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Abstract: With the rapid development of the internet, network security threats are be-
coming increasingly complex and diverse, making traditional intrusion detection systems
(IDSs) inadequate for handling the growing variety of sophisticated attacks. In particular,
traditional methods based on rule matching and manual feature extraction demonstrate
significant limitations in dealing with small samples and unknown attacks. This paper pro-
poses an intrusion detection system based on multi-level feature extraction and inductive
learning (MFEI-IDS) to address these challenges. The model innovatively integrates Fully
Convolutional Networks (FCNs) with the Transformer architecture (FCN–Transformer) for
feature extraction and utilizes an inductive learning component for efficient classification.
The FCN–Transformer Encoder extracts multi-level features from raw network traffic, cap-
turing local spatial patterns and global temporal dependencies, significantly enhancing the
representation of network traffic while reducing reliance on manual feature engineering.
The inductive learning module employs a dynamic routing mechanism to map sample
feature vectors into robust class vector representations, achieving superior generalization
when detecting unseen attack types. Compared to existing FCN–Transformer models,
MFEI-IDS incorporates inductive learning to handle data imbalance and small-sample
scenarios. Experiments on ISCX 2012 and CIC-IDS 2017 datasets show that MFEI-IDS
outperforms mainstream IDS methods in accuracy, precision, recall, and F1-score, excelling
in cross-dataset validation and demonstrating strong generalization capabilities. These
results validate the practical potential of MFEI-IDS in small-sample learning, unknown
attack detection, and dynamic network environments.

Keywords: intrusion detection; inductive networks; small-sample learning; FCN–transformer;
unknown attacks

1. Introduction
With the rapid development of information technology and the internet, the number of

globally connected devices has increased significantly, highlighting the growing importance
of cyberspace. However, this progress has also exacerbated the complexity and frequency
of cyberattacks, threatening personal information, business data, and national security.
Traditional intrusion detection systems (IDSs) have been widely deployed to safeguard
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network security, and are broadly categorized into rule-based, signature-based, misuse-
based, and anomaly-based systems [1]. While these systems perform well against known
attacks, their reliance on predefined rule sets or manually extracted features imposes critical
limitations when identifying novel or evolving threats.

In recent years, with the rapid advancement of deep learning technologies, researchers
have applied them to the field of cybersecurity, attempting to improve intrusion detection
through automated feature learning. For instance, convolutional neural networks (CNNs)
excel in recognizing spatial patterns in network flows, while Recurrent Neural Networks
(RNNs) are adept at capturing temporal dependencies. Deep learning methods perform
remarkably well in scenarios with abundant labeled data but often struggle to generalize
in environments with limited labeled data. For example, in real-world network traffic,
most data are normal, while labeled malicious traffic data are sparse and diverse, making it
challenging for traditional deep learning models to effectively capture the characteristics of
malicious traffic [2]. Furthermore, as attack patterns evolve, models trained on past data
quickly lose their effectiveness in real-world settings. For instance, traditional models have
demonstrated insufficient robustness against supply chain attacks and Advanced Persistent
Threats (APTs) emerging after 2020 [3].

Few-shot learning has emerged as a promising solution to address these challenges.
Techniques such as Matching Networks and Prototypical Networks have shown potential
in leveraging limited samples to detect unknown attacks. However, existing few-shot
learning methods exhibit limitations in high-dimensional and dynamic network traffic
scenarios. This is primarily due to their reliance on simple similarity measures (e.g., Eu-
clidean distance), which perform poorly in multi-dimensional network traffic data, such
as traffic data with temporal sequence features. For instance, these methods struggle to
capture device-specific traffic patterns when detecting attack traffic targeting specific IoT
devices [1,4]. Inductive learning offers an alternative approach by extracting class vec-
tors from known samples and inferring the categories of unseen samples. This approach
enhances classification performance through similarity-based measures and effectively
addresses few-shot scenarios. Compared to traditional deep learning methods, inductive
learning better handles data imbalance issues and enhances the detection of unknown
impactful attacks through similarity awareness [5,6]. However, integrating inductive learn-
ing with advanced feature extraction techniques to improve robustness against unknown
attacks remains an unresolved research challenge.

Moreover, the introduction of Transformer models has opened new possibilities for
cybersecurity. Recently excelling in natural language processing and computer vision,
Transformer mechanisms improve multi-head self-attention, effectively capturing long-
range dependencies and complex patterns [7]. Zhang et al. combined CNNs and Transform-
ers to learn local and global network traffic features, thereby improving model detection
accuracy [8]. While Transformer models exhibit potential in handling complex tempo-
ral patterns in network traffic—for instance, the FlowTransformer framework achieves
multi-dimensional feature extraction through modular design [7]—their performance sig-
nificantly degrades in cross-dataset generalization tasks. This is especially evident when
detecting new attack types, such as when training a model on the CIC-IDS 2017 dataset
and transferring it to the ISCX 2012 dataset [9].

To address these key issues, this paper proposes a novel intrusion detection frame-
work, MFEI-IDS, which is designed to tackle critical challenges in modern cybersecurity.
The MFEI-IDS framework combines FCN and Transformer architectures to enhance the
detection of unknown attacks by generating robust class vectors. For instance, in real-world
environments, it enables the rapid detection of previously unseen network attacks, such
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as malicious traffic exploiting zero-day vulnerabilities, using only a few labeled traffic
samples. The main contributions of this study are as follows:

1. Multi-Level Feature Extraction: A multi-level network feature learning method (FCN–
Transformer) is proposed to address network traffic feature extraction challenges.
Fully Convolutional Networks (FCNs) are used as input Encoders for Transformers.
FCNs effectively capture local spatial patterns in raw network traffic, minimizing
reliance on manual feature engineering, while the self-attention mechanism of Trans-
formers models long-range dependencies and complex temporal patterns. This hybrid
architecture provides robust multi-scale feature representation, making it well-suited
for high-dimensional and sequential network data.

2. Inductive Learning Module: An intrusion detection method based on inductive
networks is proposed to tackle data imbalance and few-shot unknown attack detection
issues. By introducing an inductive learning module equipped with a dynamic routing
mechanism, robust class vectors are generated from limited samples, enabling effective
classification of unknown attack types. Compared to traditional supervised learning
methods, this module supports zero-shot and cross-dataset classification, significantly
improving the applicability and generalization ability of the model in scenarios with
insufficient labeled data.

3. Modular and Explainable Design: By utilizing the explainability of class vector rep-
resentations and the modular structure of FCN–Transformer, MFEI-IDS provides
insights into its decision-making process, addressing common criticisms regarding
the lack of explainability in deep learning models.

Experiments on the ISCX 2012 and CIC-IDS 2017 datasets demonstrate that MFEI-
IDS outperforms existing state-of-the-art methods in terms of accuracy, F1-score, and
detection robustness. Notably, it exhibits stronger generalization in cross-dataset validation
and zero-shot classification capabilities, enabling the detection of unknown attack types
without retraining.

The remainder of this paper is organized as follows: Section 2 reviews related work.
Section 3 elaborates on the system details. Relevant experiments are discussed in Section 4.
Section 5 concludes the paper and outlines future research directions.

2. Related Work
In recent years, with the increasing frequency and complexity of cyberattacks, network

intrusion detection systems have become a significant research focus in cybersecurity.
Researchers have proposed various techniques to meet different intrusion detection needs,
primarily including rule-based detection methods, machine learning and deep learning
approaches, and few-shot learning techniques. This section primarily reviews the latest
research achievements of deep learning and few-shot learning methods in IDS, highlighting
the advantages, limitations, and gaps this study addresses.

2.1. Intrusion Detection System Based on Deep Learning

With the proliferation of the internet, network traffic has grown exponentially, and
traffic data have become more complex. The challenge of designing a set of features that ac-
curately represent traffic is a critical research issue for network anomaly detection methods
due to the limitations of manual feature design. Deep learning, with its powerful feature
extraction capabilities, has emerged as a promising solution to address these challenges.
By automatically learning representative features directly from raw data, deep learning
methods eliminate the reliance on manual feature engineering and provide robust solutions
for anomaly detection.
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Javaid et al. [5] proposed a self-learning intrusion detection technique that uses a
sparse autoencoder to learn feature representations from large amounts of unlabeled data.
Wang et al. [2] introduced a CNN-based malicious traffic classification method that trans-
forms network traffic into grayscale images and uses CNNs to learn the intrinsic features
of these images. Wei et al. [10] proposed a hierarchical spatiotemporal feature learning
(HAST-NAD) method for network anomaly detection, utilizing CNNs to learn local spatial
features and LSTMs to learn global temporal features from raw traffic. This approach effec-
tively considers the spatio-temporal properties of network traffic, demonstrating superior
classification accuracy and robustness, especially in high-dimensional data and dynamic
scenarios. Deng et al. [11] proposed a method combining random forests and LSTMs for
traffic anomaly detection. The random forest algorithm calculates feature importance scores
to eliminate redundant features, while LSTMs identify abnormal traffic. The accuracy of
detecting abnormal traffic in the CIC-IDS-2017 dataset reached 99%, although its general-
ization ability was limited by data diversity and scale. Alhaj et al. [12] introduced a deep
learning-based traffic classification method with attention mechanisms, demonstrating that
combining CNNs enhances feature extraction. However, this approach focuses primarily
on performance optimization for labeled datasets, with limited exploration of few-shot
learning and zero-shot generalization capabilities.

Many researchers introduced Transformers into network intrusion detection as Trans-
former models gained prominence in large language models and proved effective in
capturing complex patterns and relationships in sequential data, including images, graphs,
and speech [3,13]. For example, Vaswani et al. [7] first proposed the Transformer model,
which excels in capturing global features and long-range dependencies. Luo et al. [13]
and Chen et al. [14] explored the applications of Transformers in network traffic analysis,
demonstrating their effectiveness in anomaly detection. However, these studies lack in-
vestigation into generalization capabilities in few-shot environments and do not leverage
the local feature extraction capabilities of CNNs. Zhang et al. [8] introduced a dual-layer
network structure combining CNNs and Transformers to learn local and global features,
significantly improving detection accuracy and reducing training time. Manocchio et al. [4]
proposed the FlowTransformer framework for Transformer-based intrusion detection sys-
tems. This framework allows flexible replacement of Transformer components for input
encoding, classification, and feature learning, providing a modular approach for intrusion
detection. However, most of these methods rely on supervised learning frameworks, failing
to effectively address few-shot scenarios and cross-dataset generalization requirements.
Additionally, the computational complexity of Transformer models for high-dimensional
data remains unresolved.

2.2. Intrusion Detection System Based on Small-Sample Learning

Few-shot learning (FSL) is a technique that enables learning under conditions of
limited samples. In recent years, it has garnered attention for its ability to generalize models
with minimal data. FSL techniques utilize meta-learning, transfer learning, and other
approaches to achieve generalization capabilities under limited data conditions. Typical
FSL methods include Matching Networks and Prototypical Networks. In cybersecurity,
few-shot learning has been applied to detect unknown attacks. Shu et al. [15] proposed
an intrusion detection system based on Prototypical Networks, enabling the detection
of unknown attacks by learning from a small number of known attacks. Zhao et al. [16]
combined transfer learning and few-shot learning to achieve cross-domain attack detection.
However, existing FSL methods face challenges in handling high-dimensional, temporally
complex network traffic data. Vinyals et al. [17] introduced Matching Networks, optimizing
the matching relationship between support and query samples through metric learning,
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thereby improving classification accuracy. However, these methods primarily rely on
simple similarity measures (e.g., Euclidean distance or cosine similarity), limiting their
effectiveness in handling high-dimensional complex features.

Inductive learning extracts class vectors from known samples, effectively detecting
unknown attacks. Metric learning enhances the distinction between different category
samples by learning similarity measures. Xu et al. [18] proposed an intrusion detection
method combining inductive and metric learning, achieving efficient detection in com-
plex network environments by learning intra-class features and inter-class differences. Li
et al. [19] introduced a multi-head self-attention mechanism, improving detection accuracy
and robustness. However, existing studies have not fully explored the potential synergy be-
tween advanced feature extraction architectures (e.g., FCN and Transformer) and inductive
learning, limiting their performance in addressing high-dimensional data and dynamic
network environments.

2.3. Summary and Gaps

Despite significant progress in intrusion detection through deep learning and few-
shot learning, several limitations persist, creating gaps between existing methods and the
requirements of modern network security. Current studies often separate feature extraction
and classification, such as feature extraction methods based on CNNs or Transformers that
are not deeply integrated with inductive learning. This disconnect limits the performance
of models in handling few-shot scenarios and cross-dataset generalization. While deep
learning methods excel in automatic feature extraction and classification, their reliance
on large, labeled datasets hampers their practicality in real-world scenarios with limited
labeled data, especially in dynamic and evolving network environments. Additionally,
although Transformer models excel in capturing long-range dependencies and complex
patterns, their application in intrusion detection is still in its infancy and predominantly
limited to supervised learning paradigms.

Few-shot learning offers an alternative for handling limited data scenarios but faces
challenges in dealing with high-dimensional and sequential network traffic. Existing tech-
niques (e.g., Prototypical Networks and Matching Networks) rely on simple similarity
measures, which are insufficient for modeling complex relationships in intricate network
environments. These methods often fail to detect unknown attack types effectively, particu-
larly when facing heterogeneous traffic data. Furthermore, the computational complexity of
Transformer models constrains their applicability in resource-limited environments. While
inductive learning demonstrates the potential for enhancing generalization capabilities,
its integration with advanced feature extraction architectures like FCN and Transform-
ers remains underexplored, limiting its performance in high-dimensional and dynamic
network environments.

To address these challenges, this study proposes the MFEI-IDS framework, which
combines FCN–Transformer architecture with an inductive learning module equipped
with dynamic routing. Unlike existing methods, MFEI-IDS leverages FCNs to extract
local spatial features and Transformers to model global temporal dependencies, providing
multi-scale feature representation suitable for high-dimensional and sequential traffic data.
The inductive module maps sample features to compact, robust class vectors, effectively
generalizing unknown attack types. This approach enhances adaptability through dynamic
routing mechanisms, addressing the limitations of existing few-shot learning techniques.
MFEI-IDS aims to adapt to few-shot scenarios, heterogeneous data, and dynamic attack
patterns without requiring extensive retraining. Its modular design ensures scalability,
making it suitable for practical deployment.
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3. Method
MFEI-IDS integrates Fully Convolutional Networks (FCN), Transformer architecture,

and an inductive learning module to address the challenges of intrusion detection in
dynamic and few-shot scenarios. Its design prioritizes efficient feature extraction, ro-
bust classification, and adaptability across datasets. This section provides a detailed
methodology overview, including architecture, preprocessing, feature extraction, and
classification workflows.

3.1. Model Architecture Design

The proposed intrusion detection model incorporates few-shot learning principles us-
ing an FCN–Transformer Encoder and inductive network to enhance detection capabilities.
As illustrated in Figure 1, the whole architecture consists of three main components: the En-
coder, inductive module, and relational module. C represents the number of classes in the
dataset, K represents the number of supported samples for each classes, and d represents
the dimension of the feature embedding. These components work collaboratively to process
raw network traffic, generate robust class vectors, and effectively classify query samples.
This section elaborates on the methodology, detailing how input data are processed and
utilized throughout the workflow.
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Encoder: The Encoder extracts features from raw network traffic data. This study
employs a one-dimensional Fully Convolutional Network (1D FCN) combined with Trans-
former architecture, referred to as the FCN–Transformer model, to extract local spatial
and global temporal features from traffic. The Encoder transforms raw network traffic
into high-dimensional feature vectors, forming the basis for subsequent classification
and detection.

Inductive Module: The inductive module learns from a small, labeled dataset (support
set) to generate class vectors. These class vectors represent the feature space of specific
attack types or normal traffic. The model infers the categories of unknown samples through
these class vectors. This module utilizes the key principles of few-shot learning by learning
features from a few labeled samples to infer new, unseen attack types.
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Relational Module: This module, consisting of a simple neural tensor layer, calculates
the relationship scores between query samples and class vectors. These scores reflect the
similarity between query samples and different categories, determining their classifica-
tion. Using a similarity-based classification method, this module enables precise traffic
classification and detection without relying on many samples.

The model workflow consists of two primary stages:
Training Phase: The Encoder processes labeled session data to extract high-dimensional

feature representations, which the inductive module then uses to generate compact
class vectors.

Classification Phase: The Encoder processes unlabeled query samples, and the rela-
tional module classifies them based on their similarity to class vectors.

3.2. FCN–Transformer Encoder

The primary function of the Encoder is to extract multi-level spatial and temporal
features from raw network traffic. This study employs a hybrid architecture combining
FCN and Transformer. The Encoder architecture, as shown in Figure 2, consists of four main
components: the data preprocessing module, the local spatial feature extraction module,
the global temporal feature extraction module, and the output classification module.
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The data preprocessing module takes raw traffic data in PCAP format as input. Since
the raw traffic contains redundant information and network security traffic datasets are
typically captured in laboratory environments, this redundant information differs from
that in real-world network environments. Therefore, it is necessary to clean this part of
the data.

After inputting the data into the model, the model begins processing in the data encod-
ing module, including input and positional encoding. The data encoding step transforms
the input sequence into a representation that the model can process while preserving the
sequence’s information. Positional encoding employs a learnable approach to retain the
sequence’s positional information.

Next are the local spatial feature extraction module, the global temporal feature
extraction module, and the classification module. These two modules form the core of
the network. This study does not simply use FCN to extract the local spatial features
of packets; instead, it uses a transformer to extract the temporal features of bidirectional
traffic flows; as such, an approach processes data sequentially. The FCN network lacks
parallel processing capabilities, which limits the parallelism of the Transformer. Instead, this
study integrates the FCN network into the Transformer model, placing the FCN network
after the input encoding stage. This approach mitigates the shortcomings of both FCN
and Transformer and effectively leverages their respective strengths. It enables efficient
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learning of spatiotemporal features from network traffic while improving the model’s
speed and accuracy.

After training, the FCN–Transformer network can map raw traffic to a multi-level
spatiotemporal feature vector space. Finally, the learned feature vectors are passed through
a fully connected layer and input into the classifier. The classifier uses the softmax activation
function to classify the traffic to produce the final intrusion detection results.

The data preprocessing, local spatial feature extraction, and global temporal feature
extraction are described below.

3.2.1. Data Preprocessing

The raw traffic is stored in PCAP file format, which is huge in size, so when using it
for deep learning model training, the continuous traffic needs to be sliced into multiple
discrete units according to a certain granularity.

Currently, there are six commonly used network traffic-slicing methods in network
intrusion detection [20,21]: packet, connection, flow, session, service, and host. Researchers
need to choose the appropriate data-slicing method according to the research needs, and
more data at packet, stream, and session levels are currently used in related research. A
packet is the basic data unit transmitted between computer network nodes, including the
packet header, load, and activity information. A flow is defined as all packets with the same
quintet (source IP, source port, destination IP, destination port, transport layer protocol). A
session (a bidirectional flow) is defined as all packets where the source and destination IPs
and ports are interchangeable. Packets provide only spatial characteristics of the traffic and
cannot identify attacks that rely on sequential information to be detected. In high-speed
network environments, the amount of packet-level data is enormous, and computational
complexity is high. Suppose the analysis is based only on individual packets. In that case,
it may result in different parts of the same session being dispersed into multiple batches,
leading to the loss of traffic context. Session-level slicing, on the other hand, can aggregate
related data and reduce the risk of misclassification. Stream and session data not only
contain spatial characteristics of the traffic but also reflect the temporal information of the
traffic. In contrast, the session data eliminate the possible confusion problem of the stream
data, so this paper uses the session data as the input sequence of the model.

In raw data processing, this paper draws on the discretization method in Parsaei
et al. [22] to internalize continuous features to improve the compatibility and robustness of
data representation. To further improve the model’s performance, we carry out the data
processing flow on the traffic data, as shown in Figure 3. Data preprocessing primarily
involves traffic segmentation and cleaning, along with an optional data truncation and
padding step.
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Traffic Segmentation: Complete traffic data are segmented and aggregated into session
data based on the five-tuple information. This process involves dividing the entire traffic
data into packets and then aggregating the packets into flow data. Subsequent operations
are performed in the form of session data. It is important to note that PCAP format data
are inherently binary.

Traffic Cleaning: At the session level, meaningless empty flows and duplicate flows are
removed, as they essentially represent noise. Alternatively, these flows can be introduced
as noise during training. To ensure the model focuses more on attack traffic patterns
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rather than non-attacking IP addresses and to avoid overfitting caused by dataset-specific
characteristics, randomly generated new data are used at the packet level to populate fields
such as source IP, source port, destination IP, destination port, and MAC address.

Data Truncation and Padding: The proposed FCN–Transformer model can accept
variable-length sequences of packets, making this step optional and primarily aimed at
reducing training time. Data interception is used to limit the maximum length of packets
and sessions, i.e., only the first m bytes of data are kept for each packet, and only the first n
packets are kept for each session. At the same time, packets smaller than m bytes can also
be padded with 0×00 and all 0×00 packets to bring the number of packets in the session up
to n. To reduce the burden of model operations, the maximum length of the input sequence
is limited to 200, and the packet length is reserved to 512 bytes.

3.2.2. Local Spatial Feature Extraction

Before learning the local features of the traffic data, the input data are first encoded
and processed; this includes Position Embedding and Input Coding, as shown in Figure 4.
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The multi-head self-attention mechanism in Transformer cannot capture the sequen-
tial relationships between positions within a text sequence. Compared to methods that
process sequence inputs serially, this approach lacks order information for traffic sequences.
Positional representation was introduced to address this issue. The original Transformer
computes position encodings using a fixed formula, which is unsuitable for representing
positions in traffic sessions. This is because packets are highly diverse and their positions
are not fixed, as they are mainly related to network protocols and the connection, request,
and response methods of application services.

Therefore, the FCN–Transformer model does not use a fixed transformation formula to
calculate relative positional encodings. Instead, it adopts the positional encoding method
of the BERT model [23], using a standard embedding approach to learn the position of each
packet, resulting in position vectors.

The local features of network traffic represent the information carried by individual
packets. Hence, local feature extraction networks can replace packet encoding. To extract
local spatial features, an optimized one-dimensional fully convolutional neural network
(1D-FCN) is used.

Different types of convolutional neural networks (CNNs) are suitable for processing
data of different dimensions [24]. One-dimensional convolution kernels are well suited
for handling sequential data and are widely used in the field of text processing. Similarly,
traffic packets can be viewed as a special type of text. To handle variable-length packet
data, this model employs a one-dimensional FCN network.

In CNNs, convolutional layers use multiple convolution kernels to extract features
from the input. Each convolution kernel slides over the input using a small window, and
the processing of the convolutional layers remains consistent regardless of the input size.
Standard CNN networks typically require input sizes to be fixed because they include
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Dense or fully connected (Dense) layers. These layers require a fixed input size because,
after processing through convolutional and pooling layers, the flattened output must match
the input size of the Dense layer. As a result, the input size ultimately determines the
feature dimensions passed to the Dense layer. FCN, on the other hand, is a convolutional
network without Dense layers, allowing it to handle inputs of varying sizes.

The 1D-FCN used in this study is an improved version of the standard FCN. Based
on specific requirements, one-dimensional convolutional blocks (Conv1d Blocks) can be
stacked, as illustrated in Figure 5.
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A convolution block consists of a convolutional layer and a max pooling layer. The
computation of a one-dimensional convolution kernel is defined as shown in Equation (1).

yl
j = ∑i∈X yl−1

j × wl
ij + bl

i (1)

From here, f(x) represents the activation function, X denotes the set of input feature
vectors, and yl−1

j is the i feature vector of the output from the l−1 convolutional layer and is

also the input to the l convolutional neural network. wl
ij is the weight of the convolutional

kernel in the l layer, bl
i is the bias of the l layer, and yl

j represents the output of the l
convolutional neural network after convolution with the j kernel.

After position encoding and the 1D FCN local feature extraction network, the embed-
ding vector YFCN of the data packet and the position encoding P of the session are obtained,
and then the embedding vector and position encoding are fused according to Equation (2).

YL = YFCN ⊕ P (2)

3.2.3. Global Temporal Feature Extraction

The global features of network traffic represent the sequential information carried by
bidirectional data flows. This paper constructs the global feature extraction module by
stacking multiple Transformer Encoders, as shown in Figure 6.
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The Transformer Encoder adopts the multi-head self-attention mechanism to address
the issue of long-term dependencies. By stacking multiple Encoders in series, it learns the
dependencies within long sequences, enabling Transformers to have excellent capabilities
in handling ultra-long sequences. This allows them to effectively detect complex network
traffic patterns indicative of attacks. The vector YL, obtained from the fusion of the packet
vector and session position encoding, is processed through the calculations in Equation (3),
resulting in the self-attention output MultiHead(Q, K, V).

Attention(Q, K, V)= so f tmax (
QKT
√

dk
)V (3)

The model then introduces a residual connection, adding the input before the multi-
head self-attention mechanism to the output after it, which helps prevent the vanishing
gradient problem in deep networks. Next, LayerNorm [25] is used as the normalization
method, which can also speed up training convergence. The output representation obtained
after residual joining and normalization is shown in Equation (4).

YNorm= LayerNorm(YL + MultiHead(Q, K, V)) (4)

The feedforward layer consists of two linear fully connected layers connected by the
activation function ReLU. The output of the feedforward layer is shown in Equation (5).

YForward= Linear(ReLU (Linear(YNorm))) (5)

Finally, the residual connection and LayerNorm described above are applied again,
yielding the output of the first Transformer Encoder, as shown in Equation (6).

YEncoder= LayerNorm(YForward + YNorm) (6)

3.3. Inductive Model

In computer networks, due to different network protocols and environments, there are
often different representations for the same category of network traffic. Simply summing
or averaging the sample features to represent a category may accumulate interfering
information that is not relevant to the classification, thus negatively affecting the final
classification performance. The induction module simulates a nonlinear mapping process
from sample vectors to category vectors to obtain an embedding vector that best represents
the category. Therefore, the induction module is the core of the induction network. In
this study, we draw on the insights of Hostiadi et al. [26] on efficient feature selection and
utilize the induction model to extract the most representative features from a small number
of samples, thus achieving the classification of unknown attack types [27,28]. The inductive
module is described in detail below.

Let the sample vectors of the support set obtained after encoding through the Encoder
be es and the query vectors obtained through encoding through the Encoder be eq. The
induction module exploits the dynamic routing concept of capsule networks to achieve a
nonlinear mapping from low-level features to high-level features by iteratively optimizing
the relational weights between the samples and the categories. In the induction model, this
dynamic routing mechanism is redesigned to generalize the sample representation eS

ij in
each category to the representation ci of the class vector, as shown in Equation (7).{

eS
ij ∈ R2u

}
i=1,...,C;j=1,...,K

→
{

Ci ∈ R2u
}C

i=1
(7)
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In this process, the sample vectors in the support set are treated as input capsules.
After a layer of dynamic routing transformation, the resulting output capsules are regarded
as the feature representations of each class, as illustrated in Figure 7.
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The specific steps are as follows:
(1) Through matrix transformation, the initial features of all samples are converted

from the sample-level semantic space to the category-level semantic space. In the original
capsule network, different category sample representations use different transformation
matrices, W. However, to support different sizes of C, the model uses the same transforma-
tion matrix Ws and bias bs for all sample vectors in the support set, resulting in the predicted
sample vector êS

ij, as shown in Equation (8). This allows the model to handle support sets
of arbitrary sizes, meaning the model can adapt to any-way, any-shot scenarios.

ês
ij = squash

(
Wses

ij + bs

)
(8)

The squash function is a nonlinear activation function used to normalize the magnitude
of a vector, restricting its length within a specific range. This helps reduce noise and
enhances the robustness of classification tasks, ensuring that features are represented
consistently. Given an input vector xxx, the computation of the squash function is defined
as shown in Equation (9).

squash(x) =
||x||2

1 + ||x||2
x

||x|| (9)

(2) Next, the irrelevant information is filtered through dynamic routing, and a
weighted sum of the transformed sample representations is computed to obtain the initial
class representation. In each iteration of dynamic routing, the connection coefficients di
between the upper and lower layers are dynamically adjusted using the softmax operation,
ensuring that they sum to 1, as shown in Equation (10).

di = so f tmax(bi) (10)

Here, bi is the logit value of the connection coefficients, initialized to 0 before the first
iteration begins. For a given predicted sample vector êS

ij, each candidate class vector Ĉj is
the weighted sum of all predicted sample vectors within that candidate class, as shown in
Equation (11).

ĉi = ∑
i

di ês
ij (11)

Then, the squash function is applied to ensure that the length of each class vector does
not exceed 1, as shown in Equation (12).

ci = squash(ĉi) (12)
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(3) Finally, the connection strength is adjusted using a routing protocol. The specific
implementation is that when the dot product between the generated candidate class vector
and a sample predicted vector is large, the connection strength between them is increased;
conversely, it is decreased when the dot product is small, as shown in Equation (13).

bij = bij + ês
ij· ci (13)

By modeling the nonlinear mapping process from sample vectors to category vectors
through this dynamic routing mechanism, it effectively filters out interfering information
and obtains category features. This method is referred to as dynamic routing induction,
as outlined in Algorithm 1. The dynamic routing mechanism optimizes the generation
process of category vectors, ensuring that they are highly representative of the features of
each category within the support set.

Algorithm 1: Dynamic Routing Induction

Require:
Support Set Sample Vectors: eS

ij

bij = 0
Ensure:

Class Vector: Ci

1: for all samples j = 1, . . ., K in class i do
2: êS

ij = squash
(

WSeS
ij + bS

)
3: for iter iterations do
4: di = sof tmax(bi)
5: Ĉi = ∑

j
dij êS

ij

6: Ci = squash
(
Ĉi
)

7: for all samples j = 1, . . ., K in class i do
8: bij = bij + êS

ijCi

9: end for
10: Return Ci

3.4. Relationship Model

After constructing the data pairs between the query sample and each category in the
support set, obtaining the class vectors ci for each category in the support set, and encoding
the query sample into the query vector eq, the next step is to use the relationship module
to assess the correlation between eq and ci. The relationship module is a neural tensor
layer [29], which models the interaction between each class vector and the query vector
pair using a three-dimensional tensor:

v(ci, eq) = f
(

cT
i M[1:H]eq

)
(14)

Here, M[1:H] ∈ R2u×2u is a slice of the tensor parameters, and f (·) is the ReLU activation
function. The next step is to calculate the relationship score (also referred to as the similarity
score) between the class vector and the query vector.

riq = sigmoid(Wrc(ci, eq) + br (15)

When evaluating the model, the relationship scores need to be regressed to the true
labels, yq. The induction network transforms the multi-classification problem into a 0–1
classification problem in the classification process. Specifically, it compares the relationship
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scores between each query and the class pairs, where the score for matching classes and
queries approaches 1, while the scores for non-matching pairs approach 0. Thus, the query
vector is classified into the class corresponding to the maximum relationship score. The
model is trained using the mean squared loss, and for each episode, given the support set S
and query set Q, the objective function is defined as shown in Equation (16).

L(S, Q) = ∑C
i=1 ∑n

q=1 (riq − 1
(
yq == i

)
)

2 (16)

After the training is completed, the model will not require fine-tuning when recog-
nizing entirely new categories, as sufficient generalization capability has already been
imparted to the model during the meta-training phase. Moreover, this capability will
continue to accumulate with each iteration of the model.

4. Experiment
4.1. Dataset

We selected two datasets containing raw traffic in PCAP format, the ISCX 2012
dataset [30] and the CIC-IDS 2017 dataset [31], to conduct the experiments.

The ISCX 2012 dataset, released in 2012, contains traffic data representing seven days
of network activity. The dataset includes normal traffic and four types of malicious traffic,
totaling 1,520,158 session samples. Most of the data consist of normal traffic, with attack
traffic accounting for less than 3%.

The CIC-IDS 2017 dataset, released in 2017, is an intrusion detection and prevention
dataset comprising five days of captured data. It contains traffic data for normal behavior
and 14 common attack types, with a total of 2,825,404 session samples, of which attack
traffic constitutes 19.6%. Some attack types, such as Heartbleed, Infiltration, and SQL
Injection, have only 11, 35, and 21 samples, respectively.

Both datasets were collected by the same laboratory using different methodologies
and under varying hardware and software environments. The datasets, captured and
published in different years, reflect the evolution of network environments to some extent.
Over time, network traffic has become more complex, and attack types have grown more
diverse, as evident from the differences in the composition of the ISCX 2012 and CIC-IDS
2017 datasets. Conducting experiments on these datasets helps evaluate the model’s ability
to handle both simple and complex data.

Both datasets were preprocessed using the steps described in Section 3.2.1, which
include traffic sessionization, noise removal, and truncation. Session-level slicing was
employed to preserve temporal and spatial dependencies, while data truncation ensured
consistency and computational feasibility. These preprocessing steps were applied uni-
formly to all evaluated models, including baseline models such as LSTM, BiGRU, and
standard Transformer architectures, to ensure a fair comparison.

To validate the proposed intrusion detection approach, a series of experiments were
conducted. The experiments were run on a hardware platform equipped with an Intel pro-
cessor, GTX 4060 GPU (8 GB VRAM), and Windows 10 operating system. The models were
constructed using the PyTorch framework and Transformers library, with GPU acceleration
employed for training. The experimental setup is detailed in Table 1.

We used evaluation metrics such as accuracy, precision, recall, and F1-score to evaluate
the detection ability of the model. These metrics are calculated based on the confusion
matrix, and the binary confusion matrix is shown in Table 2, where each row corresponds
to the actual results and each column corresponds to the predicted results. True positives
(TPs) are the number of samples correctly predicted as positive and are actually positive.
False positives (FPs) are the number of samples incorrectly predicted to be positive or are
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actually negative. False negatives (FNs) are the number of samples that were incorrectly
predicted to be negative and that were positive. True negative (TN) is the number of
samples correctly predicted to be in the negative sample category that were also negative.
These metrics provide a comprehensive evaluation of the model’s classification performance
across different aspects.

Table 1. Experimental environment.

Hardware and Software Experimental
Environment Detail

CPU Intel(R) Core(TM) i5-12400
Video Card NVIDIA GeForce GTX 4060 8G

CUDA 11.4.2
RAM 16 GB

Operating System Windows 10
Programming Languages Python 3.7

Software Framework Pytorch = 1.13.1, Transformers = 4.30.2
IDE PyCharm 2023.3.2

Table 2. Confusion matrix.

Real Sample Sample Projections

Positive Sample Negative Sample

Positive sample TP FN
Negative sample FP TN

Accuracy refers to the number of samples correctly predicted by the model as a
proportion of the total number of samples. It is one of the most intuitive metrics to assess,
but it is not meaningful when the categories are severely imbalanced.

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

Precision refers to the proportion of samples that are truly positive among those
predicted as the positive class by the model. It measures the accuracy of the model in
predicting the positive class. Mathematically, it is defined as follows:

Precision =
TP

TP + FP
(18)

Recall refers to the proportion of samples in the true positive category that the model
predicts to be in the positive category. It measures the model’s ability to find positive
category samples.

Recall =
TP

TP + FN
(19)

The F1-score is the harmonic mean of precision and recall, providing a balanced
measure that considers both false positives and false negatives. The F1-score ranges from 0
to 1, with higher values indicating better model performance. The formula for calculating
the F1-score is as follows:

F1 =
2 × Precision × Recall

Precision + Recall
(20)
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4.2. FCN–Transformer Encoder Experiment
4.2.1. Parameter Experiment of FCN Transformer Encoder

We conducted a binary classification experiment on the ISCX 2012 dataset to investigate
the impact of the number of Conv1d Blocks, Transformer Encoder units, and self-attention
heads on the model’s performance. The objective was to determine the optimal parameter
settings for subsequent experiments. During the experiment, all other model parameters
were kept constant, except for those being tuned. The initial parameter settings were as
follows: the 1D FCN network consisted of two stacked Conv1d Blocks, the number of
Encoder units and self-attention heads was set to six, the batch size was 256, and the model
was trained for a total of 60 epochs. The learning rate was set to 0.001, and the Adam
optimizer was used. The results of the parameter tuning experiments are shown in Figure 8.
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When optimizing the model parameters, the experimental results reveal that increasing
the number of Conv1d Blocks from one to two significantly improves the model’s spatial
feature learning capability and accuracy. However, further increases in the number of blocks
yield limited accuracy improvements while significantly increasing model complexity.

Due to hardware constraints, the range of Encoder units in the experiments was
limited to two to eight. The results show that as the number of units increases, the model’s
feature extraction capability improves, but the processing speed decreases.

For the multi-head self-attention mechanism, the experiments demonstrate that in-
creasing the number of heads from two to six initially improves accuracy and steadily
enhances the F1-score. However, beyond four heads, the improvement slows down, and
accuracy even declines slightly at six heads.

In summary, blindly increasing the number of Conv1d Blocks or self-attention heads in
pursuit of higher accuracy is not advisable, as this leads to higher computational complexity
and slower model performance. Based on the experimental results, a set of optimal model
parameters was determined to balance speed and accuracy, as shown in Table 3.

Table 3. FCN–Transformer model parameter settings.

Parameter Value

Number of Conv1d Blocks 2
Number of Encoder Units 4

Number of Self-Attention Heads 4
Batch Size 128

Number of Training Iterations 60
Learning Rate 10−3

Optimizer Adam
Loss Function CrossEntropy Loss
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4.2.2. Comparison of FCN–Transformer with Other Models

To verify the effectiveness of the FCN–Transformer architecture in MFEI-IDS, we
compared it with several baseline models widely used in intrusion detection. Based on
the HAST-II model described in [10], we constructed the CNN-BiLSTM model and the
CNN-BiGRU-Attn model. These, along with the LSTM, BiGRU, and Transformer models,
formed the baseline comparison models.

All input data consisted of raw traffic data preprocessed in the same manner. The
packet length was retained at 512 bytes, and the session length was set to 200, consistent
with the configuration of the proposed model. The number of epochs for the training was
set to 60 for all models. The parameters of each model are listed in Table 4, where the Attn
suffix indicates the inclusion of an attention mechanism.

Table 4. Comparison of model parameter settings.

Model Number of Hidden Layers and Units Dropout Learning Rate Batch Size

LSTM 128 0.2 10−4 128

BiGRU 128,128 0.2 10−4 128

CNN-BiLSTM

CNN: 128@2*1, 256@2*1; 192@2*1,
320@2*1

GLobalMaxpool
BiLSTM: 92, 92

0.1 10−3 10

CNN-BiGRU-Attn

CNN: 128@2*1, 256@2*1; 192@2*1,
320@2*1

GLobalMaxpool
BiGRU: 92, 92

Attention

0.1 10−3 10

Transformer

Token Embedding
Position Embedding

Encoder: 6
Decoder: 6

Attention Head: 4

0.1 10−3 128

We first conducted a binary classification experiment on the ISCX 2012 dataset, with
the results presented in Table 5. From the results, it can be observed that the proposed
FCN–Transformer architecture outperforms all other models across all evaluation metrics,
demonstrating optimal performance.

Table 5. Binary classification comparison results on ISCX 2012 dataset.

Model Accuracy Precision Recall F1-Score

LSTM 94.19% 91.86% 95.98% 0.9837
BiGRU 95.06% 93.12% 97.04% 0.9504

CNN-BiLSTM 97.91% 95.16% 98.76% 0.9693
CNN-BiGRU-Attn 98.73% 96.27% 99.18% 0.9770

Transformer 97.47% 96.82% 98.86% 0.9783
FCN–Transformer 99.78% 98.79% 99.90% 0.9934

Among all the models, the two single-level models performed the worst, highlighting
that single-level models are incapable of learning the complete multi-level spatiotemporal
features of network traffic. In contrast, the dual-layer network models showed significant
improvements in all aspects compared to single-level models. The CNN-BiGRU-Attn
model outperformed the CNN-BiLSTM model in overall performance, indicating that the
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attention mechanism enhances model performance. The Transformer model’s performance
fell between the CNN-BiLSTM and CNN-BiGRU-Attn models. This demonstrates that
while Transformers are powerful, incorporating mechanisms such as attention and dual-
layer structures can further boost performance.

We conducted a binary classification experiment on the more complex CIC-IDS 2017
dataset, and the results are shown in Table 6. Compared to the binary classification
experiment on the ISCX 2012 dataset, all models experienced a decline in performance due
to the increased complexity of the dataset.

Table 6. Results of binary classification comparison experiments on the CIC-IDS 2017 dataset.

Model Accuracy Precision Recall F1-Score

LSTM 92.59% 90.14% 95.28% 0.9264
BiGRU 93.84% 92.32% 96.05% 0.9415

CNN-BiLSTM 97.05% 94.53% 98.53% 0.9649
CNN-BiGRU-Attn 98.34% 95.85% 99.07% 0.9743

Transformer 97.29% 95.87% 98.32% 0.9708
FCN–Transformer 99.47% 98.52% 99.81% 0.9916

Despite this, the proposed FCN–Transformer model achieved an impressive 99.47% ac-
curacy and an F1-score of 0.9916, demonstrating the best overall performance. These results
indicate that the proposed model is highly effective in adapting to the temporal variations
in network traffic, showcasing its robustness and ability to handle complex datasets.

Finally, a multi-class classification experiment was conducted on the CIC-IDS 2017
dataset, and the results are shown in Table 7. The proposed FCN–Transformer model
also demonstrated the best overall performance in this multi-class classification task, with
all metrics exceeding 99%, outperforming the other comparison models. The proposed
model achieved optimal results across all evaluation metrics, highlighting its capability to
represent the multi-level features of complex traffic effectively. Furthermore, these results
suggest that the model is equally applicable to other traffic datasets, exhibiting excellent
robustness and adaptability to different network traffic scenarios.

Table 7. Comparison results of different models for multi-categorization on the CIC-IDS2017 dataset.

Model Accuracy Precision Recall F1-Score

LSTM 91.8% 90.13% 93.37% 0.9172
BiGRU 92.79% 90.26% 94.07% 0.9213

CNN-BiLSTM 95.92% 93.87% 96.94% 0.9538
CNN-BiGRU-Attn 98.55% 95.83% 98.76% 0.9727

Transformer 96.33% 94.57% 96.43% 0.9549
FCN–Transformer 99.32% 99.03% 99.16% 0.9909

To illustrate the performance of FCN–Transformer under complex data, the detection
effectiveness of the model for each category was analyzed, as shown in Table 8. It can be
observed that the model can achieve a recall of more than 92% and an F1-score value of
more than 0.99 for certain attacks, such as DoS Hulk, PortScan, DDoS, and DoS GoldenEye,
because these attacks have enough samples to provide the model with training. As for the
categories that lack training samples, the model cannot learn the features of these categories,
so the detection performance is poorer; for example, attacks such as SQL Injection, XSS,
and Infiltration, all of which have less than 50 total sample data, and are even more sparse
after being partitioned into training and testing sets, show poorer performance, which
illustrates how the unbalanced dataset seriously affects the model’s performance. From
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another perspective, the model’s recall for Infiltration, SQL Injection, and Heartbleed is
not zero, and its precision rates reach 100%. This indicates that the model can detect
the data for these attacks. However, the lack of sufficient samples prevents the model
from adequately updating its parameters to learn all the representative features of these
attacks. This observation demonstrates the powerful feature extraction capability of the
FCN–Transformer model, despite the challenges posed by data imbalance.

Table 8. Multi-classification experimental results of FCN–Transformer on the CIC-IDS2017 dataset.

Traffic Category Precision Recall F1-Score

Benign 99.85% 99.54% 0.997
DoS Hulk 99.29% 99.91% 0.996
PortScan 99.93% 99.89% 0.9991

DDoS 99.86% 98.92% 0.9939
DoS GoldenEye 99.12% 99.41% 0.9926

FTP-Patator 99.93% 99.68% 0.995
SSH-Patator 99.83% 98.39% 0.991

DoS slowloris 99.82% 99.23% 0.9953
Dos Slowhttptest 99.27% 99.09% 0.9918

Bot 80.72% 92.9% 0.8638
Brute Force 65.89% 98.75% 0.7904

XSS 97.94% 55.88% 0.7116
Infiltration 100.0% 42.89% 0.6

SQL Injection 100.0% 40% 0.5714
Heartbleed 100.0% 33.33% 0.5

To validate the model’s utilization of the Transformer multi-head self-attention mecha-
nism for parallel computation on sequential data, we conducted a comparison experiment
on training and testing times. Table 9 presents the training and testing time comparisons for
binary classification on the ISCX 2012 dataset. The proposed model achieved a training time
of 54 min and a testing time of 1.7 min on the entire ISCX 2012 dataset, achieving the best
performance in both training and testing times. Even when compared to the structurally
simpler CNN model, the results underscore the parallelism of the Transformer architecture
and demonstrate the efficient processing capability of the model proposed in this chapter.

Table 9. ISCX2012 dataset binary classification training and testing time comparison.

Model Training Time Test Time

CNN 57 min 1.9 min
LSTM 76 min 2.7 min
BiGRU 71 min 2.6 min

CNN-BiLSTM 128 min 3.5 min
CNN-BiGRU-Attn 135 min 3.5 min
FCN–Transformer 54 min 1.7 min

Combining the above experimental results, the proposed FCN–Transformer architec-
ture achieved excellent performance on both datasets. It demonstrated the ability to learn
highly generalized deep spatiotemporal features of traffic data, outperforming both single
models and traditional multi-level CNN-RNN models.

4.3. Analysis of Experimental Results
4.3.1. Comparison with Other Small-Sample Learning Models

To validate the efficiency of the MFEI-IDS model in few-shot learning and evaluate
the impact of the number of support set categories and sample sizes on the training results,
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we conducted comparative experiments with FC-Net [32], Induction-Network-Attention
(IN-Attention) [33], and the proposed few-shot learning method.

In these experiments, IN-Attention employed the same encoding module as our
model, but its attention mechanism served as the induction module, whereas the proposed
model uses a dynamic routing induction method to construct the induction module. The
experiments primarily used the CIC-IDS 2017 dataset, which has a finer-grained division
of attack categories, while extracting Infiltration attack data from the ISCX 2012 dataset to
expand the test set for this attack type.

The CIC-IDS 2017 dataset consists of 15 data types. However, the Heartbleed and SQL
Injection attack categories, with only 11 and 25 samples, respectively, were excluded from
the comparison experiments due to insufficient sample size.

For the experiments, the number of support set categories C was set to 2, 3, 5, and 7,
with a fixed sample size of 10. Additionally, for each selected class, 20 random samples
were chosen as the query set, and the test set size was set to 500 samples. The results are
shown in Figure 9. From the experimental results, it can be seen that all three models are a
bit sensitive to the number of classes, C. The FC-Net model shows an accuracy trend that
initially increases and then decreases as the number of categories increases, achieving its
best performance when C = 5. Similarly, the proposed model and IN-Attention also achieve
optimal performance at C = 5. However, the performance for the three-way configuration is
slightly lower than for the two-way configuration. These findings suggest that the number
of categories in the support set significantly impacts few-shot learning performance and
that balancing the number of categories and samples is crucial for optimal model results.
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The number of experimental categories was set to five, and the support set sample size
K was varied at 5, 10, 15, 20, and 25 to construct six groups for comparative experiments.
During each iteration, 20 random samples from the selected classes were additionally
chosen as the query set. The results are shown in Figure 10.

The accuracy of all three models improved as the number of samples increased. The
improvement was most pronounced when K increased from 5 to 10, as both were in the
few-shot learning scenario, but the sample size doubled, enabling the models to better
learn the differences between categories.

From the accuracy trends across all models, it can be observed that few-shot learning
differs from traditional supervised learning methods that require large sample sizes for
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training. Few-shot learning methods exhibit significantly less dependency on sample size,
demonstrating their robustness and efficiency in scenarios with limited data.

Electronics 2025, 14, x FOR PEER REVIEW 22 of 30 
 

 

 

Figure 10. Accuracy–sample number variation. 

From the above experiments, it can be observed that the proposed model achieves 
the best performance, while FC-Net performs the worst. This is because FC-Net uses a 
three-dimensional convolutional neural network (F-Net) for feature extraction and an-
other CNN to measure sample similarity. While this approach captures differences be-
tween samples, it neglects the modeling of the mapping from sample representations to 
category representations. The IN-Attention model employs an attention mechanism as the 
induction module. However, since the FCN–Transformer used as the Encoder module has 
already extracted the temporal information of the traffic, IN-Attention fails to fully utilize 
its induction capability. Thus, in few-shot learning-based intrusion detection methods, 
MFEI-IDS demonstrates superior capability in mapping network traffic to attack types, 
resulting in better attack detection performance. 

4.3.2. Comparison with Full Sample Learning 

Based on the experimental parameters, the results of the MFEI-IDS model under the 
five-way 15-shot setting are presented in Table 10. These results are compared with the 
multi-class classification results on the CIC-IDS 2017 dataset (Table 8). 

Table 10. Five-way 15-shot detection results for various attacks. 

Traffic Category Detection Rate Recall Rate F1-score 
Benign 93.52% 98.2% 0.958 

DoS Hulk 99.39% 97.99% 0.9869 
PortScan 97.98% 97.2% 0.9759 

DDoS 96.84% 98% 0.9742 
DoS GoldenEye 99.19% 97.6% 0.9838 

FTP-Patator 99.8% 99.2% 0.995 
SSH-Patator 99.2% 99% 0.991 

DoS slowloris 98.79% 98.2% 0.985 
Dos Slowhttptest 96.4% 96.4% 0.964 

Bot 96.18% 95.8% 0.9599 
Brute Force 96.63% 97.4% 0.9701 

XSS 99.8% 98.4% 0.9909 
  

Figure 10. Accuracy–sample number variation.

From the above experiments, it can be observed that the proposed model achieves
the best performance, while FC-Net performs the worst. This is because FC-Net uses a
three-dimensional convolutional neural network (F-Net) for feature extraction and another
CNN to measure sample similarity. While this approach captures differences between
samples, it neglects the modeling of the mapping from sample representations to category
representations. The IN-Attention model employs an attention mechanism as the induction
module. However, since the FCN–Transformer used as the Encoder module has already
extracted the temporal information of the traffic, IN-Attention fails to fully utilize its
induction capability. Thus, in few-shot learning-based intrusion detection methods, MFEI-
IDS demonstrates superior capability in mapping network traffic to attack types, resulting
in better attack detection performance.

4.3.2. Comparison with Full Sample Learning

Based on the experimental parameters, the results of the MFEI-IDS model under the
five-way 15-shot setting are presented in Table 10. These results are compared with the
multi-class classification results on the CIC-IDS 2017 dataset (Table 8).

Table 10. Five-way 15-shot detection results for various attacks.

Traffic Category Detection Rate Recall Rate F1-Score

Benign 93.52% 98.2% 0.958
DoS Hulk 99.39% 97.99% 0.9869
PortScan 97.98% 97.2% 0.9759

DDoS 96.84% 98% 0.9742
DoS GoldenEye 99.19% 97.6% 0.9838

FTP-Patator 99.8% 99.2% 0.995
SSH-Patator 99.2% 99% 0.991

DoS slowloris 98.79% 98.2% 0.985
Dos Slowhttptest 96.4% 96.4% 0.964

Bot 96.18% 95.8% 0.9599
Brute Force 96.63% 97.4% 0.9701

XSS 99.8% 98.4% 0.9909
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In terms of precision, the full-sample method and the few-shot method each demon-
strate advantages in different cases. When sufficient data are available, the full-sample
supervised learning method generally achieves better recall. However, for categories
with only a small number of samples, the MFEI-IDS method consistently achieves better
detection performance. This comparison highlights the strength of the MFEI-IDS model
in handling imbalanced or limited-sample scenarios, making it particularly effective for
detecting rare or infrequently encountered attack types.

4.4. Experimental Results Across Datasets

The ISCX 2012 and CIC-IDS 2017 datasets can both be considered network traffic data
generated under different hardware and software environments. While the attack types in
these datasets share some similarities, they also exhibit significant differences. Compared
to ISCX 2012, the CIC-IDS 2017 dataset contains more diverse traffic types, more complex
attack techniques, and a larger volume of attack data, reflecting the evolution of network
traffic over time.

Using these two datasets for cross-dataset experiments not only evaluates the proposed
model’s adaptability to different network environments but also assesses its potential to
detect future network attacks. For convenience, the Infiltration, Heartbleed, and SQL
Injection categories, which have the fewest samples in CIC-IDS 2017, were excluded
from the experiments. For each task, the experimental setup included C = 3 (number of
categories), K = 15 (support set size), and a test set containing 500 samples per class.

The first cross-dataset experiment involved training on the CIC-IDS 2017 dataset and
testing on the ISCX 2012 dataset. The results are shown in Table 11.

Table 11. Training at CIC-IDS 2017, testing experimental results at ISCX 2012.

Type of Flow Detection Rate Recall Rate F1-Score

Benign 93.18% 95.6% 0.9437
BFSSH 98.79% 98% 0.9839

Infiltration 96.39% 96.2% 0.963
HttpDos 94.5% 92.8% 0.9364

DDoS 94.81% 95% 0.9491

The results reveal that among all categories, the model achieved the lowest precision
for normal traffic, at 93.18%, indicating that a considerable amount of attack traffic was
misclassified as normal traffic. This suggests that some attack data were not detected.
However, it also demonstrates the model’s accuracy in detecting attacks.

The recall for all traffic types exceeded 92%, showing excellent detection capabil-
ities across all attack categories. These results clearly demonstrate the model’s strong
generalization ability, achieving impressive performance even in cross-dataset scenarios.

Then, there was a cross-dataset training experiment on the ISCX 2012 dataset and a
testing experiment on the CIC-IDS 2017 dataset, and the experimental results are shown
in Table 12. Compared with the experimental results (Table 11), where both training and
testing are performed on the CIC-IDS 2017 dataset, the model’s detection performance for
each class of attack is slightly degraded, mainly due to the fact that the ISCX 2012 data
have fewer classes and the data are slightly simpler, and the model did not fully learn the
subtle differences in the mapping of the sample data of the similar attacks to the class space
when training on the ISCX 2012 dataset, which resulted in more misclassifications when
tested on the more complex CIC-IDS 2017 dataset. Even so, the model still maintains a high
detection and accuracy rate.
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Table 12. Trained using ISCX 2012, tested using CIC-IDS 2017 experimental results.

Type of Flow Detection Rate Recall Rate F1-Score

Benign 86.02% 97.2% 0.9127
DoS Hulk 97.11% 94.2% 0.9563
PortScan 97.11% 94.2% 0.9563

DDoS 96.41% 96.6% 0.965
DoS GoldenEye 97.74% 95.19% 0.9645

FTP-Patator 98.78% 97.4% 0.9809
SSH-Patator 98.38% 97.19% 0.9778

DoS slowloris 95.53% 98.2% 0.9684
Dos Slowhttptest 95.12% 93.6% 0.9435

Bot 94.02% 91.38% 0.9268
Brute Force 90.94% 96.4% 0.9359

XSS 99.78% 90.4% 0.9486

From the two experiments, it is evident that the MFEI-IDS model maintained high
precision and recall rates in both cross-dataset experiments, indicating that cross-dataset
training and testing are feasible. These two datasets were collected by the same laboratory
under different hardware and software environments using different methodologies. The
model’s ability to achieve excellent cross-dataset results on these datasets demonstrates that
the MFEI-IDS model can be deployed in new environments and future network scenarios
without requiring fine-tuning.

This also highlights the model’s strong adaptability. Even when encountering data
types during testing that were not present during training, the model could still classify
them effectively. This suggests that the MFEI-IDS model learns to inductively map sample
representations to class representations during training, rather than merely memorizing
the features of the training samples.

4.5. Results of Zero-Sample Unknown Intrusion Experiments

In order to test the detection capability of MFEI-IDS for unknown attack detection, the
experiment also constructs the experimental dataset, as shown in Table 13. In this experiment,
seven types of data were selected from the CIC-IDS2017 dataset, including normal data and
six types of attack data, and the test set was expanded with the Infiltration data from the ISCX
2012 dataset. The seven types of data were classified into two categories, one of which was
the known traffic set containing normal traffic and four types of attack data. The other is the
unknown attack traffic set, consisting of Heartbleed and SQL Injection attack types, which
were not used in the model training process. The number of known traffic samples in the
training set was 35, where the number of samples in the support set was 15, the number of
samples in the query set was 20, and the number of samples in the test set was 100. This setup
allowed the model to be evaluated on its ability to detect both known and unknown attacks,
emphasizing its potential for generalization to unseen traffic types.

Table 13. Unknown attack detection dataset description.

Data Definitions Data Types Training Volume Test Volume Code

Known flow

Benign 35 100 iA
DDoS 35 100 iB

PortScan 35 100 iC
DoS Hulk 35 100 iD
Infiltration 35 100 iE

Unknown attack
Heartbleed 0 10 iF

SQL Injection 0 25 iG
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Table 14 presents the detection results for unknown attacks in a zero-shot scenario.
Precision and recall were used as evaluation metrics for unknown attack types because the
small sample size of unknown attacks makes other metrics less effective in assessing the
model’s detection capabilities.

Table 14. Zero-sample unknown attack detection results.

Code
FC-Net IN-Attention MFEI-IDS

Detection
Rate

Recall
Rate

Detection
Rate

Recall
Rate

Detection
Rate

Recall
Rate

iA 88.99% 97% 91.67% 99% 95.24% 100%
iB 97.98% 97% 98.98% 97% 99% 99%
iC 90.62% 87% 92.93% 92% 96% 96%
iD 97% 97% 98% 98% 98.99% 98.99%
iE 90% 90% 93.94% 93% 97.94% 95%

iF&iG 93.55% 82.86% 100% 88.57% 100% 94.29%

For the CIC-IDS 2017 dataset, the MFEI-IDS model outperformed other models in
detecting all types of attacks, achieving the best results. For the unknown attacks iFiFiF
and iGiGiG, the detection rate reached 94.29%. However, the detection of unknown
attack types is determined by a relation score threshold, meaning the model can
identify unknown attacks but cannot further differentiate between specific unknown
attack types.

The precision for unknown attacks reached 100%, indicating that any data predicted
as unknown attacks genuinely belong to the unknown attack category. These experiments
demonstrate that the proposed model has a high detection rate for unknown attacks and
achieves exceptional accuracy in identifying them, highlighting its strong generalization
capabilities for unseen attack scenarios.

To further demonstrate the superiority of the MFEI-IDS model, confusion matrices
for the three models are presented in Figure 11. From the confusion matrices, it is evident
that the MFEI-IDS model achieves a 100% recognition rate for normal traffic, with no
instances of normal traffic being misclassified as attack traffic. This is of critical importance
in practical applications, as it allows for detecting network attacks without disrupting
normal operations.
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In contrast, The FC-Net and IN-Attention models tend to confuse PortScan with In-
filtration and Infiltration with unknown attacks. This is because PortScan is part of the
reconnaissance phase of an attack, and SQL Injection is inherently a form of web penetra-
tion, leading to misclassification between these categories. All three models occasionally
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misclassify PortScan data as normal traffic. This is because reconnaissance activities, such
as slow scans, may not involve overtly malicious operations and closely resemble normal
traffic patterns.

The MFEI-IDS model clearly stands out, achieving the highest detection rate for
unknown attacks and having the fewest misclassifications overall. This further highlights
the model’s exceptional inductive capability in distinguishing between categories, making
it the most robust and reliable model among the three.

The above experiments demonstrate the performance and advantages of few-shot
learning in detecting unknown attacks. By combining the excellent feature extraction
capabilities of the FCN model with the inductive network’s ability to map samples to
categories, the MFEI-IDS model achieves strong generalization and robustness.

The model surpasses the other two methods in terms of the detection rate and precision
for unknown attacks. This enables the proposed model to identify entirely new categories
without requiring fine-tuning, making it adaptable to various network environments and
future challenges.

5. Conclusions
This paper proposes a Multi-level Feature Extraction and Inductive Network-based

Intrusion Detection System (MFEI-IDS), which combines a one-dimensional fully convolu-
tional neural network (1D FCN) and Transformer architecture to achieve efficient feature
extraction. The system utilizes an inductive learning module to map sample vectors into
robust class representations, enabling effective detection of unknown attacks. The exper-
imental results demonstrate that MFEI-IDS outperforms other models on the ISCX 2012
and CIC-IDS 2017 datasets. For instance, the model achieved an accuracy of 98.5% on the
ISCX 2012 dataset and an F1-score of 0.92 on the CIC-IDS 2017 dataset. Notably, the model
exhibited outstanding robustness and generalization capability in cross-dataset validation,
few-shot learning, and unknown attack scenarios, validating its applicability and potential
in complex traffic environments.

Despite its strong performance, MFEI-IDS has some limitations and areas for improve-
ment worth exploring:

(1) In terms of real-time inference and processing, the current design of MFEI-IDS is
primarily tailored to batch processing. This approach requires the completion of data
collection, slicing, cleaning, and preprocessing before performing intrusion detec-
tion. While effective for offline detection tasks, this batch analysis framework may
face limitations in scenarios demanding real-time responses. For instance, existing
session-level slicing methods efficiently aggregate contextual traffic information but
rely on session completion prior to processing, which can introduce delays in dynamic
and high-speed network environments. To overcome these limitations and meet the
demands of real-time inference, several optimizations can be explored. One poten-
tial direction is the introduction of stream processing frameworks, utilizing sliding
windows and stream-level slicing techniques to facilitate the real-time analysis of in-
complete sessions, thereby reducing response time. Additionally, optimizing the data
preprocessing module by simplifying data cleaning and filling processes can lower the
complexity of preprocessing steps. Incorporating dynamic data truncation strategies
may further reduce latency. Furthermore, enhancing the model architecture to support
lightweight operation and incremental inference is essential. By refining the FCN
and Transformer modules, the system can incrementally process incoming packets,
achieving efficient real-time inference. In practical applications, the implementation
of real-time inference requires a careful balance among model accuracy, response
speed, and computational resources. While the current model is primarily designed
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for offline detection, optimizing it for real-time inference represents an important
avenue for future research, particularly in scenarios that require rapid detection of
zero-day attacks and high-frequency traffic anomalies.

(2) Further Optimization of the Feature Extraction Model: The experimental results
demonstrate that bidirectional networks, such as BiGRU, outperform more complex
models like LSTM in feature extraction, underscoring the importance of comprehen-
sive feature extraction for model performance. This advantage likely arises from
the ability of bidirectional networks to simultaneously capture both forward and
backward sequence information, thereby providing a more complete representation
of temporal dependencies and contextual features. To further optimize the feature
extraction process, the introduction of the BERT model as the backbone for tempo-
ral feature extraction is a promising direction. BERT, a deep bidirectional model
based on the Transformer architecture, is capable of capturing global dependencies
in long sequences with high precision. Additionally, its pretraining and fine-tuning
mechanisms enable the model to leverage extensive existing datasets, significantly
enhancing generalization performance, particularly in few-shot scenarios.
For the extraction of local spatial features, an improved WordPiece tokenization
method could be employed for traffic packet analysis. Traditional tokenization meth-
ods may lead to the loss of fine-grained features within traffic data, whereas an
enhanced WordPiece method can more precisely extract local features, such as proto-
col fields or application-layer data details. By incorporating this method, finer-grained
embedding vectors can be constructed, enabling the model to exhibit stronger analyti-
cal capabilities when handling complex traffic patterns. Combining the BERT model
with an optimized tokenization approach would not only strengthen the extraction
of temporal and local features but also fully exploit the multi-scale characteristics
of network traffic. This integration would further enhance the model’s detection
accuracy and robustness. Such an optimization strategy offers a robust theoreti-
cal foundation and practical potential for the application of the model in complex
traffic environments.

(3) Memory Mechanism in Few-Shot Learning: Current few-shot learning models face
the challenge of catastrophic forgetting when switching between tasks in large-scale
categorical datasets. Catastrophic forgetting reduces the ability of intrusion detec-
tion systems to generalize across tasks and retain prior knowledge, significantly
impacting overall performance. This issue leads to instability in key performance
metrics, such as accuracy and recall, thereby undermining the reliability of the
system. Moreover, the loss of prior knowledge weakens the system’s capability to
detect unknown attacks, as it struggles to identify anomalies based on previously
acquired information. Additionally, catastrophic forgetting increases the need
for retraining, which elevates computational costs and decreases adaptability to
emerging threats. To address this challenge, memory-enhanced modules based on
Transformer architectures could be introduced. While few-shot learning models
can effectively detect unknown attacks, they currently lack the capability to further
classify these attacks. Future research could explore fine-grained classification
mechanisms to improve the model’s classification performance and enhance its
ability to handle unknown attacks.

(4) Intelligent Detection with Knowledge Graphs: The integration of knowledge graphs
represents a critical future direction in network intrusion detection. By constructing
semantic networks of attack paths, behavior patterns, and their interrelationships,
knowledge graphs provide intuitive logical associations and contextual information
for analyzing complex attack behaviors. This approach enables the integration of
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multi-source heterogeneous data, uncovering potential attack paths and anomalous
patterns, thereby equipping detection systems with more comprehensive analytical
capabilities. The application of knowledge graphs in intrusion detection is primar-
ily reflected in three areas. First, they facilitate the integration of attacker behav-
ior characteristics, target system vulnerabilities, and attack techniques, providing a
comprehensive understanding of attacks. Second, when combined with inference
engines, knowledge graphs enable the real-time evaluation of anomalous traffic and
rapid response, allowing for the inference of potential attack types and their con-
sequences. Third, they enhance system explainability by visually presenting the
reasoning processes and related cases, thereby improving the credibility of detection
results. Nevertheless, constructing and maintaining high-quality knowledge graphs
poses significant challenges, such as addressing data sparsity, dynamic changes, and
complex entity relationships. Future research could explore automated knowledge
graph construction techniques, such as extracting entities and relationships from
security reports and logs. Furthermore, the introduction of dynamic updating mecha-
nisms would ensure that knowledge graphs remain consistent with the latest attack
patterns. Integrating knowledge graphs into intrusion detection not only enhances
detection accuracy and real-time response capabilities but also provides profound
insights into complex attack behaviors, offering robust support for combating modern
cybersecurity threats.

In summary, MFEI-IDS provides an efficient solution to modern network security
challenges through its innovative architecture and feature extraction mechanism. Future
research will focus on optimizing feature extraction capabilities, expanding few-shot learn-
ing performance, and exploring the application of knowledge graphs in intrusion detection
to further advance the field of network security.
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