Deep Learning-Based Small Target Detection for Satellite–Ground Free Space Optical Communications
Abstract
:1. Introduction
- To detect small targets from infrared images, we propose a DNN model that consists of a FEN, a custom FPN, and a TDN, and we evaluate the detection accuracy in various LOS link scenarios between a LEO satellite and a GS.
- Using the 2D Gaussian function and the Moffat function, we generate synthetic image datasets, which include small targets and background noise, to train the DNN model.
- In order to find the optimal combination of convolutional stages from the FEN without excessive down-sampling, we conducted an ablation study through adding or removing intermediate layers of the ResNest101-based FEN.
- The structure of the custom FPN is designed to fuse feature maps of different spatial resolutions and obtain multi-scale feature maps in which all levels, including high-resolution levels, are semantically strong.
- The TDN, which consists of a classification network in parallel with a bounding box regression network, is designed to accurately identify small infrared targets in infrared images.
2. System Model
3. Proposed Method
3.1. Small Target Images
3.1.1. 2D Gaussian Function
3.1.2. Moffat Function
3.1.3. Synthetic Image Generation
3.2. Target Detection Model
3.2.1. FEN
3.2.2. FPN
3.2.3. TDN
4. Experiments and Results
4.1. Data Generation
4.2. Target Detection Condition
4.3. Target Detection Model Parameters
4.4. Performance Evaluation Metrics
4.5. Ablation Study
4.6. Performance Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yahia, O.B.; Erdogan, E.; Kurt, G.K.; Altunbas, I.; Yanikomeroglu, H. A weather-dependent hybrid RF/FSO satellite communication for improved power efficiency. IEEE Wirel. Commun. Lett. 2021, 11, 573–577. [Google Scholar] [CrossRef]
- Le, H.D.; Pham, A.T. On the design of FSO-based satellite systems using incremental redundancy hybrid ARQ protocols with rate adaptation. IEEE Trans. Veh. Technol. 2021, 71, 463–477. [Google Scholar] [CrossRef]
- Maharjan, N.; Devkota, N.; Byung, W. Kim: Atmospheric Effects on Satellite−Ground Free Space Uplink and Downlink Optical Transmissions. Appl. Sci. 2022, 12, 10944. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Free space optical communication: Challenges and mitigation techniques. arXiv 2015, arXiv:1506.04836. [Google Scholar]
- Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 2016, 19, 57–96. [Google Scholar] [CrossRef]
- Mitchell, J. 2022 NASA Optical Communications Update. In Proceedings of the 5th Annual Directed Energy Symposium, National Harbor, MD, USA, 5–6 October 2022. [Google Scholar]
- Robinson, B.S.; Boroson, D.M.; Schieler, C.M.; Khatri, F.I.; Guldner, O.; Constatine, S.; Shih, T.; Burnside, J.W.; Bilyeu, B.C.; Hakimi, F. TeraByte InfraRed Delivery (TBIRD): A demonstration of large-volume direct-to-Earth data transfer from low-Earth orbit. In Free-Space Laser Communication and Atmospheric Propagation XXX: 29–30 January 2018, San Francisco, CA, USA; SPIE: Bellingham, DC, USA, 2018. [Google Scholar]
- Kaushal, H.; Jain, V.K.; Kar, S. Acquisition, tracking, and pointing. In Free Space Optical Communication; Springer: Berlin/Heidelberg, Germany, 2017; pp. 119–137. [Google Scholar]
- Walsh, S.M.; Karpathakis, S.F.E.; McCann, A.S.; Dix-Matthews, B.P.; Frost, A.M.; Gozzard, D.R.; Gravestock, C.T.; Schediwy, S.W. Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates. Sci. Rep. 2022, 12, 18345. [Google Scholar] [CrossRef]
- Ly, D.; Lucken, R.; Giolito, D. Correcting TLEs at epoch: Application to the GPS constellation. J. Space Saf. Eng. 2020, 7, 302–306. [Google Scholar] [CrossRef]
- Marbel, R.; Ben-Moshe, B.; Grinshpoun, T. Pico-Sat to Ground Control: Optimizing Download Link via Laser Communication. Remote Sens. 2022, 14, 3514. [Google Scholar] [CrossRef]
- Tanaka, T.; Kawamura, Y.; Tanaka, T. Development and operations of nano-satellite FITSAT-1 (NIWAKA). Acta Astronaut. 2015, 107, 112–129. [Google Scholar] [CrossRef]
- Gach, J.L.; Boutolleau, D.; Brun, C.; Carmignani, T.; Clop, F.; Feautrier, P.; Lemarchand, S.; Stadler, E.; Wanwanscappel, Y. C-RED 3: A SWIR camera for FSO application. In Free-Space Laser Communications XXXII; SPIE: Bellingham, DC, USA, 2020. [Google Scholar]
- Hansen, M.P.; Malchow, D.S. Overview of SWIR detectors, cameras, and applications. In Thermosense XXX; SPIE: Bellingham, DC, USA, 2008. [Google Scholar]
- Moradi, S.; Moallem, P.; Sabahi, M.F. A false-alarm aware methodology to develop robust and efficient multi-scale infrared small target detection algorithm. Infrared Phys. Technol. 2018, 89, 387–397. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Yuan, D.; Chen, H. Infrared small target detection based on local intensity and gradient properties. Infrared Phys. Technol. 2018, 89, 88–96. [Google Scholar] [CrossRef]
- Li, B.; Xiao, C.; Wang, L.; Wang, Y.; Lin, Z.; Li, M.; An, W.; Guo, Y. Dense nested attention network for infrared small target detection. IEEE Trans. Image Process. 2022, 32, 1745–1758. [Google Scholar] [CrossRef] [PubMed]
- Wang, k.; Du, S.; Liu, C.; Cao, Z. Interior attention-aware network for infrared small target detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Luo, H.; Wang, P.; Chen, H.; Kowelo, V.P. Small Object Detection Network Based on Feature Information Enhancement. Comput. Intell. Neurosci. 2022, 2022, 6394823. [Google Scholar] [CrossRef]
- Fan, M.; Tian, S.; Liu, K.; Zhao, J.; Li, Y. Infrared small target detection based on region proposal and CNN classifier. Signal Image Video Process. 2021, 15, 1927–1936. [Google Scholar] [CrossRef]
- Du, J.; Lu, H.; Hu, M.; Zhang, L.; Shen, X. CNN-based infrared dim small target detection algorithm using target-oriented shallow-deep features and effective small anchor. IET Image Process. 2021, 15, 1–15. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Lin, H.; Zhang, Z.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R. ResNeSt: Split-Attention Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Mojžíš, F.; Jaromir, K.; Jan, Š. Point spread functions in identification of astronomical objects from Poisson noised image. Radioengineering 2016, 25, 169. [Google Scholar] [CrossRef]
- Trujillo, I.; Aguerri, J.A.L.; Cepa, J.; Gutiérrez, C.M. The effects of seeing on Sersic profiles—II. The Moffat PSF. Mon. Not. R. Astron. Soc. 2001, 328, 977–985. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Hsieh, T.-H.; Chou, C.-L.; Lan, Y.-P.; Ting, P.-H.; Lin, C.-T. Fast and robust infrared image small target detection based on the convolution of layered gradient kernel. IEEE Access 2021, 9, 94889–94900. [Google Scholar] [CrossRef]
- Du, J.; Lu, H.; Zhang, L.; Hu, M.; Chen, S.; Deng, Y.; Shen, X.; Zhang, Y. A spatial-temporal feature-based detection framework for infrared dim small target. IEEE Trans. Geosci. Remote Sens. 2021, 60, 112. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, L.; Zhang, T.; Cao, S.; Peng, Z. Infrared small target detection via non-convex rank approximation minimization joint l2,1 norm. Remote Sens. 2018, 10, 1821. [Google Scholar] [CrossRef]
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Peng, Z.; Wang, Z.; Wang, X.; Li, M. Infrared small target detection by density peaks searching and maximum-gray region growing. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1919–1923. [Google Scholar] [CrossRef]
- Gao, C.-Q.; Tian, J.W.; Wang, P. Generalised-structure-tensor-based infrared small target detection. Electron. Lett. 2008, 44, 1. [Google Scholar] [CrossRef]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B. Searching for MobileNetV3. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
Layers | Input Map Size (Pixels) | Output Map Size (Pixels) | Down-Sampling Stride (Pixels) |
---|---|---|---|
P1 | 256 × 256 | 128 × 128 | 2 |
P2 | 128 × 128 | 64 × 64 | 2 |
P3 | 64 × 64 | 32 × 32 | 2 |
Layers | P1 | P2 | P3 |
---|---|---|---|
Size 1 | 3 | 3 | 3 |
Ratio | 1 | ||
Scale | 1 |
Dataset | Data Partition | Number of Images | SCR Ratio |
---|---|---|---|
Data 1 (Gaussian) | Training data | 5070 | 1.0 < SCR < 1.3: 41.99% 1.3 < SCR < 1.5: 58.00% |
Test data | 3380 | 1.0 < SCR < 1.3: 41.00% 1.3 < SCR < 1.5: 58.99% | |
Data 2 (Moffat) | Training data | 5070 | 1.0 < SCR < 1.3: 41.99% 1.3 < SCR < 1.5: 58.00% |
Test data | 3380 | 1.0 < SCR < 1.3: 41.00% 1.3 < SCR < 1.5: 58.99% |
Model Parameters | Value |
---|---|
Training data | 4000 |
Validation data | 1070 |
Test data | 3380 |
Learning rate | 10−5 |
Batch size | 8 |
Epochs | 15 |
FEN | Feature Combination | Pd (%) | Pf (%) | Pmd (%) | AP (%) |
---|---|---|---|---|---|
ResNest23 | Custom FPN | 99.10 | 0.80 | 0.10 | 99.20 |
ResNest32 | Custom FPN | 99.40 | 0.30 | 0.30 | 99.40 |
ResNest89 | Custom FPN | 99.10 | 0.90 | 0.00 | 99.10 |
ResNest92 | Custom FPN | 98.80 | 1.10 | 0.10 | 98.90 |
ResNet50 [23] | Feature fusion 1 | 98.30 | 1.70 | 0.00 | 95.20 |
Algorithm | Pd (%) | Pf (%) |
---|---|---|
Var_Diff [15] | 81.78 | 18.22 |
AAGD [15] | 81.75 | 18.25 |
LOG [15] | 81.48 | 18.52 |
LIG [16] | 85.62 | 14.38 |
NRAM [34] | 82.81 | 17.19 |
IPI [35] | 79.29 | 20.71 |
DPIR [36] | 44.32 | 55.68 |
GST [37] | 37.46 | 62.54 |
Proposed | 99.40 | 0.30 |
FEN | Feature Combination | Pd (%) | Pf (%) | AP |
---|---|---|---|---|
ResNet50 [23] | Feature fusion 1 | 92.93 | 7.07 | 86.88 |
Feature fusion 2 | 92.49 | 7.52 | 85.10 | |
ResNest101 | Feature fusion 1 | 88.14 | 5.36 | 81.22 |
Feature fusion 2 | 93.23 | 6.78 | 92.16 | |
ResNest32 | Custom FPN | 94.00 | 6.00 | 94.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devkota, N.; Kim, B.W. Deep Learning-Based Small Target Detection for Satellite–Ground Free Space Optical Communications. Electronics 2023, 12, 4701. https://doi.org/10.3390/electronics12224701
Devkota N, Kim BW. Deep Learning-Based Small Target Detection for Satellite–Ground Free Space Optical Communications. Electronics. 2023; 12(22):4701. https://doi.org/10.3390/electronics12224701
Chicago/Turabian StyleDevkota, Nikesh, and Byung Wook Kim. 2023. "Deep Learning-Based Small Target Detection for Satellite–Ground Free Space Optical Communications" Electronics 12, no. 22: 4701. https://doi.org/10.3390/electronics12224701
APA StyleDevkota, N., & Kim, B. W. (2023). Deep Learning-Based Small Target Detection for Satellite–Ground Free Space Optical Communications. Electronics, 12(22), 4701. https://doi.org/10.3390/electronics12224701