
Citation: Ruiz-Beltrán, C.A.;

Romero-Garcés, A.; González-García,

M.; Marfil, R.; Bandera, A.

FPGA-Based CNN for Eye Detection

in an Iris Recognition at a Distance

System. Electronics 2023, 12, 4713.

https://doi.org/10.3390/

electronics12224713

Academic Editors: Valeri Mladenov

and D. J. Lee

Received: 13 September 2023

Revised: 10 November 2023

Accepted: 17 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

FPGA-Based CNN for Eye Detection in an Iris Recognition at a
Distance System
Camilo A. Ruiz-Beltrán , Adrián Romero-Garcés , Martín González-García , Rebeca Marfil
and Antonio Bandera ∗

Department of Electronic Technology, University of Málaga, 29071 Málaga, Spain; camilo@uma.es (C.A.R.-B.);
argarces@uma.es (A.R.-G.); martin@uma.es (M.G.-G.); rebeca@uma.es (R.M.)
* Correspondence: ajbandera@uma.es

Abstract: Neural networks are the state-of-the-art solution to image-processing tasks. Some of these
neural networks are relatively simple, but the popular convolutional neural networks (CNNs) can
consist of hundreds of layers. Unfortunately, the excellent recognition accuracy of CNNs comes at the
cost of very high computational complexity, and one of the current challenges is managing the power,
delay and physical size limitations of hardware solutions dedicated to accelerating their inference
process. In this paper, we describe the embedding of an eye detection system on a Zynq XCZU4EV
UltraScale+ multiprocessor system-on-chip (MPSoC). This eye detector is used in the application
framework of a remote iris recognition system, which requires high resolution images captured at
high speed as input. Given the high rate of eye regions detected per second, it is also important that
the detector only provides as output images eyes that are in focus, discarding all those seriously
affected by defocus blur. In this proposal, the network will be trained only with correctly focused eye
images to assess whether it can differentiate this pattern from that associated with the out-of-focus
eye image. Exploiting the neural network’s advantage of being able to work with multi-channel
input, the inputs to the CNN will be the grey level image and a high-pass filtered version, typically
used to determine whether the iris is in focus or not. The complete system synthetises other cores and
implements CNN using the so-called Deep Learning Processor Unit (DPU), the intellectual property
(IP) block released by AMD/Xilinx. Compared to previous hardware designs for implementing
FPGA-based CNNs, the DPU IP supports extensive deep learning core functions, and developers
can leverage DPUs to conveniently accelerate CNN inference. Experimental validation has been
successfully addressed in a real-world scenario working with walking subjects, demonstrating that
it is possible to detect only eye images that are in focus. This prototype module includes a CMOS
digital image sensor that provides 16 Mpixel images, and outputs a stream of detected eyes as
640 × 480 images. The module correctly discards up to 95% of the eyes present in the input images
as not being correctly focused.

Keywords: eye detection; convolutional neural networks; multiprocessor system-on-chip (MPSoC);
Deep Learning Processor Unit (DPU)

1. Introduction

Due to their exceptional performance, convolutional neural networks (CNNs) have
emerged as the state of the art in recent years for image recognition, object detection,
image segmentation and many other applications, rapidly replacing traditional computer
vision methods [1]. In brief, a CNN is a type of feedforward neural network that is
distinguished by its ability to extract the most relevant features for the task to be solved
from the data utilising convolutional structures [1]. Due to the advantages they provide,
such as local connection, weight sharing and dimensionality reduction by sampling, these
types of networks have become extremely popular in research and industry scenarios.
Nonetheless, despite their excellent performance, the high computational complexity
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associated with CNNs may pose a hindrance to their use in applications where power
consumption or device size/weight are limiting factors. For example, for the inference
of a small image (244 × 244), a large CNN may require around 40G of multiplication or
addition operations [2]. The most popular solution for handling such complexity is to
employ graphics processing units (GPUs), and make use of the degree of parallelism they
exhibit. GPUs have been widely employed for CNN training and inference, but they are
power-hungry engines, which has led to many CNN-based applications being deployed on
external servers (cloud computing).

As previously mentioned, there exists a significant niche of applications that neces-
sitate edge computing. These applications typically rely on battery power (for instance,
unmanned aerial vehicles, intelligent robotics) and/or the device’s size and weight are
key factors (Internet of Things, implanted biomedical devices). In these scenarios, it is
possible that GPUs may not be the best solution [3]; therefore, other possibilities have
been investigated, such as mobile GPUs [4], tensor processing units (TPUs) [5], field pro-
grammable gate arrays (FPGAs) [6,7], in-memory computing (iMC) [8] and application
specific integrated circuit (ASIC) [9]. Similar to the GPU, TPU power consumption can
be excessive for edge computing, with iMCs and ASICs being the most energy efficient
alternatives. In contrast, due to their lack of reprogrammability, these two options present
poor compatibility and scalability with CNN models, characterised by rapid evolution.
FPGA offers reprogrammability and, when its hardware architecture is well designed,
provides adequate energy efficiency [10,11]. FPGA can satisfy power and size constraints,
emerging as a design alternative [12]. It has both pipeline parallelism and data parallelism,
so it provides lower latency for processing tasks, becoming a high-performance and flexi-
ble accelerator for CNN inference [13]. Moreover, FPGA has nowadays been integrated
into multi-processor system-on-chips (MPSoCs), in which computer and embedded logic
elements are integrated (such as the Zynq-7000 SoC and Zynq Ultrascale+ MPSoC series of
FPGA boards). In this way, these MPSoCs provide the FPGA with the ability to accelerate
CNN inference and the computing capability to work as a stand-alone system without the
need for interfacing to an external computer/controller.

Biometric identification over long distances and with people on the move is a complex
challenge. In particular, the situation is complicated when the element used for identi-
fication is small, such as the iris, which is the highly textured, ring-shaped, externally
visible tissue present in the eye. Each iris has a unique texture pattern that allows for
unique identification of a person. This characteristic renders iris recognition identification
a popular and widely applicable solution, especially in its version of iris identification at
a distance (IAAD), which is utilised in various fields such as border control, surveillance,
law enforcement, etc. [14]. In our case, the idea is that the system can capture the iris of a
moving subject about two metres away from the camera. Like previous systems, our system
will be deployed to cover a partially controlled access point, where subjects must walk
along a guideline and look directly into the camera. People will walk through this gateway
at a normal pace and must avoid any behaviour that would impede the acquisition of the
iris image. In this scenario, the camera position will be fixed and, to cover a field of view of
a certain size, a 16 Mpixel sensor is used. There will be a single camera, which will capture
the irises with a resolution of about 190 pixels per centimetre. With these systems, one of
the big problems is that the depth of field is very limited (only about ten centimetres), so in
order to capture at least a couple of images of the irises with the necessary quality of focus,
it will be necessary to process many images per second (in our case, the maximum provided
by the sensor (47 fps)). The problem is that, as the system has about 2–3 s of recording
per user in which the eyes can be detected, the number of eye images that will have to be
sent to the external computer for processing can exceed 250 images. As a normal case, the
external computer cannot process this volume of information before the user has left the
access point. One solution to this problem is to filter out the large number of images in
which the iris is not in focus. This means discarding almost 97% of the eye images captured
by the system [15]. In this paper, we focus on one of the first steps of the iris recognition
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identification system: the detection of the eye/iris image. As reviewed in Section 2, deep
models have been intensively used for solving the eye detection task. To speed up the
hardware description process, the CNN can be deployed on the FPGA using the Deep
Learning Unit (DPU) proposed by AMD/Xilinx. DPU is a hardware engine dedicated to
neural networks. Its strength lies in its ability to accelerate convolutional computation,
maximum pooling, full connection and activation function calculation, with configurable
parameters. DPU supports classical CNN structures, such as YOLO (You Only Look Once),
VGG (Visual Geometry Group), ResNet or MobileNet. In this case, a CNN hardware and
software platform for eye detection based on DPU accelerator is synthesised in a Zynq
UltraScale+ MPSoC XCZU4EV. Tiny YOLO-v3 eye detection is deployed in the FPGA using
DPU. The computational performance and acceleration effect of DPU are analysed. To
ensure that only focused eyes are detected, use will be made of the CNN’s ability to support
multi-channel inputs. Thus, in addition to the grey level image captured by the NIR sensor,
a high-pass filtered image is introduced as a second input channel. The filter used is the one
originally proposed by J. Daugman to evaluate whether or not a detected iris was affected
by defocus blur [16] With this input, the trained network discards practically all defocused
eyes, which are not detected at all. In our scenario, this means that only 8–9 eyes per person
are detected. The implemented system includes frame grabber and eye region detection
on a single platform, and can process 87 fps, providing as output only regions containing
focused eyes.

The rest of the paper is organised as follows: The state of the art in the topic of eye de-
tection with deep models and of real-time object detection on FPGA-based devices is briefly
revised in Section 2. Section 3 provides an overview of the whole proposed framework
for image capture and eye detection and details about the DPU-based implementation.
Experimental results are presented in Section 4. Finally, conclusions and future work are
presented in Section 5.

2. Related Work

As in numerous other fields of signal processing, many of the basic tasks in computer
vision and image processing are currently dominated by the use of deep CNNs. Data
condensation and deep training aimed at enhancing the really essential information allow
CNNs to extract abstract features, which then achieve excellent results in the classification
phase [17]. This is why, in the specific field of object detection, CNN has become the state
of the art.

However, previous work has already glimpsed the potential of neural networks to
solve this problem. In the early 1990s, Waite and Vincent [18] designed a neural network
for localising eyes. Briefly, they suggested that there exist eye micro-features (e.g., top
and bottom eyelid, and left and right corners) that are invariant, and, therefore, micro-
features near image regions can be used to generate a neural network separately. Based
on this same scheme, Reinders et al. [19] proposed the detection of facial features, such
as eyes, nose or mouth, in a sequence of images using the magnitude and orientation of
the gradient as inputs to the neural network. The proposal searches a target area using
different neural networks to combine the results and locate the features. The final output of
the neural network is post-processed using a probabilistic method that takes into account
the geometric information of the micro-features.

In the iTracker [20], an end-to-end CNN is trained for eye tracking. They use as input
to the model the image of the face and its location in the image (face grid), and the images
of the eyes. The model then infers the head pose (relative to the camera) and the eye
poses (relative to the head). The CNN is similar to the popular AlexNet [21]. For real-time
inference, additional knowledge is added (face and facial landmark eye detection). Thus,
the model can run on an iPhone at 10–15 fps. Sun et al. [22] described a facial landmark
detector using a three-stage cascaded CNN. The first stage of the model provides a raw
estimate of facial points, which are refined in the next two stages. Similarly, the model
proposed by Huang et al. [23] uses two-stage cascaded CNNs. The first stage performs
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eye landmark detection and eye state estimation. Multitask learning is employed to obtain
good initial eye positions. The second stage refines the eye positions. The model proposed
by Nsaif et al. [17] also follows a multi-mission learning scheme, where Faster R-CNN
(region-based CNN) is used to detect the initial eye regions, and Gabor filters and a naïve
Bayes model is employed for fine-tuning these positions. The R-CNN was proposed as an
accurate object detector by Girschick et al. [24]. In summary, the R-CNN takes an input
image and firstly obtains bottom-up region proposals via selective search (SS). The image
region in each window is warped to a fixed size, and a pre-trained deep network is used
to compute features for each window. Then, it classifies these regions using class-specific
linear SVMs (Support Vector Machines) trained on these features. As a major disadvantage,
it applies the deep CNN for feature extraction repeatedly to all windows in the image,
which is a hard timing bottleneck [17]. To reduce the cost of the R-CNN, convolutions can
be shared across region proposals. For instance, adaptively sized pooling (Spatial Pyramid
Pooling network) SPP-Net [25] extracts the feature maps from the whole image only once,
and then it applies the spatial pyramid pooling on each region proposal (of the feature
maps) to pool a fixed-length representation of this proposal. Thus, the SSP-Net extracts
features from regions of the feature maps and not directly from image regions. It only
applies the time-consuming convolutions once. The Fast R-CNN conducts end-to-end
training on shared convolutional features [26]. It takes as input the whole image and a
set of object proposals. The entire image is then processed with several convolutional and
max-pooling layers to obtain the feature map. For each region proposal, a fixed-length
feature vector is extracted from the feature map. These feature vectors are fed into a set of
fully connected layers that finally branch into two output layers: one of them provides the
probability estimate over the set of object classes, and the other one provides the refined
bounding-box of the object. Surprisingly, these methods strive to speed up the feature
extraction process but do not consider the problem of the initial proposal of regions, which
is completely detached from the CNN. This causes the bottleneck to be in this initial phase.
To avoid this problem, Faster R-CNN is proposed [27]. Faster R-CNN consists of two
modules: a deep CNN to propose regions (the Region Proposal Network, RPN), and a
Fast R-CNN that uses these regions. Both modules are not independent, but are intimately
tied together, as the whole system is a unified network for object detection. Faster R-CNN
was implemented on AMD/Xilinx® Zynq®-based FPGA using Python productivity for
Zynq (PYNQ) [28]. The pre-trained model (Faster RCNN + Inception v2) was implemented
using TensorFlow Application Programming Interface (API). Specifically, the model was
implemented in an AMD/Xilinx® Zynq® ZCU104 FPGA (XCZU7EV-2FFVC1156 MPSoC),
and the inference time was 58 ms (17 fps). The authors argue that this inference time is
comparable to the one provided when testing in an i7 Intel® core CPU [28].

Other popular CNN-based object detectors do not consider the initial existence of
a set of region proposals. In 2016, YOLO was proposed by Redmon et al. [29]. The goal
is to accomplish the detection procedure as well as to estimate class probabilities and
bounding boxes from full images in only one evaluation. YOLO uses a straightforward
scheme based on regression to predict the detection outputs [29]. Since its creation, YOLO
has evolved through many iterations (YOLOv1, YOLO9000, YOLOv3, PP-YOLO, etc.).
The Single Shot MultiBox Detector (SSD) [30] and the CornerNet [31] are other examples
of regression-based approaches. This single-shot scheme has been preferred for FPGA
implementation. To reduce off-chip accesses, Nguyen et al. [32] proposed to retrain and
quantise the parameters of the YOLO CNN using binary weight and flexible low-bit
activation. Using a Virtex-7 VC707 FPGA device and 416 × 416 size images, they are able
to process 109.3 fps. Nakahara et al. [33] proposed a light-weight YOLOv2, which includes
a binarised CNN for feature extraction and parallel support vector regression (SVR) for
predicting the detection outputs (class estimation and bounding box prediction). To reduce
the computational complexity of SSD, Sandler et al. [34] proposed to use as base network of
SSD the MobileNetV2 mobile architecture, as well as to replace convolutions by lightweight
depthwise separable convolutions. The so-called SSDLite was implemented on FPGA by
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Kim et al. [35], achieving a relevant frame rate of 84.8 fps when implemented on Intel
Arria 10 FPGA. Building on the Tiny YOLO, the proposal by Preußer et al. [36] makes
use of the computational opportunities provided by the Zynq UltraScale+ platform in the
Programmable Logic (quantisation of the input and output layers to eight-bit fixed-point
values and binarised input layers), but also in the Processing System (multi-threading and
NEON vectorisation). Wang et al. [37] designed and implemented a hardware accelerator
based on the YOLOv3 network model. They make intensive use of Vitis AI to reduce
the network scale and decrease the access time to off-chip memory. Using a Xilinx Zynq
ZCU104, they reported a maximum frame rate of 206.37 fps (but they do not work with
a video stream, but first read a large-size image into the memory). But one of the most
widely used versions in its transfer to FPGA has been the Tiny-YOLOv3 [38]. Li et al. [39]
improve this algorithm by increasing from two-scale to three-scale detection, and merging
the batch normalisation layer with the convolution layer. Zhang et al. [40] mapped the Tiny-
YOLOv3 structure to the FPGA and optimised the accelerator architecture for Zedboard
to make it run with very limited resources. To reduce the memory size and improve the
speed, YOLOv3-tiny was compressed via a model quantisation method [41]. Specifically,
the trained model was quantised with 8-bit fixed-point and implemented on a Xilinx
Ultrascale+MPSoC ZCU102 board. They showed that the memory size of the model
decreased from 33.1 MB to 8.27 MB. The process can distinguish between two traffic signals
in real time (104.17 fps). Velicheti et al. [42] also evaluated multiple precision of Tiny-
YOLOv3 (FIXED-8, FIXED-16, FLOAT32). As a comparison with the standard version of
YOLOv3, Esen et al. [43] reported a frame rate of 41.1 fps when running the model with
images of size 224 × 224 on the ZCU102 board.

Instead of modifying the parameters/algorithm of the network models, another option
is to codesign the model and hardware architecture together. Ma et al. [44] proposed a
hardware implementation of the SSD300 algorithm based on replacing dilated convolutions
and convolutions associated with a stride of 2 with convolutions with a stride of 1, using
fixed-point arithmetic, and employing dynamic quantisation to retain the detection accuracy
of floating-point representation. Hardware/software codesign was employed to accelerate
Tiny-YOLOv3 by designing a hardware accelerator for convolution [45]. Suh et al. [46]
presented an energy-efficient accelerator on a resource-constrained FPGA. They trained the
VGG-based SSD using a uniform/unified quantisation scheme (UniPOT) and optimised the
DSP/memory utilisation employed dual-data rate DSP design to double the throughput,
and reduced DDR latency aided by DMA descriptor buffer design.

3. Methodology

The proposed system for person identification via iris recognition consists of an iris
image capture and processing unit that is located on a pole, facing an arch or access point.
The optics and sensor employed by the system allow the capture of iris images focused at
about 1.7 m from the pose location. The exposure time is very low and allows motion blur
to be ruled out when the person walks at a normal speed (1–2 m per second). However, the
depth of field is very shallow (only about 10–15 cm), so to ensure that a focused image is
captured the system is forced to work at the maximum speed of the image sensor used (a
Teledyne e2v EMERALD 16MP, which provides up to 47 fps). Figure 1 (Left) illustrates the
layout of the application scenario. The pole includes both the sensor and the capture and
processing system, as well as the lighting (51 W using high-power LEDs). If the distance
between the sensor and the subject is increased, or decreased, the optical parameters of
the system (mainly the focal length of the lens) must be adjusted to maintain the capture
resolution (a minimum of 200–250 pixels/centimetre) and to increase, as far as possible, the
depth of field. The capture and processing system is connected by cable to a computer with
an i9 Intel® processor, which is responsible for extracting the normalised iris pattern and
comparing it with the database to close the identification. These tasks are outside the scope
of this article.
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Figure 1. (Left) Layout of the application scenario; and (right) capture and processing unit. It
includes the AMD/Xilinx UltraScale+, image sensor EMERALD 16MP, optics and two additional
boards (see text for details).

The design attempts to make the image available for processing as quickly as possible.
Since the image capture is done with a custom frame grabber implemented in the logic
part of the FPGA, the most optimal way to implement the image processing is for it to be
carried out in the FPGA itself. Thus, as the image pixels are read, they can be processed.
In cases in which a GPU is used for processing, a communication channel with the frame
grabber would have to be defined to reduce latency. Options such as AMD’s DirectGMA
or NVIDIA’s GPUDirect require a PCIe bus to which both devices are connected. In
our case, the embedded device does not require a CPU or the existence of such a bus.
Embedding the processing in the FPGA reduces weight and power consumption, and the
computational power of the FPGA is comparable to that of the GPU as previous work has
demonstrated [33,47,48]. Figure 1 (Right) shows the capture and processing unit deployed
on the pole. The purpose of this unit is to capture a video stream of the person passing the
access point from which the focused images are filtered and the regions of interest (ROIs) are
detected and cropped from the input image, those ROIs contain the eye images that will be
sent to the external PC to be processed. The unit is built around a commercial AMD/Xilinx
Ultrascale+ module (the TE0820-03-4DE21FA micromodule from Trenz) and the EMERALD
16MP from Teledyne e2v. The interface between these two modules is provided by two
carrier boards. The main features of the TE0820-03-4DE21FA are summarised in Table 1.
The TE0820-03-4DE21FA is an industrial-grade MPSoC module integrating an AMD/Xilinx
Zynq™ UltraScale+™ ZU4EV, 2 GByte DDR4 SDRAM, and 128 MByte Flash memory for
configuration and operation.

The EMERALD 16MP features a small true global shutter pixel (2.8 µm) and a reduced
DSNU (Dark Signal Non-Uniformity) value. Both features are adequate for our application
scenario (low-light context due to a small exposure time and a reduced aperture). Table 2
summarises the relevant features of the EMERALD 16MP sensor.
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Table 1. Key features of the TE0820-03-4DE21FA module (https://docs.xilinx.com/v/u/en-US/ds8
91-zynq-ultrascale-plus-overview (accessed on 3 October 2023)).

AMD/Xilinx Zynq™ UltraScale+™ XCZU4EV-1SFVC784I

Logic Cells 192 K
Look Up Tables (LUTs) 88 K
DSP Slices 728 (18 × 25 MACCs)
CLB Flip-Flops 176 K
Block RAM 4.5 Mb
EMMC FLASH 8 GB
QSPI FLASH 256 Mbit
HP I/O 96
HD I/O 84

Application Processor Quad-Core ARM Cortex-A53 MPCore

Real-Time Processor Dual-core ARM Cortex-R5 MPCore

Graphics Processor Mali-400 MP2

Table 2. Key features of the EMERALD 16MP sensor (https://imaging.teledyne-e2v.com/content/
uploads/2023/06/2023-05-24_TDY-e2v_Standard-CMOS-Image-Sensors-Guide_web.pdf (accessed
on 3 October 2023)).

Resolution (pixels) 16 M
Format (H × V) 4096 × 4096
Pixel pitch (µm) 2.8
Shutter Type Global
Frame Rate (at 10 bits) 47
Output format LVDS from 8b to 12b

Previous work has solved the problem of real-time eye detection using a modified
version of the popular algorithm proposed by Viola and Jones [49]. This implementation
is very fast, and allows the eye images to be obtained at the required speed [50]. The
problem is that the system provides many false positives, which saturate the subsequent
recognition module. Many of these false positives contain out-of-focus eyes, which could be
discarded by a blur estimation module [15], but others are associated with regions that do
not contain eyes. The biggest problem with this approach lies in scalability and adaptability.
Any change involves rewriting the FPGA cores, which is time-consuming and unsuitable
for scalability. On the other hand, the use of DPUs allows for faster development since,
once the DPU is implemented in the design, it is easy to implement different models of
CNNs. Furthermore, the system can be reused to detect different objects besides the eye,
e.g., detecting the mouth to detect a yawn in a driver drowsiness detection scenario. It can
be easily retrained if problems are detected at a late stage of development, and allows for
model comparison, which helps to optimise and find the best solution.

Figure 2 shows the architecture for deploying the CNN-based eye detection flow on an
MPSoC-based platform. The input images come from the EMERALD 16M sensor. Although
the images are captured, and stored in DDR memory, in their original size, for processing
they are reduced to a size of 256 × 256 pixels. Previous work has shown that eyes are
accurately detected despite this reduction in resolution [15,50]. These scaled images are
made available to the DPU using VDMA. But the system will receive a multi-channel
input, where in addition to the input image in grey levels, a second channel will include a
high-pass filtered version. Figure 3 provides an example of what these filtered versions
look like, both for a focused image and an out-of-focus image. The grey level images in
the top row show little difference, so if you train the network with them, you will have
an in-focus or out-of-focus eye detector. The purpose of adding the high-pass filtering
features is to verify whether they allow out-of-focus eyes to go undetected. The DPU is
in charge of deep learning acceleration. The DPU requires instructions to implement the

https://docs.xilinx.com/v/u/en-US/ds891-zynq-ultrascale-plus-overview
https://docs.xilinx.com/v/u/en-US/ds891-zynq-ultrascale-plus-overview
https://imaging.teledyne-e2v.com/content/uploads/2023/06/2023-05-24_TDY-e2v_Standard-CMOS-Image-Sensors-Guide_web.pdf
https://imaging.teledyne-e2v.com/content/uploads/2023/06/2023-05-24_TDY-e2v_Standard-CMOS-Image-Sensors-Guide_web.pdf
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network, which are prepared using the Deep Neural Network Compiler (DNNC) and Deep
Neural Network Assembler (DNNAS) tools. The scaled image can be monitored via HDMI
for verification. The detected eye regions are managed via the Processing System (PS) of
the MPSoC. Briefly, the system must rescale the coordinates of the detected eyes to crop
high-resolution versions of the original 4096 × 4096 pixel images.

Figure 2. Onboard implementation for CNN-based eye detection.

Figure 3. (Left) Focused image and associated high-pass filtered image, and (right) out-of-focus
image and associated high-pass filtered image. In the bottom row, a zoomed-in image of the eye
region is provided (see text for details).

3.1. The DPU IP Core

Parallelism and ease of programming are possibly the features that justify the use of
FPGA to accelerate CNN inference [51]. To synthesise the CNN on the FPGA, two options
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can be used: describe the hardware circuit directly using Hardware Description Language
(HDL), or describe it using a high-level language (such as C/C++, System C or Matlab) and
use the High Level Synthesis (HLS) tool to generate, from this high-level code, the HDL
version. Possibly, the first option is more suitable, but it is also more time-consuming [52].
HLS can help the designer, typically more familiar with the use of high-level languages, by
allowing to speed up the writing of the code. Furthermore, apart from aiding development
from a design, HLS allows the verification of this design to be more efficient as well, as
it can be carried out with a high-level language simulator, rather than an HDL simulator.
Unlike an HDL simulation, the high-level verification does not have to simulate every
clock edge, so it is much faster. If the high-level verification is successful, the HLS tool
ensures that the generated HDL version corresponds to this description and therefore its
functionality will be equivalent. This tool has been used extensively in the design of the
cores that make up our proposal.

Despite attempts to synthetise the functional layers of the CNNs into pure FPGAs,
most current work advocates the design of heterogeneous architectures, which make use of
the FPGA but also the CPU. These platforms, such as the Xilinx Zynq SoC, allow a balance
to be struck between performance and the flexibility needed to handle the different layers
of the CNN. In our case, our aim is to implement the CNN in the programmable logic (PL)
of a XCZU4EV AMD/Xilinx Zynq UltraScale+ MPSoC. To further accelerate the process
of designing and synthesising a CNN in the logic part of the MPSoC, use will be made of
the AMD Deep Learning Processor Unit (DPU) [11]. The DPU is a programmable engine,
offered by AMD for Zynq-7000 SoC and Zynq Ultrascale+ MPSoC devices. It consists of
a Computing Engine, an Instruction Scheduler, and an On-Chip Buffer Controller (see
Figure 4). After start-up, the DPU fetches instructions and decoders via the Fetcher and
Decoder modules from the off-chip memory to control, using the Dispatcher, the operation
of the Computing Engine [51]. There is a specialised instruction set for DPU generated
via the Vitis™ AI compiler, which enables DPU to work efficiently for many CNNs (VGG,
ResNet, GoogLeNet, YOLO, SSD, MobileNet, FPN, etc.). The On-Chip Buffer Controller
manages the on-chip memory to store data (buffer input activations, intermediate feature
maps, and output meta-data). To reduce off-chip memory bandwidth, it reuses data
as much as possible. The Computing Engine implements a deep pipelined design for
convolution computation, where the PEs (Processing Elements) take full advantage of
fine-grained building blocks in the AMD/Xilinx device for constructing multipliers, adders,
etc. The DPU is implemented in the programmable logic (PL) and is integrated with the
processing system (PS) using an AXI interconnect.

In our case, the DPU targeted reference design provided by Vitis AI 3.0 was imple-
mented with AMD Vitis for the TE0820-03-4DE21FA board. The B1600 configuration of
the DPU was synthetised with default settings (Low RAM Usage, Channel augmentation
disabled, Save argmax enabled). Table 3 shows the resource utilisation. The operating fre-
quency of the DPU was 150 MHz. Petalinux 2021.2 was used to generate a Linux OS image
for the TE0820-03-4DE21FA. The CNN application running on the DPU was generated as
described in Section 3.2.2.

Table 3. Resource utilisation of the DPU targeted reference design.

Resource Utilisation Available Utilisation (%)

BRAM_18K 182 256 71
DSP48E 335 728 46
FF 94,867 175,680 54
LUT 66,758 87,840 76
URAM 24 48 50
MMCM 1 4 25
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Figure 4. Basic structure of AMD DPU.

3.2. Generation of the CNN Model
3.2.1. YOLO Version 3 Tiny

The Tiny YOLO-v3 was proposed by Joseph Redmon to reduce the complex network
(107 layers) of YOLO-v3 [53]. The aim is to increase the detection speed, providing a
network that can be executed in real-time when running in an embedded board. Briefly,
the Tiny YOLO-v3 divides up the image into a grid. Then, it predicts a three-dimensional
tensor containing objectness score, bounding box and class prediction at two different
scales (dividing the image into a 13 × 13 grid and a 26 × 26 grid). Bounding boxes without
the best objectness scores are ignored for final detections.

Figure 5 shows the complete architecture of the network. Instead of using Darknet-53
as YOLO-v3 does [53], the architecture is based on a seven-layer standard convolution
structure. In its original version, the input image is 416 × 416 pixels in size. After ten
convolutions and six max-pooling operations, the output feature maps have a size of
13 × 13 units. In addition, the feature map after the eighth convolution is convolved and
upsampled to obtain a size of 26 × 26 units. This map is concatenated with the result of the
fifth convolution and convolved to obtain a second output of size 26 × 26 units. Both output
feature maps, at two different scales, contain the prediction information about objects. The
reduction in FLOPS and model size with respect to YOLO-v3 is very significant [40,41,54],
allowing it to run on embedded devices. Although some authors point out that this
structure cannot extract higher-level semantic features, so its accuracy is lower [41], in our
application framework, in which only complete eyes of a certain size are to be detected
under the same lighting conditions, the network has proven to be efficient and accurate.
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Figure 5. The architecture of Tiny YOLO-v3. Conv Maxpool refers to convolution and max-pooling,
Conv to convolution and Concat to concatenate. The numbers indicate the size of the output of the
layer. See [54] for a detailed view of the architecture.

3.2.2. Neural Network Training

Darknet [53] is an open source framework created by Joseph Redmon, used primarily
for the implementation and creation of convolutional neural networks. Darknet makes use
of CUDA to take full advantage of the power of GPUs to accelerate the required computa-
tions. The CUDA architecture allows C/C++ developers to interface directly with Nvidia
GPUs. This allows them to take advantage of the massive parallelism and computational
power of these platforms, performing complex tasks in less time and processing large
volumes of data more efficiently. In addition, this framework is responsible for doing all
the image pre-processing, rescaling the images to the size of the neural network input and
normalising the pixels to have a smaller scale ([0, 1] instead of [0, 255]) and thus achieving
greater numerical stability that will lead to greater convergence. Once Darknet is installed,
the weights of the Tiny YOLO-v3 neural network are downloaded, the configuration file is
modified so that it can be trained with Darknet and the network is trained using a training
and validation dataset.

CASIA-Iris-Distance v4 images were used to train the network. These images show a
frontal image of the person’s face with lighting conditions that are very similar to those in
our scenario (see Figure 6). Images were captured indoors, with a distance close to 2 m, and
using a self-developed long-range multi-modal biometric image acquisition and recognition
system (LMBS). The illumination used is near-infrared. The eyes present in the 2567 images
were manually labelled. All these eyes are correctly focused, in order to condition the
subsequent operation of the detection process, and not to detect unfocused eyes.

The neural network was trained over 6000 iterations. This value is the minimum set
by the YOLO-v3 guidance since there is only one class to be detected (2000 iterations for
each type of object to be detected with a minimum total of 6000). The training loss curve is
shown in Figure 7.
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Figure 6. Images from the CASIA-Iris-Distance V4 database labelled using the labelImg framework
(https://labelstud.io/ (accessed on 9 September 2023)). The small dots in the images are the corners
of the bounding boxes that delimit eye regions.

Figure 7. Tiny YOLO-v3 Training Loss curve.

https://labelstud.io/
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Once the network was trained, several inference tests were performed on images that
were not taken into account during training. In all cases, eyes that were in focus were
correctly detected. This point is significant: the network does not detect out-of-focus eyes.
As intended by this proposal, this allows it not only to detect eyes, but also to discard
those that are not in focus. In a system that works with moving people, where up to
250 eye images can be captured in 2–3 s, being able to discard invalid eye images is really
necessary [15]. In this implementation, it will therefore not be necessary to include a
defocus blur estimation module in the system.

Because the Vitis AI toolchain only supports TensorFlow and PyTorch models, once
the network had been trained, the set of weights was converted to TensorFlow files using
the keras-YOLOv3-model-set software (https://github.com/david8862/keras-YOLOv3
-model-set (accessed on 3 September 2023)). This converter takes the Darknet weights and
configuration file to create the equivalent TensorFlow network from the provided data.
Finally, once we have the weights in Tensorflow format we must define the network graph
in a single file (freeze_graph, https://github.com/tensorflow/tensorflow/tree/master
(accessed on 10 September 2023)). The model is not ready yet since it uses float values
which are not suitable for the DPU; therefore, a quantisation process is carried out to
convert those 32-bit floating-point arithmetic values with 8-bit fixed-point; this is achieved
by means of the vitis AI tools via a quantisation process.

The DPU cores are flexible with the implementation; there are many options such
as the multiply–accumulate operations, memory usage, activation functions and softmax
core, among others. This means that the model must be compiled taking into account the
implementation details of the deployed DPU core. In Vitis AI, both the architecture of the
machine learning model and the weights and parameters needed to perform inference
on the hardware platform are encapsulated in an xmodel file extension. To generate it,
the steps of the Vitis AI workflow must be followed. Specifically, the deployed DPU has
an identification code denominated fingerprint in the form of a file arch.json, which is
generated via the Vivado synthesising tool. This file is used to encode all the properties of
the deployed DPU so the compile model can make use of all the available resources within
the core, resulting in a highly optimised DPU instruction sequence and any operation that
is not available on the DPU is carried out by the CPU.

4. Inference Results

The entire framework was validated with images captured in a real-life scenario in
order to assess its ability to detect focused eye images. When the input image size of
416 × 416 is maintained, the system detects eye regions in focus, discarding most of the
regions containing out-of-focus eyes (at a rate of close to 100%). However, the processing
rate is relatively low (29 fps). In any case, it is lower than the fps provided by of the
EMERALD sensor (47 fps). To increase this frame rate, the size of the input image of the
YOLO network can be decreased. For a size of 352 × 352 the speed increases up to 39 fps.
If we decrease this size to 320 × 320, the system is able to process 44 fps, a value very close
to the frames per second provided by the sensor. In previous work, the sensor input image
was rescaled to a size of 256 × 256 pixels [15,50]. With this size, for example, these previous
implementations using a modified Viola Jones classifier achieved 100% positive detections
in the CASIA-Iris-Distance v4 database. When the size of the input image is rescaled to this
size, the YOLO processing speed increases to 87 fps. The system correctly detects regions
with in-focus eyes, but discards regions with out-of-focus eyes to a much lesser extent (see
Figure 8). It must be noted that, in order to compare the results obtained when using one
or the other input image size, the sequences were recorded and then all the frames were
processed one by one to obtain the detections.

https://github.com/david8862/keras-YOLOv3-model-set
https://github.com/david8862/keras-YOLOv3-model-set
https://github.com/tensorflow/tensorflow/tree/master
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Figure 8. Frames of a sequence of a person passing in front of the sensor (boxes mark detected eyes):
(Top) eyes detected using a 256 × 256 input image; (Middle) eyes detected using a 352 × 352 input
image; and (Bottom) eyes detected using a 416 × 416 input image.

A measure of Mean Average Precision (mAP) can be used to evaluate the neural
network. The mAP provides a quantitative measure of the detection accuracy, considering
both the localisation accuracy and the classification accuracy of the detected objects. In our
case, using frontal face images with correctly focused eye regions as a validation database,
the mAP is 100% for input images of 256 × 256 pixels (Figure 9). That is, in these images,
all eyes are correctly detected. It is important to note that we only have one class, that
the correctly focused eyes in our scenario are always the same size, and that the lighting
conditions are always the same. For input images of 416 × 416 pixels, the mAP is reduced
to 95.31%.

Figure 9. Eyes detected using a 256 × 256 input image (boxes mark detected eyes).

Finally, the proposal’s ability to handle faces of individuals of diverse races and ages
was evaluated using the Flickr database [55]. The detected eyes are not valid for recognition,
and the images are not NIR but have been captured in visible light. However, the method is
able to detect the eyes without problem. Figure 10 shows several eye detections in images
from this database. It is important to note that the proposed method has problems detecting
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eyes in non-frontal faces, or in faces where hair partially covers the iris. In both cases, even
if the eyes were detected, it would be difficult to use them for recognition.

Figure 10. Eyes detected using 352 × 352 input images (boxes mark detected eyes). Original images
are part of the Flickr database [55].

Comparison with Prior Work on Eye Detection

In order to compare the results provided by this proposal with respect to other ap-
proaches in the literature, only 20% of the CASIA-Iris-Distance v4.0 database has been used
to retrain the network and the remaining 80% as a test set. The scheme is similar to that
used in previous proposals, which allows for comparison of the results. Table 4 shows the
results obtained via different methods using this same database for training and evaluation.
Except for our previous proposal [50] (which also runs on a Ultrascale+ XCZU4EV micro-
module), all these proposals run on an Intel i7-7700 CPU at 3.6 GHz, using an NVIDIA
GeForce GTX 1070 (1920 CUDA cores and 8 GB of memory) and 16 GB of memory [17] In
the table, we compare methods that are not based on Deep Learning techniques, such as
Uhl and Wild’s proposal [56], which detects faces and eyes, and Ruiz-Beltran et al. [50],
which focuses only on eye detection, both based on the original proposals by Viola and
Jones [49] and Lienhart and Maydt [57]. The other three methods in Table 4 are CNN-based
proposals. As described in Section 2, these approaches implement algorithms that propose
initial regions in which to locate the eyes. Faster R-CNN [27] introduces a Region Proposal
Network (RPN) that shares the convolutional features of the full image with the detection
network, allowing them to perform region proposals at almost no cost. Briefly, this RPN
component informs the network where to look. This attention scheme is also found in
FR-CNN-NB and FR-CNN-GNB [17]. The FR-CNNN-NB employs Faster R-CNN to extract
the features and obtain a first estimate of the position of the eyes, which is then enhanced
using a Bayesian model. The FR-CNN-GNB complements the previous proposal with the
use of Gaussian filters (FR-CNNN-GNB).

Table 4. Comparison of the accuracy and time of eye detection of the proposed approach with other
algorithms on the CASIA v4 Distance database.

Approach Success Rate Frames per Second (fps)

Uhl and Wild [56] 96.4% 0.78
Ruiz-Beltran et al. [50] 100% 88
Faster R-CNN [27] 98.21% 1.69
FR-CNN-NB [17] 99.1% 1.69
FR-CNN-GNB [17] 100% 1.69
Proposed (256 × 256 input images) 100% 87
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To conduct these tests, our design must read the images from the SD card present
in the hardware design. As described in Ruiz-Beltran et al. [50], the loading of the image
into the frame buffer is carried out by the ARM (PS part), which is also responsible for
managing the execution. The frame rate that can be processed per second is computed by
adding specific video analysis cores in the design. As proposed by Ruiz-Beltran et al., the
video channel rescales the image to a size of 256 × 256 pixels. It is important to note that
all other methods work with the original size of the input images (2352 × 1728 pixels).

The results obtained (100% success rate) may indicate that the model is too complex
for the problem we are solving (overfitting). The success rate in the CASIA v4 Distance
dataset is very high, but it should be noted that it is the same as that obtained in the real
scenario. In the dataset images, all the eyes present are correctly focused and therefore
detected. In the tests carried out with the system deployed in the real environment, not
a single focused eye image was not detected. However, the system has an error rate
associated with the detection of eye images that, because they are out of focus, are not
useful for recognition. This is a low rate (5–6 eye images per person passing through the
system) and totally acceptable. As mentioned above, in this system, it is not possible to
fail to detect eye images that are in focus. Significantly, the results are very similar to
those obtained by Ruiz-Beltrán et al. [50], with the advantage that the use of current deep
learning techniques allows for greater ease of training and the possibility of extending
the system, if necessary, to detect facial features other than the eyes. In addition, the eye
detection process is more robust. Figure 11 shows in its top row the detections using the
first method. False detections, caused in part by artefacts created by the normalisation
in brightness, can be seen, which should be discarded by the iris extraction system. The
method detects all eyes that appear in the input sequence. The bottom row shows the
results obtained via the proposed method. The eyes are correctly detected and there are no
false positives.

Figure 11. (Top) Eyes detected using the modified Viola-Jones approach [50]; and (Bottom) eyes de-
tected using the proposed approach (256 × 256 input images). Rectangular boxes mark detected eyes.

5. Conclusions and Future Work

To facilitate the deployment of a remote identification system based on iris recognition,
it is important to minimise the weight and power consumption of the devices, while
preserving efficiency in terms of processing speed and performance. Furthermore, given



Electronics 2023, 12, 4713 17 of 20

the large number of eyes that can be detected, and in order not to saturate later stages of
the system, it is important that the device only detects, as far as possible, those images that
contain focused eyes. This paper describes the implementation of a complete framework
for detecting correctly focused eyes, synthesised in an MPSoC and designed to meet the
constraints of remote iris recognition. The framework includes all hardware cores for image
resizing, eye detection based on the Tiny-YOLO v3 network and final cropping of the eye
images from the original input image. In order for the system to discard images of eyes
that are not correctly focused, a simple but effective scheme has been proposed. Basically,
the idea is to use as input to the system not only the captured image, but also a high-pass
filtered version of it. As pointed out by J. Daugman [16], the effect of defocusing is mainly
to attenuate the higher frequencies of the image. Tests show that, when this information is
considered in the training and classification steps, the designed system detects only focused
eye images. Like the rest of the system, the proposal has been correctly integrated into the
hardware synthesised in the MPSoC.

The proposal has been extensively evaluated in a real working environment, with
hardware selected (or custom designed) for this scenario. The system has demonstrated
its ability to capture at a distance the eye images of moving people, discarding those
affected by defocus blur. In the original input images captured by the sensor, the eye is
relatively large, allowing the system to behave correctly when the input image is reduced
to 256 × 256 pixel size. In fact, when both accuracy and speed are used as key factors in
determining system parameters, the 256 × 256 input image size provides the best results.
Thus, this size provides an accuracy of 100 percent on the validation database (images
captured by the system itself) and a processing speed of 87 fps. While it is true that the
system occasionally detects eyes that are not correctly focused, the set of unfocused images
that are discarded exceeds 95% of the eyes that appear in the input images. Since not
a single focused eye should be missed, it is preferable that the system admits a certain
amount of false positives (unfocused eyes) but maintains the referred 100% detection
of true positives (focused eyes). In summary, the proposed device functions as a smart
camera, returning as output images of 640 × 480 pixels that include captures of the eyes in
correct focus.

Future work aims to embed the later stages of the iris recognition system (iris segmen-
tation and normalisation) in the MPSoC. Regarding the eye region detection system, the
next steps will involve training the network using images captured by the system itself,
and evaluating the possibility of using a DPU that processes more multiply–accumulate
operations (MACs) per clock cycle (B2304 or B3136), for a faster network, which could
work with image sensors that provide more images per second than the one currently
deployed in the system. In addition, we are currently addressing the problem of detecting
the presence of textured contact lenses using binarised statistical image features (BSIFs)
and a set of three support vector machine (SVM)-based classifiers [58]. For integration into
the MPSoC, we are testing the possibility of estimating the three required BSIF features
for the entire image (we can achieve this simultaneously with image capture) and then
implementing the SVM classification on the dual-core ARM Cortex-R5 MPCore available
on the XCZU4EV-1SFVC784I.
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