Anti-Inflammatory, Antipyretic, and Analgesic Potential of Chitin and Chitosan Derived from Cockroaches (Periplaneta americana) and Termites
Abstract
:1. Introduction
2. Methods and Materials
2.1. Collection of Isoptera (Termite) and Periplaneta americana
2.2. Preparation of Insect Extracts
2.3. Physical Characterization
2.3.1. FTI-R Analysis
2.3.2. X-ray Powder Diffraction (XRD) Analysis
2.4. Biological Activities
2.4.1. Assays for Analgesic Activity
2.4.2. In Vivo Assay for Anti-Inflammatory Effect
2.4.3. Antipyretic Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Fourier Transforms Infrared Spectroscopy Analysis
3.2. Termite Chitin FT-IR
3.3. X-rays Diffraction (XRD) Analysis
3.4. Analgesic Activity
3.5. Anti-Inflammatory In Vivo Assay
3.6. Antipyretic Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef]
- Kumari, S.; Rath, P.; Kumar, A.S.H.; Tiwari, T.N. Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ. Technol. Innov. 2015, 3, 77–85. [Google Scholar] [CrossRef]
- Berger, L.R.R.; Stamford, T.C.M.; de Oliveira, K.Á.R.; Pessoa, A.D.M.P.; de Lima, M.A.B.; Pintado, M.M.E.; Câmara, M.P.S.; de Oliveira Franco, L.; Magnani, M.; de Souza, E.L. Chitosan produced from Mucorales fungi using agroindustrial by-products and its efficacy to inhibit Colletotrichum species. Int. J. Biol. Macromol. 2018, 108, 635–641. [Google Scholar] [CrossRef]
- Periayah, M.H.; Halim, A.S.; Saad, A.Z.M. Chitosan: A promising marine polysaccharide for biomedical research. Pharmacogn. Rev. 2016, 10, 39. [Google Scholar] [CrossRef]
- Goy, R.C.; Britto, D.D.; Assis, O.B. Assis, A review of the antimicrobial activity of chitosan. Polímeros 2009, 19, 241–247. [Google Scholar] [CrossRef]
- Huang, R.; Liu, Q.; Huo, J.; Yang, B. Green preparation of a cellulose nanocrystals/polyvinyl alcohol composite superhydrophobic coating. RSC Adv. 2017, 7, 20152–20159. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.; Boudrant, J.; Meyer, D.; Manno, N.; DeMarchis, M.; Paoletti, M.G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym. 2012, 87, 995–1012. [Google Scholar] [CrossRef]
- Vinsova, J.; Vavrikova, E. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities—A review. Curr. Pharm. Des. 2011, 17, 3596–3607. [Google Scholar] [CrossRef]
- Mohammed, M.H.; Williams, P.A.; Tverezovskaya, O. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocoll. 2013, 31, 166–171. [Google Scholar] [CrossRef]
- Mourya, V.K.; Inamdar, N.N. Chitosan-modifications and applications: Opportunities galore. React. Funct. Polym. 2008, 68, 1013–1051. [Google Scholar] [CrossRef]
- Philippova, O.E.; Korchagina, E.V.; Volkov, E.V.; Smirnov, V.A.; Khokhlov, A.R.; Rinaudo, M. Aggregation of some water-soluble derivatives of chitin in aqueous solutions: Role of the degree of acetylation and effect of hydrogen bond breaker. Carbohydr. Polym. 2012, 87, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.C.; Salaün, F.; Giraud, S.; Ferri, A.; Chen, G.; Guan, J. Solubility of chitin: Solvents, solution behaviors, and their related mechanisms. Solubility Polysacch. 2017, 3, 20–60. [Google Scholar]
- Mullins, D.E. Physiology of environmental adaptations and resource acquisition in cockroaches. Annu. Rev. Entomol. 2015, 60, 473–492. [Google Scholar] [CrossRef] [PubMed]
- Wanule, D.; Balkhande, J.V.; Ratnakar, P.U.; Kulkarni, A.N.; Bhowate, C.S. Extraction, and FTIR analysis of chitosan from American cockroach, Periplaneta americana. Extraction 2014, 3, 299–304. [Google Scholar]
- Bignell, D.E. The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In The Mechanistic Benefits of Microbial Symbionts; Springer: Cham, Switzerland, 2016; pp. 121–172. [Google Scholar]
- Mohan, K.; Ganesan, A.R.; Muralisankar, T.; Jayakumar, R.; Sathishkumar, P.; Uthayakumar, V.; Chandirasekar, R.; Revathi, N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol. 2020, 105, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Acay, H.; Baran, M.F. Investigating antimicrobial activity of silver nanoparticles produced through the green synthesis using leaf extract of common grape (Vitis vinifera). Appl. Ecol. Environ. Res. 2019, 17, 4539–4546. [Google Scholar] [CrossRef]
- Kaya, M.; Baran, T.; Asan-Ozusaglam, M.; Cakmak, Y.S.; Tozak, K.O.; Mol, A.; Mentes, A.; Sezen, G. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnol. Bioprocess Eng. 2015, 20, 168–179. [Google Scholar] [CrossRef]
- Khan, M.S.; Ullah, S. Analgesic, anti-inflammatory, antioxidant activity and phytochemical screening of Dryopteris blanfordii plant. J. Pharmacogn. Phytochem. 2018, 115, 523–531. [Google Scholar]
- Oh, Y.C.; Jeong, Y.H.; Cho, W.K.; Ha, J.H.; Gu, M.J.; Ma, J.Y. Anti-inflammatory and analgesic effects of pyeongwisan on LPS-stimulated murine macrophages and mouse models of acetic acid-induced writhing response and xylene-induced ear edema. Int. J. Mol. Sci. 2015, 16, 1232–1251. [Google Scholar] [CrossRef]
- Sulaiman, S.; Ahmad, S.; Naz, S.S.; Qaisar, S.; Muhammad, S.; Ullah, R.; Al-Sadoon, M.K.; Gulnaz, A. Synthesis of zinc oxide-based etoricoxib and montelukast nanoformulations and their evaluation through analgesic, anti-inflammatory, antipyretic, and acute toxicity activities. J. King Saud. Univ. Sci. 2022, 34, 101938. [Google Scholar] [CrossRef]
- Ibitoye, E.B.; Lokman, I.H.; Hezmee, M.N.M.; Goh, Y.M.; Zuki, A.B.Z.; Jimoh, A.A. Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomed. Mater. 2018, 13, 025009. [Google Scholar] [CrossRef] [PubMed]
- Şenel, S.; McClure, S.J. Potential applications of chitosan in veterinary medicine. Adv. Drug Deliv. Rev. 2004, 56, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, I.; Mengíbar, M.; Harris, R.; Paños, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, Á. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 2009, 3, 203–230. [Google Scholar]
- Tavaria, F.; Jorge, M.P.; Ruiz, L.T.; Pintado, M.E.; Carvalho, J.E. Anti-proliferative, anti-inflammatory, anti-ulcerogenic and wound healing properties of chitosan. Curr. Bioact. Compd. 2016, 12, 114–122. [Google Scholar] [CrossRef]
- Jin, S.E.; Jung, J.; Jun, J.; Jeon, D.W.; Kim, H.M.; Jeong, H.J. Anti-allergic activity of crystallinity controlled N-acetyl glucosamine. Immunopharmacol. Immunotoxicol. 2012, 34, 991–1000. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Groups | Treatment | Dose mL or mg/kg | Initial Value | Final Value | % Analgesia | |
---|---|---|---|---|---|---|
Analgesic Chitin (chi) | Gr.1 | chi1 | 50 μL/mL | 68.25 ± 0.95 | 42.75 ± 1.70 | 48.02% |
Gr.2 | chi2 | 100 μL/mL | 75.00 ± 2.94 | 50.00 ± 2.58 | 56.17% | |
Gr.3 | chi3 | 500 μL/mL | 76.00 ± 5.35 | 52.25 ± 2.75 | 58.70% | |
Analgesic chitosan (chs) | Gr.1 | chs1 | 50 μL/mL | 84.25 ± 3.94 | 59.25 ± 1.70 | 66.56% |
Gr.2 | chs2 | 100 μL/mL | 66.50 ± 3.31 | 44.25 ± 2.75 | 49.71% | |
Gr.3 | chs3 | 500 μL/mL | 74.25 ± 2.75 | 55.00 ± 3.65 | 61.79% | |
Analgesic termite’s chitin (ter chi) | Gr.1 | ter chi1 | 50 μL/mL | 62.50 ± 3.00 | 40.50 ± 1.29 | 45.50% |
Gr.2 | ter chi2 | 100 μL/mL | 63.00 ± 3.16 | 45.50 ± 3.41 | 51.11% | |
Gr.3 | ter chi3 | 500 μL/mL | 72.25 ± 6.50 | 51.00 ± 8.83 | 57.30% | |
Gr.4 | Standard | 1 mL | 54.50 ± 4.14 | 44.25 ± 4.34 | 49.71% | |
Gr.5 | Control | 1% v/v | 88.75 ± 0.50 | 87.25 ± 0.95 | 73.68% |
Drug | Dose (μL/mL or mg/mL) | Temperature (°F) before Applying Yeast | Temperature (°F) after Using the Sample | ||||
---|---|---|---|---|---|---|---|
0 h | 1 h | 2 h | 3 h | 4 h | |||
Negative Control (Normal Saline) | 10% v/v | 98.7 | 101 | 101 | 101 | 101 | 101 |
Positive Control (Paracetamol) | 1 mg/mL | 98.7 | 100 | 98.8 | 98.7 | 98.7 | 98.8 |
Chitin | 50 µL/mL, 100 µL/mL and 500 µL/mL | 98.7 | 100, 99.5, 98.6 | 99.7, 99.5, 98.2 | 100, 99, 98.5 | 100, 98, 99.3 | 100.2, 99.1, 98.6 |
Chitosan | 50 µL/mL, 100 µL/mL and 500 µL/mL | 98.7 | 100.5, 99, 100 | 100.1, 99.5, 99 | 100.1, 99.4, 98 | 100.6, 98, 99.1 | 100.3, 99, 98 |
termite’s chitin | 50 µL/mL, 100 µL/mL and 500 µL/mL | 98.7 | 100.5, 99.9, 99.5 | 100, 99.6, 99.1 | 100, 99.1, 99 | 100.5, 99.9, 98 | 100, 99.2, 99.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asad, K.; Shams, S.; Ibáñez-Arancibia, E.; De los Ríos-Escalante, P.R.; Badshah, F.; Ahmad, F.; Khan, M.S.; Khan, A. Anti-Inflammatory, Antipyretic, and Analgesic Potential of Chitin and Chitosan Derived from Cockroaches (Periplaneta americana) and Termites. J. Funct. Biomater. 2024, 15, 80. https://doi.org/10.3390/jfb15030080
Asad K, Shams S, Ibáñez-Arancibia E, De los Ríos-Escalante PR, Badshah F, Ahmad F, Khan MS, Khan A. Anti-Inflammatory, Antipyretic, and Analgesic Potential of Chitin and Chitosan Derived from Cockroaches (Periplaneta americana) and Termites. Journal of Functional Biomaterials. 2024; 15(3):80. https://doi.org/10.3390/jfb15030080
Chicago/Turabian StyleAsad, Khushbakht, Sumaira Shams, Eliana Ibáñez-Arancibia, Patricio R. De los Ríos-Escalante, Farhad Badshah, Farooq Ahmad, Muhammad Salman Khan, and Asar Khan. 2024. "Anti-Inflammatory, Antipyretic, and Analgesic Potential of Chitin and Chitosan Derived from Cockroaches (Periplaneta americana) and Termites" Journal of Functional Biomaterials 15, no. 3: 80. https://doi.org/10.3390/jfb15030080
APA StyleAsad, K., Shams, S., Ibáñez-Arancibia, E., De los Ríos-Escalante, P. R., Badshah, F., Ahmad, F., Khan, M. S., & Khan, A. (2024). Anti-Inflammatory, Antipyretic, and Analgesic Potential of Chitin and Chitosan Derived from Cockroaches (Periplaneta americana) and Termites. Journal of Functional Biomaterials, 15(3), 80. https://doi.org/10.3390/jfb15030080