Design and Implementation of a Smart AC Current Source for Impedance Spectroscopy Using ARM Microcontrollers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microcontroller Selection
2.2. Analog Peripherals
2.2.1. Integrated OPAMP
- Bandwidth: 13 MHz;
- Slew Rate: Up to 45 /;
- Output curent: ;
- Power supply rejection ratio: 80 dB;
- Current consumption: .
2.2.2. Voltage Reference (Virtual Ground)
2.2.3. Improved Howland Current Pump
2.3. Digital to Analog Converter
2.4. Microcontroller Peripheral Configuration and Connection
3. Results
3.1. Signal Generation ()
3.2. Impedance Measurement Application ()
4. Discussion
- LUT Size: A larger LUT size provides a finer resolution of the waveform, resulting in smoother signals with reduced distortion. This improvement is reflected in SNR and THD observed. The finer resolution minimizes abrupt transitions in the waveform, making the generated signal more closely resemble a pure sinusoidal wave, as evidenced by Crest Factor .
- Timer Trigger Frequency (): The timer trigger frequency governs how frequently the DAC updates its output, thereby influencing the overall signal frequency. Higher allows for higher , but it is restricted by the settling time of the DAC (). If is too high relative to LUT size, the DAC may not stabilize sufficiently between updates, leading to increased distortion and reduced signal quality.
- Current Source Output Impedance: In the Howland configuration, the precise matching of and is crucial for maintaining high output impedance, which ensures current stability across different load impedances. Any mismatch reduces the output impedance, making the current partially dependent on [34].
- Sensing Resistor Considerations: Our implementation uses to limit the current to the microampere range. While this protects the device under test, it introduces thermal noise and limits the measurement range for low impedances. This particularly affects the measurements when approaches , as observed with our 100 test case.
- Frequency Response: At higher frequencies, parasitic components become significant. The nominal values and tolerances of the resistors, specified for DC conditions, may not accurately represent their behavior at AC frequencies, introducing frequency-dependent variations in both magnitude and phase measurements.
- Measurement Methodology: While current source imperfections affect the generated signal, the impedance measurement accuracy depends primarily on the precise measurement of both voltage and current signals, including their phase relationship. Our system measures both quantities to calculate the complex impedance as .
- Signal integrity: Optimizing LUT size and can potentially provide high SNR and low THD.
- Low cost and Scalability: Employing an STM32G4 microcontroller onchip peripheral eliminates additional component requirements, reducing overall system costs and complexity. This design would easily enable multi-point acquisition, which is essential to applications like EIT.
- Flexibility: The programmable nature of the microcontroller component permits easy tuning of a considerable part of the system without requiring hardware update.
- Frequency Range Constraints: The DAC settling time of the peripheral establishes a hard limit on the maximum achievable frequency, especially when using smaller LUT sizes. For applications requiring higher frequencies, alternative DACs may be explored.
- Component Tolerances: Low tolerance and matched resistor are required to effectively implement an accurate system (due to the electronic design of the current source).
- High Impedances: High impedance value of might be comparable to the input impedance of ADCs or OPAMPS. If this is the case, alternative external operational amplifiers should be explored to evaluate those .
- Additional circuit topologies: Explore the performance of additional topologies, such as the Mirrored Modified Howland Current Source (MMHCS) [34].
- Calibration and Optimization: Develop a method to calibrate and select the best parameters ( and ) for any desired frequency in order to minimize , , and obtain the optimal crest factors.
- Complex Impedance Recovery: Recover resistance and reactance values from the acquired signals ( and ) using just onchip peripherals.
- Reliability Enhancements: At the moment, the current source controls the current by applying different voltage levels on the output. Implementing a digital potentiometer as a gain selector (Multi-Range Current Pump) [29] can provide a secondary element to actively minimize THD and maximize SNR over certain current levels.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternatig Current |
ARM | Advanced RISC Machine |
EIT | Electro Impedance Tomography |
OBT | Oscillation Based Test |
DAC | Digital to Analog Converter |
OPAMP | Operational Amplifier |
SUT | Sample Under Test |
DMA | Direct Memory Access |
TIM | Timer |
LUT | LookUp Table |
SNR | Signal to Noise Ratio |
THD | Total Harmonic Distortion |
References
- Horowitz, P.; Hill, W. The Art of Electronics, 3rd ed.; Cambridge University Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Pérez, P.; Huertas, G.; Maldonado-Jacobi, A.; Martín, M.; Serrano, J.A.; Olmo, A.; Daza, P.; Yúfera, A. Sensing Cell-Culture Assays with Low-Cost Circuitry. Sci. Rep. 2018, 8, 8841. [Google Scholar] [CrossRef] [PubMed]
- Alcalá, E.; Olmo, A.; Pérez, P.; Fernández, S.; Encabo, L.; Risco, R. Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy. IEEE Sens. J. 2024, 24, 29634–29642. [Google Scholar] [CrossRef]
- Cosarinsky, G.; Fava, J.; Ruch, M.; Bonomi, A. Material Characterization by Electrical Conductivity Assessment Using Impedance Analysis. Procedia Mater. Sci. 2015, 9, 156–162. [Google Scholar] [CrossRef]
- Šiljegović, M.; Cvejić, Ž.; Jankov, S.; Toth, E.; Herceg, D.; Odry, P.; Tadic, V. Impedance and Dielectric Analysis of Nickel Ferrites: Revealing the Role of the Constant Phase Element and Yttrium Doping. Electronics 2024, 13, 1496. [Google Scholar] [CrossRef]
- Almuhammadi, K.; Bera, T.K.; Lubineau, G. Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates. Compos. Struct. 2017, 168, 510–521. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Gharbi, O.; Vivier, V.; Gao, M.; Orazem, M.E. Electrochemical impedance spectroscopy. Nat. Rev. Methods Prim. 2021, 1, 41. [Google Scholar] [CrossRef]
- Mostafa, I.; Brederlow, R. Trends, Challenges, and Recent Advances in Electrochemical Impedance Spectroscopy. IEEE Sens. Lett. 2022, 6, 5500604. [Google Scholar] [CrossRef]
- Grimnes, S.; Martinsen, Ø.G. Bioimpedance and Bioelectricity Basics; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Ackmann, J.J. Complex bioelectric impedance measurement system for the frequency range from 5 Hz to 1 MHz. Ann. Biomed. Eng. 1993, 21, 135–146. [Google Scholar] [CrossRef]
- Allegri, D.; Donida, A.; Malcovati, P.; Barrettino, D. CMOS-Based Multifrequency Impedance Analyzer for Biomedical Applications. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1301–1312. [Google Scholar] [CrossRef]
- Pallas-Areny, R.; Webster, J. Bioelectric impedance measurements using synchronous sampling. IEEE Trans. Biomed. Eng. 1993, 40, 824–829. [Google Scholar] [CrossRef]
- Ramos, P.M. How signal processing is changing impedance spectroscopy. In Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14–17 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Faktorová, D.; Kuba, M.; Pavlíková, S.; Fabo, P. Implementation of the impedance spectroscopy using a modern microcontroller. Procedia Struct. Integr. 2023, 43, 288–293. [Google Scholar] [CrossRef]
- Munjal, R.; Wendler, F.; Kanoun, O. Embedded Wideband Measurement System for Fast Impedance Spectroscopy Using Undersampling. IEEE Trans. Instrum. Meas. 2020, 69, 3461–3469. [Google Scholar] [CrossRef]
- Analog Devices Inc. AD5940 Datasheet: High Precision Impedance and Electrochemical Front End [Internet]; Analog Devices Inc.: Wilmington, MA, USA, 2024. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/AD5940.pdf (accessed on 27 November 2024).
- Scagliusi, S.F.; Giménez-Miranda, L.; Pérez-García, P.; Fernández, D.M.; Medrano, F.J.; Huertas, G.; Yúfera, A. Bioimpedance Spectroscopy-Based Edema Supervision Wearable System for Noninvasive Monitoring of Heart Failure. IEEE Trans. Instrum. Meas. 2023, 72, 4006608. [Google Scholar] [CrossRef]
- Ferreira, J.; Seoane, F.; Lindecrantz, K. AD5933-based electrical bioimpedance spectrometer. Towards textile-enabled applications. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 3282–3285. [Google Scholar] [CrossRef]
- Hafid, A.; Benouar, S.; Kedir-Talha, M.; Abtahi, F.; Attari, M.; Seoane, F. Full Impedance Cardiography Measurement Device Using Raspberry PI3 and System-on-Chip Biomedical Instrumentation Solutions. IEEE J. Biomed. Health Inform. 2018, 22, 1883–1894. [Google Scholar] [CrossRef]
- Schmidt, M.; Novak, M.; Raska, P.; Penhaker, M.; Pleva, L. Design and testing of a device for human limb multifrequency comparative bioimpedance measurement: Preliminary study. Lékař A Tech.—Clin. Technol. 2023, 53, 25–31. [Google Scholar] [CrossRef]
- Wang, C.; Lu, W.; Huang, J.; Guo, Q.; Zhou, T.; Zhao, J.; Li, Y. Flexi-EIT: A Flexible and Reconfigurable Active Electrode Electrical Impedance Tomography System. IEEE Trans. Biomed. Circuits Syst. 2024, 18, 89–99. [Google Scholar] [CrossRef]
- Nur Rifai, I.; Sejati, P.A.; Akita, S.; Takei, M. FPGA-Based Planar Sensor Electrical Impedance Tomography (FPGA-psEIT) System Characterized by Double Feedback Howland Constant- Current Pump and Programmable Front-End Measurement. IEEE Trans. Instrum. Meas. 2024, 73, 2005310. [Google Scholar] [CrossRef]
- Shishvan, O.R.; Abdelwahab, A.; da Rosa, N.B.; Saulnier, G.J.; Mueller, J.L.; Newell, J.C.; Isaacson, D. ACT5 Electrical Impedance Tomography System. IEEE Trans. Biomed. Eng. 2024, 71, 227–236. [Google Scholar] [CrossRef]
- Ouypornkochagorn, T.; Ngamdi, N. High-Precision Electrical Impedance Tomography System Using Package Excitation. IEEE Trans. Instrum. Meas. 2023, 72, 2005310. [Google Scholar] [CrossRef]
- Li, J.; Jiang, D.; Wu, Y.; Neshatvar, N.; Bayford, R.; Demosthenous, A. An 89.3% Current Efficiency, Sub 0.1% THD Current Driver for Electrical Impedance Tomography. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3742–3746. [Google Scholar] [CrossRef]
- STMicroelectronics. STM32G4 Datasheet: STM32G4 Series of Mixed-Signal MCUs with DSP and FPU Instructions [Internet]; STMicroelectronics: Geneva, Switzerland, 2024. Available online: https://www.st.com/resource/en/datasheet/stm32g431c6.pdf (accessed on 27 November 2024).
- Analog Devices. ADUCM355: Precision Analog Microcontroller with Chemical Sensor Interface [Internet]; Analog Devices: Wilmington, MA, USA, 2024. Available online: https://www.analog.com/en/products/aducm355.html (accessed on 27 November 2024).
- Infineon Technologies, AG. 32-bit PSOC™ Arm® Cortex® Microcontroller [Internet]; Infineon Technologies AG: Neubiberg, Germany, 2024. Available online: https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/ (accessed on 27 November 2024).
- Texas Instruments. AN-1515: A Comprehensive Study of the Howland Current Pump [Internet]; Texas Instruments: Dallas, TX, USA, 2008. Available online: https://www.ti.com/lit/pdf/snoa474 (accessed on 27 November 2024).
- Ignacio Vazquez Lam. Analysis of Improved Howland Current Pump Configurations [Internet]; Texas Instruments: Dallas, TX, USA, 2023. Available online: https://www.ti.com/lit/SBOA437 (accessed on 27 November 2024).
- Anudev, J.; Raglend, I.J. Analytical study of howland current source model. In Proceedings of the 2012 International Conference on Computing, Electronics and Electrical Technologies (ICCEET), Nagercoil, India, 21–22 March 2012; pp. 314–318. [Google Scholar] [CrossRef]
- STMicroelectronics. STM32Cube Initialization Code Generator (STM32CubeMX) [Internet]; STMicroelectronics: Geneva, Switzerland, 2024. Available online: https://www.st.com/en/development-tools/stm32cubemx.html#:~:text=Featured%20Videos-,Description,step%2Dby%2Dstep%20process (accessed on 27 November 2024).
- Pérez García, P.; Oprescu, A.M.; Fernández Scagliusi, S.J. Research Code Repository, version v1; Zenodo: Geneva, Switzerland, 2024. [CrossRef]
- Bertemes-Filho, P.; Felipe, A.; Vincence, V.C. High Accurate Howland Current Source: Output Constraints Analysis. Circuits Syst. 2013, 4, 451–458. [Google Scholar] [CrossRef]
Peripheral | Mode | Pin | Function | Trigger |
---|---|---|---|---|
OPAMP4 | Standalone | PB10 | — | |
OPAMP4 | Standalone | PB13 | , | — |
OPAMP4 | Standalone | PB12 | — | |
OPAMP3 | Follower | PB0 | — | |
OPAMP3 | Follower | PB1 | — | |
OPAMP5 | Follower | PC3 | — | |
OPAMP5 | Follower | PA8 | — | |
OPAMP6 | Follower (DAC) | PB11 | — | |
DAC3 | OUT1 Int, DMA | — | — | TIM3 |
TIM3 | UpCounter | — | — | Update Event |
LUT Size | Crest Factor | SNR (dB) | THD (%) | SNR+D | Figure | ||
---|---|---|---|---|---|---|---|
19 | 883 | 8.5 | 1.84 | 55.0 | 14.6 | 16.73 | Figure 3 |
19 | 447 | 4.25 | 1.45 | 67.6 | 3.7 | 28.65 | Figure 3 |
19 | 224 | 2.125 | 1.43 | 69.0 | 1.5 | 36.22 | Figure 3 |
38 | 405 | 8.5 | 1.47 | 60.0 | 3.2 | 29.79 | Figure 4 |
38 | 224 | 4.25 | 1.43 | 58.7 | 0.2 | 53.31 | Figure 4 |
38 | 112 | 2.125 | 1.43 | 69.8 | 0.5 | 46.86 | Figure 4 |
152 | 106 | 8.5 | 1.46 | 56.8 | 0.2 | 51.09 | Figure 5 |
152 | 56 | 4.25 | 1.42 | 57.9 | 0.6 | 44.68 | Figure 5 |
152 | 28 | 2.125 | 1.43 | 61.6 | 0.7 | 42.67 | Figure 5 |
Signal | R () | () | () | Crest | SNR (dB) | THD (%) | SNR+D | Z () |
---|---|---|---|---|---|---|---|---|
47 | 202.6 k | 1.45 | 1.44 | 61.7 | 0.9 | 40.9 | 48.2 | |
47 | 202.6 k | 0.07 | 1.77 | 55.3 | 2.1 | 33.5 | 48.2 | |
47 | 101.1 k | 1.47 | 1.42 | 64.0 | 0.5 | 46.1 | 47.6 | |
47 | 101.1 k | 0.07 | 1.51 | 60.5 | 1.1 | 39.5 | 47.6 | |
47 | 50.5 k | 1.59 | 1.42 | 70.8 | 0.3 | 50.9 | 44.0 | |
47 | 50.5 k | 0.07 | 1.49 | 64.8 | 1.2 | 38.2 | 44.0 | |
47 | 10.1 k | 1.56 | 1.41 | 67.7 | 0.1 | 61.1 | 44.9 | |
47 | 10.1 k | 0.07 | 1.46 | 65.2 | 0.8 | 41.5 | 44.9 | |
47 | 1011 | 1.28 | 1.41 | 61.0 | 0.0 | 60.9 | 46.9 | |
47 | 1011 | 0.06 | 1.44 | 60.2 | 0.3 | 50.1 | 46.9 | |
47 | 101 | 1.48 | 1.42 | 63.7 | 0.2 | 53.4 | 47.3 | |
47 | 101 | 0.07 | 1.42 | 62.9 | 0.7 | 42.9 | 47.3 | |
47 | 10.1 | 1.47 | 1.42 | 63.4 | 0.2 | 55.5 | 47.6 | |
47 | 10.1 | 0.07 | 1.41 | 62.7 | 0.5 | 45.9 | 47.6 |
Signal | R () | () | () | Crest | SNR (dB) | THD (%) | SNR+D | Z () |
---|---|---|---|---|---|---|---|---|
100 | 202.6 k | 1.42 | 1.44 | 61.2 | 0.9 | 41.4 | 84.5 | |
100 | 202.6 k | 0.12 | 1.59 | 57.1 | 2.0 | 34.0 | 84.5 | |
100 | 101.3 k | 1.59 | 1.44 | 66.0 | 0.7 | 43.3 | 88.1 | |
100 | 101.3 k | 0.14 | 1.55 | 61.5 | 2.5 | 32.1 | 88.1 | |
100 | 50.0 k | 1.54 | 1.43 | 64.1 | 0.3 | 49.5 | 90.9 | |
100 | 50.0 k | 0.14 | 1.50 | 61.4 | 1.3 | 37.9 | 90.9 | |
100 | 10.1 k | 1.4 | 1.42 | 61.2 | 0.3 | 49.8 | 92.9 | |
100 | 10.1 k | 0.13 | 1.38 | 60.8 | 0.8 | 42.0 | 92.9 | |
100 | 1007 | 1.56 | 1.43 | 65.8 | 0.2 | 55.2 | 96.2 | |
100 | 1007 | 0.15 | 1.39 | 64.9 | 2.1 | 33.5 | 96.2 | |
100 | 101 | 1.4 | 1.42 | 62.9 | 0.1 | 58.0 | 100.0 | |
100 | 101 | 0.14 | 1.38 | 62.3 | 0.8 | 41.7 | 100.0 | |
100 | 10.1 | 1.4 | 1.42 | 61.2 | 0.3 | 49.8 | 92.9 | |
100 | 10.1 | 0.13 | 1.38 | 60.8 | 0.8 | 42.0 | 92.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meléndez Muñoz, S.; Silvestre Mérida, E.; Fernández Scagliusi, S.J.; Oprescu, A.M.; Algarín Pérez, A.; Pérez García, P. Design and Implementation of a Smart AC Current Source for Impedance Spectroscopy Using ARM Microcontrollers. Electronics 2024, 13, 4805. https://doi.org/10.3390/electronics13234805
Meléndez Muñoz S, Silvestre Mérida E, Fernández Scagliusi SJ, Oprescu AM, Algarín Pérez A, Pérez García P. Design and Implementation of a Smart AC Current Source for Impedance Spectroscopy Using ARM Microcontrollers. Electronics. 2024; 13(23):4805. https://doi.org/10.3390/electronics13234805
Chicago/Turabian StyleMeléndez Muñoz, Salvador, Emilio Silvestre Mérida, Santiago J. Fernández Scagliusi, Andreea M. Oprescu, Antonio Algarín Pérez, and Pablo Pérez García. 2024. "Design and Implementation of a Smart AC Current Source for Impedance Spectroscopy Using ARM Microcontrollers" Electronics 13, no. 23: 4805. https://doi.org/10.3390/electronics13234805
APA StyleMeléndez Muñoz, S., Silvestre Mérida, E., Fernández Scagliusi, S. J., Oprescu, A. M., Algarín Pérez, A., & Pérez García, P. (2024). Design and Implementation of a Smart AC Current Source for Impedance Spectroscopy Using ARM Microcontrollers. Electronics, 13(23), 4805. https://doi.org/10.3390/electronics13234805