoU (%) | Pre (%) |
---|---|---|---|---|
0.5 × + 0.5 × | 77.06 | 77.54 | 69.54 | 78.26 |
0.5 × + | 79.19 | 78.67 | 69.01 | 80.28 |
+ 0.5 × | 79.11 | 75.25 | 68.22 | 79.19 |
1.5 × + 0.5 × | 78.53 | 76.22 | 67.89 | 79.22 |
0.5 × + 1.5 × | 78.55 | 77.17 | 67.85 | 78.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, J.; Cai, K.; Fan, C.; Deng, X.; Hu, W.; Li, Z.; Wei, P.; Liao, T.; Zhang, F. CPS-RAUnet++: A Jet Axis Detection Method Based on Cross-Pseudo Supervision and Extended Unet++ Model. Electronics 2025, 14, 441. https://doi.org/10.3390/electronics14030441
Gan J, Cai K, Fan C, Deng X, Hu W, Li Z, Wei P, Liao T, Zhang F. CPS-RAUnet++: A Jet Axis Detection Method Based on Cross-Pseudo Supervision and Extended Unet++ Model. Electronics. 2025; 14(3):441. https://doi.org/10.3390/electronics14030441
Chicago/Turabian StyleGan, Jianhong, Kun Cai, Changyuan Fan, Xun Deng, Wendong Hu, Zhibin Li, Peiyang Wei, Tao Liao, and Fan Zhang. 2025. "CPS-RAUnet++: A Jet Axis Detection Method Based on Cross-Pseudo Supervision and Extended Unet++ Model" Electronics 14, no. 3: 441. https://doi.org/10.3390/electronics14030441
APA StyleGan, J., Cai, K., Fan, C., Deng, X., Hu, W., Li, Z., Wei, P., Liao, T., & Zhang, F. (2025). CPS-RAUnet++: A Jet Axis Detection Method Based on Cross-Pseudo Supervision and Extended Unet++ Model. Electronics, 14(3), 441. https://doi.org/10.3390/electronics14030441