The Spatial Distribution Dynamics of Shark Bycatch by the Longline Fishery in the Western and Central Pacific Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fisheries Data
2.2. Environmental Data
2.3. Statistical Analysis
3. Results
3.1. Model Results
3.2. Environmental Characteristics in the High BPUE Areas
3.3. Spatial Distribution of BPUE and BR
3.4. Annual Variations in Geometric Centers
4. Discussion
4.1. Environmental Effects on BPUE
4.2. Shark Bycatch Hotspots
4.3. Bycatch Mitigation Measures Consideration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alverson, D.L.; Hughes, S.E. Bycatch: From Emotion to Effective Natural Resource Management. Rev. Fish Biol. Fish. 1996, 6, 443–462. [Google Scholar] [CrossRef]
- Komoroske, L.M.; Lewison, R.L. Addressing Fisheries Bycatch in a Changing World. Front. Mar. Sci. 2015, 2, 83. [Google Scholar] [CrossRef]
- Fortuna, C.M.; Fortibuoni, T.; Bueno-Pardo, J.; Coll, M.; Franco, A.; Giménez, J.; Stranga, Y.; Peck, M.A.; Claver, C.; Brasseur, S.; et al. Top Predator Status and Trends: Ecological Implications, Monitoring and Mitigation Strategies to Promote Ecosystem-Based Management. Front. Mar. Sci. 2024, 11, 1282091. [Google Scholar] [CrossRef]
- Roda, P.; Gilman, E.; Huntington, T.; Kennelly, S.J.; Suuronen, P.; Chaloupka, M.; Medley, P. A Third Assessment of Global Marine Fisheries Discards; FAO: Rome, Italy, 2019; ISBN 9251312265. [Google Scholar]
- Brouwer, S.; Pilling, G.; Hampton, J.; Williams, P.; McKechnie, S.; Tremblay-Boyer, L. The Western and Central Pacific Tuna Fishery: 2017 Overview and Status of Stocks; SPC: Noumea, New Caledonia, 2018; Volume 18, ISBN 978-982-00-1148-9. [Google Scholar]
- Huang, H.W.; Liu, K.-M. Bycatch and Discards by Taiwanese Large-Scale Tuna Longline Fleets in the Indian Ocean. Fish. Res. 2010, 106, 261–270. [Google Scholar] [CrossRef]
- Clarke, S.; Sato, M.; Small, C.; Sullivan, B.; Inoue, Y.; Ochi, D. Bycatch in Longline Fisheries for Tuna and Tuna-like Species: A Global Review of Status and Mitigation Measures. FAO: Rome, Italy, 2014; Volume 588, ISBN 9789251085257. [Google Scholar]
- Morgan, A.C.; Sulikowski, J.A. The Role of Spiny Dogfish in the Northeast United States Continental Shelf Ecosystem: How It Has Changed over Time and Potential Interspecific Competition for Resources. Fish. Res. 2015, 167, 260–277. [Google Scholar] [CrossRef]
- Wang, J.; Gao, C.; Wu, F.; Gao, X.; Chen, J.; Dai, X.; Tian, S.; Chen, Y. The Discards and Bycatch of Chinese Tuna Longline Fleets in the Pacific Ocean from 2010 to 2018. Biol. Conserv. 2021, 255, 109011. [Google Scholar] [CrossRef]
- Pacoureau, N.; Rigby, C.L.; Kyne, P.M.; Sherley, R.B.; Winker, H.; Carlson, J.K.; Fordham, S.V.; Barreto, R.; Fernando, D.; Francis, M.P.; et al. Half a Century of Global Decline in Oceanic Sharks and Rays. Nature 2021, 589, 567–571. [Google Scholar] [CrossRef]
- Dulvy, N.K.; Pacoureau, N.; Rigby, C.L.; Pollom, R.A.; Jabado, R.W.; Ebert, D.A.; Finucci, B.; Pollock, C.M.; Cheok, J.; Derrick, D.H.; et al. Overfishing Drives over One-Third of All Sharks and Rays toward a Global Extinction Crisis. Curr. Biol. 2021, 31, 4773–4787.e8. [Google Scholar] [CrossRef]
- Hilborn, R.; Agostini, V.N.; Chaloupka, M.; Garcia, S.M.; Gerber, L.R.; Gilman, E.; Hanich, Q.; Himes-Cornell, A.; Hobday, A.J.; Itano, D.; et al. Area-Based Management of Blue Water Fisheries: Current Knowledge and Research Needs. Fish Fish. 2021, 23, 492–518. [Google Scholar] [CrossRef]
- Braun, C.D.; Gaube, P.; Sinclair-Taylor, T.H.; Skomal, G.B.; Thorrold, S.R. Mesoscale Eddies Release Pelagic Sharks from Thermal Constraints to Foraging in the Ocean Twilight Zone. Proc. Natl. Acad. Sci. USA 2019, 116, 17187–17192. [Google Scholar] [CrossRef]
- Calich, H.; Estevanez, M.; Hammerschlag, N. Overlap between Highly Suitable Habitats and Longline Gear Management Areas Reveals Vulnerable and Protected Regions for Highly Migratory Sharks. Mar. Ecol. Prog. Ser. 2018, 602, 183–195. [Google Scholar] [CrossRef]
- Scales, K.L.; Hazen, E.L.; Jacox, M.G.; Castruccio, F.; Maxwell, S.M.; Lewison, R.L.; Bograd, S.J. Fisheries Bycatch Risk to Marine Megafauna Is Intensified in Lagrangian Coherent Structures. Proc. Natl. Acad. Sci. USA 2018, 115, 7362–7367. [Google Scholar] [CrossRef]
- Zollett, E.; Swimmer, Y. Safe Handling Practices to Increase Post-Capture Survival of Cetaceans, Sea Turtles, Seabirds, Sharks, and Billfish in Tuna Fisheries. Endanger. Species Res. 2019, 38, 115–125. [Google Scholar] [CrossRef]
- Hutchinson, M.; Bigelow, K. Quantifying Post Release Mortality Rates of Sharks Incidentally Captured in Pacific Tuna Longline Fisheries and Identifying Handling Practices to Improve Survivorship. In Proceedings of the Scientific Committee Fifteenth Regular Session, Pohnpei, Federated States of Micronesia, 12–20 August 2019; Volume 4. [Google Scholar]
- Walsh, W.A.; Kleiber, P. Generalized Additive Model and Regression Tree Analyses of Blue Shark (Prionace glauca) Catch Rates by the Hawaii-Based Commercial Longline Fishery. Fish. Res. 2001, 53, 115–131. [Google Scholar] [CrossRef]
- Acosta-Pachón, T.A.; Muzquiz-Villalobos, M.L.; Ortega-García, S.; Martínez-Rincón, R.O. Spatial Segregation of Striped Marlin (Kajikia audax) by Size in the Eastern Pacific Ocean. Fish. Oceanogr. 2019, 28, 203–211. [Google Scholar] [CrossRef]
- Lennert-Cody, C.E.; Clarke, S.C.; Aires-da-Silva, A.; Maunder, M.N.; Franks, P.J.S.; Román, M.; Miller, A.J.; Minami, M. The Importance of Environment and Life Stage on Interpretation of Silky Shark Relative Abundance Indices for the Equatorial Pacific Ocean. Fish. Oceanogr. 2019, 28, 43–53. [Google Scholar] [CrossRef]
- Lezama-Ochoa, N.; Hall, M.A.; Pennino, M.G.; Stewart, J.D.; López, J.; Murua, H. Environmental Characteristics Associated with the Presence of the Spinetail Devil Ray (Mobula mobular) in the Eastern Tropical Pacific. PLoS ONE 2019, 14, e0220854. [Google Scholar] [CrossRef]
- Marín-Enríquez, E.; Muhlia-Melo, A. Environmental and Spatial Preferences of Dolphinfish (Coryphaena spp.) in the Eastern Pacific Ocean off the Coast of Mexico. Fish. Bull. 2017, 116, 9–20. [Google Scholar] [CrossRef]
- Marín-Enríquez, E.; Seoane, J.; Muhlia-Melo, A. Environmental Modeling of Occurrence of Dolphinfish (Coryphaena spp.) in the Pacific Ocean off Mexico Reveals Seasonality in Abundance, Hot Spots and Migration Patterns. Fish. Oceanogr. 2018, 27, 28–40. [Google Scholar] [CrossRef]
- Martinez-Rincon, R.O.; Ortega-Garcia, S.; Vaca-Rodriguez, J.G.; Griffiths, S.P. Development of Habitat Prediction Models to Reduce By-Catch of Sailfish (Istiophorus platypterus) within the Purse-Seine Fishery in the Eastern Pacific Ocean. Mar. Freshw. Res. 2015, 66, 644–653. [Google Scholar] [CrossRef]
- Martínez-Rincón, R.O.; Ortega-García, S.; Vaca-Rodríguez, J.G. Comparative Performance of Generalized Additive Models and Boosted Regression Trees for Statistical Modeling of Incidental Catch of Wahoo (Acanthocybium solandri) in the Mexican Tuna Purse-Seine Fishery. Ecol. Model. 2012, 233, 20–25. [Google Scholar] [CrossRef]
- Montero, J.T.; Martinez-Rincon, R.O.; Heppell, S.S.; Hall, M.; Ewal, M. Characterizing Environmental and Spatial Variables Associated with the Incidental Catch of Olive Ridley (Lepidochelys olivacea) in the Eastern Tropical Pacific Purse-seine Fishery. Fish. Oceanogr. 2016, 25, 1–14. [Google Scholar] [CrossRef]
- Bromhead, D.; Clarke, S.; Hoyle, S.; Muller, B.; Sharples, P.; Harley, S. Identification of Factors Influencing Shark Catch and Mortality in the Marshall Islands Tuna Longline Fishery and Management Implications. J. Fish Biol. 2012, 80, 1870–1894. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Delgado, E.; Crespo-Neto, O.; Martínez-Rincón, R.O. Environmental Preferences of Sharks Bycaught by the Tuna Purse-Seine Fishery in the Eastern Pacific Ocean. Fish. Res. 2021, 243, 106076. [Google Scholar] [CrossRef]
- Kindong, R.; Sarr, O.; Wang, J.; Xia, M.; Wu, F.; Dai, L.; Tian, S.; Dai, X. Size Distribution Patterns of Silky Shark Carcharhinus Falciformis Shaped by Environmental Factors in the Pacific Ocean. Sci. Total Environ. 2022, 850, 157927. [Google Scholar] [CrossRef] [PubMed]
- Lezama-Ochoa, N.; Murua, H.; Chust, G.; Van Loon, E.; Ruiz, J.; Hall, M.; Chavance, P.; de Molina, A.D.; Villarino, E. Present and Future Potential Habitat Distribution of Carcharhinus falciformis and Canthidermis maculata By-Catch Species in the Tropical Tuna Purse-Seine Fishery under Climate Change. Front. Mar. Sci. 2016, 3, 34. [Google Scholar] [CrossRef]
- Musyl, M.K.; Brill, R.W.; Curran, D.S.; Fragoso, N.M.; McNaughton, L.M.; Nielsen, A.; Kikkawa, B.S.; Moyes, C.D. Postrelease Survival, Vertical and Horizontal Movements, and Thermal Habitats of Five Species of Pelagic Sharks in the Central Pacific Ocean. Fish. Bull. 2011, 109, 341–368. [Google Scholar]
- Bigelow, K.A.; Boggs, C.H.; HE, X. Environmental Effects on Swordfish and Blue Shark Catch Rates in the US North Pacific Longline Fishery. Fish. Oceanogr. 1999, 8, 178–198. [Google Scholar] [CrossRef]
- Pacoureau, N.; Carlson, J.K.; Kindsvater, H.K.; Rigby, C.L.; Winker, H.; Simpfendorfer, C.A.; Charvet, P.; Pollom, R.A.; Barreto, R.; Sherman, C.S.; et al. Conservation Successes and Challenges for Wide-Ranging Sharks and Rays. Proc. Natl. Acad. Sci. USA 2023, 120, e2216891120. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, R.; Hoyle, S.; Dunn, M. Identifying Appropriate Reference Points for Elasmobranchs within the WCPFC; Report to Western and Central Pacific Commission, Pohnpei, Federated States of Micronesia; CSIRO: Canberra, Australia, 2018. [Google Scholar]
- Minami, M.; Lennert-Cody, C.E.; Gao, W.; Román-Verdesoto, M. Modeling Shark Bycatch: The Zero-Inflated Negative Binomial Regression Model with Smoothing. Fish. Res. 2007, 84, 210–221. [Google Scholar] [CrossRef]
- Lin, Q.; Chen, Y.; Zhu, J. A Comparative Analysis of the Ecological Impacts of Chinese Tuna Longline Fishery on the Eastern Pacific Ocean. Ecol. Indic. 2022, 143, 109284. [Google Scholar] [CrossRef]
- Griffiths, S.P.; Duffy, L. A Preliminary Metadata Analysis of Large-Scale Tuna Longline Fishery Data in the Eastern Pacific Ocean: A Precursor to Ecological Risk Assessment. In Proceedings of the 8th Meeting of the Scientific Advisory Committee of the IATTC, La Jolla, CA, USA, 8–12 May 2017; pp. 8–12. [Google Scholar]
- Griffiths, S.; Kesner-Reyes, K.; Garilao, C.; Duffy, L.; Román, M. Ecological Assessment of the Sustainable Impacts of Fisheries (EASI-Fish): A Flexible Vulnerability Assessment Approach to Quantify the Cumulative Impacts of Fishing in Data-Limited Settings. Mar. Ecol. Prog. Ser. 2019, 625, 89–113. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Braun, C.D.; Lezama-Ochoa, N.; Farchadi, N.; Arostegui, M.C.; Alexander, M.; Allyn, A.; Bograd, S.J.; Brodie, S.; Crear, D.P.; Curtis, T.H.; et al. Widespread Habitat Loss and Redistribution of Marine Top Predators in a Changing Ocean. Sci. Adv. 2023, 9, eadi2718. [Google Scholar] [CrossRef]
- Crespo, G.O.; Dunn, D.C.; Reygondeau, G.; Boerder, K.; Worm, B.; Cheung, W.; Tittensor, D.P.; Halpin, P.N. The Environmental Niche of the Global High Seas Pelagic Longline Fleet. Sci. Adv. 2018, 4, eaat3681. [Google Scholar] [CrossRef]
- Hazen, E.L.; Scales, K.L.; Maxwell, S.M.; Briscoe, D.K.; Welch, H.; Bograd, S.J.; Bailey, H.; Benson, S.R.; Eguchi, T.; Dewar, H.; et al. A Dynamic Ocean Management Tool to Reduce Bycatch and Support Sustainable Fisheries. Sci. Adv. 2018, 4, eaar3001. [Google Scholar] [CrossRef]
- Yu, H.; Cooper, A.R.; Infante, D.M. Improving Species Distribution Model Predictive Accuracy Using Species Abundance: Application with Boosted Regression Trees. Ecol. Model. 2020, 432, 109202. [Google Scholar] [CrossRef]
- Shabani, F.; Kumar, L.; Ahmadi, M. A Comparison of Absolute Performance of Different Correlative and Mechanistic Species Distribution Models in an Independent Area. Ecol. Evol. 2016, 6, 5973–5986. [Google Scholar] [CrossRef] [PubMed]
- Norberg, A.; Abrego, N.; Blanchet, F.G.; Adler, F.R.; Anderson, B.J.; Anttila, J.; Araújo, M.B.; Dallas, T.; Dunson, D.; Elith, J.; et al. A Comprehensive Evaluation of Predictive Performance of 33 Species Distribution Models at Species and Community Levels. Ecol. Monogr. 2019, 89, e01370. [Google Scholar] [CrossRef]
- Patro, S.G.K.; Sahu, K.K. Normalization: A Preprocessing Stage. arXiv 2015, arXiv:1503.06462. [Google Scholar] [CrossRef]
- Li, G.; Cao, J.; Zou, X.; Chen, X.; Runnebaum, J. Modeling Habitat Suitability Index for Chilean Jack Mackerel (Trachurus murphyi) in the South East Pacific. Fish. Res. 2016, 178, 47–60. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.3.3; The R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- FRY, F.E.J. The Effect of Environmental Factors on the Physiology of Fish. Fish Physiol. 1971, 6, 1–98. [Google Scholar]
- Schlaff, A.M.; Heupel, M.R.; Simpfendorfer, C.A. Influence of Environmental Factors on Shark and Ray Movement, Behaviour and Habitat Use: A Review. Rev. Fish Biol. Fish. 2014, 24, 1089–1103. [Google Scholar] [CrossRef]
- Bernal, D.; Carlson, J.K.; Goldman, K.J.; Lowe, C.G. Energetics, Metabolism, and Endothermy in Sharks and Rays. In Biology of Sharks and Their Relatives; CRC Press: Boca Raton, FL, USA, 2012; Volume 211, p. 237. ISBN 9780429106545. [Google Scholar]
- Sepulveda, C.A.; Graham, J.B.; Bernal, D. Aerobic Metabolic Rates of Swimming Juvenile Mako Sharks, Isurus Oxyrinchus. Mar. Biol. 2007, 152, 1087–1094. [Google Scholar] [CrossRef]
- Waller, M.J.; Humphries, N.E.; Womersley, F.C.; Loveridge, A.; Jeffries, A.L.; Watanabe, Y.; Payne, N.; Semmens, J.; Queiroz, N.; Southall, E.J.; et al. The Vulnerability of Sharks, Skates, and Rays to Ocean Deoxygenation: Physiological Mechanisms, Behavioral Responses, and Ecological Impacts. J. Fish Biol. 2024, 105, 482–511. [Google Scholar] [CrossRef] [PubMed]
- Ainley, D.G.; Spear, L.B.; Tynan, C.T.; Barth, J.A.; Pierce, S.D.; Ford, R.G.; Cowles, T.J. Physical and Biological Variables Affecting Seabird Distributions during the Upwelling Season of the Northern California Current. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 123–143. [Google Scholar] [CrossRef]
- Assunção, R.; Lebourges-Dhaussy, A.; da Silva, A.C.; Roudaut, G.; Ariza, A.; Eduardo, L.N.; Queiroz, S.; Bertrand, A. Fine-Scale Vertical Relationships between Environmental Conditions and Sound Scattering Layers in the Southwestern Tropical Atlantic. PLoS ONE 2023, 18, e0284953. [Google Scholar] [CrossRef]
- da Costa, I.; Sims, D.W.; Loureiro, B.; Waller, M.J.; Womersley, F.C.; Loveridge, A.; Humphries, N.E.; Southall, E.J.; Vedor, M.; Mucientes, G.; et al. Measuring Deoxygenation Effects on Marine Predators: A New Animal-attached Archival Tag Recording in Situ Dissolved Oxygen, Temperature, Fine-scale Movements and Behaviour. Methods Ecol. Evol. 2024, 15, 1360–1379. [Google Scholar] [CrossRef]
- Arostegui, M.; Gaube, P.; Berumen, M.; DiGiulian, A.; Jones, B.; Røstad, A.; Braun, C. Vertical Movements of a Pelagic Thresher Shark (Alopias pelagicus): Insights into the Species’ Physiological Limitations and Trophic Ecology in the Red Sea. Endanger. Species Res. 2020, 43, 387–394. [Google Scholar] [CrossRef]
- Nasby-Lucas, N.; Dewar, H.; Lam, C.H.; Goldman, K.J.; Domeier, M.L. White Shark Offshore Habitat: A Behavioral and Environmental Characterization of the Eastern Pacific Shared Offshore Foraging Area. PLoS ONE 2009, 4, e8163. [Google Scholar] [CrossRef] [PubMed]
- Wootton, T.P.; Sepulveda, C.A.; Wegner, N.C. Gill Morphometrics of the Thresher Sharks (Genus alopias): Correlation of Gill Dimensions with Aerobic Demand and Environmental Oxygen. J. Morphol. 2015, 276, 589–600. [Google Scholar] [CrossRef]
- Holts, D.; Bedford, D. Horizontal and Vertical Movements of the Shortfin Mako Shark, Isurus oxyrinchus, in the Southern California Bight. Mar. Freshw. Res. 1993, 44, 901–909. [Google Scholar] [CrossRef]
- Melgar-Martínez, N.M.; Ortega-García, S.; Santana-Hernández, H.; Jakes-Cota, U.; Galván-Magaña, F.; Villalobos, H. Environmental Preferences and Size Variability of Carcharhinus falciformis (Müller & Henle 1839) Caught by Longline Fleet in the Central Mexican Pacific. Reg. Stud. Mar. Sci. 2024, 71, 103437. [Google Scholar] [CrossRef]
- Junyong, Y.; Feng, W.; Ruoqian, D. Study on the Factors Influencing the Bycatch of Prionace Glauca in Western and Central Pacific Longline Fisheries from 2012 to 2018. J. Shanghai Ocean Univ. 2022, 31, 691–699. (In Chinese) [Google Scholar]
- Wang, J.; Gao, C.; Wu, F.; Dai, L.; Ma, Q.; Tian, S. Environmental Characteristics Associated with the Presence of the Pelagic Stingray (Pteroplatytrygon violacea) in the Pacific High Sea. Fishes 2023, 8, 46. [Google Scholar] [CrossRef]
- Lopetegui-Eguren, L.; Poos, J.J.; Arrizabalaga, H.; Guirhem, G.L.; Murua, H.; Lezama-Ochoa, N.; Griffiths, S.P.; Gondra, J.R.; Sabarros, P.S.; Báez, J.C.; et al. Spatio-Temporal Distribution of Juvenile Oceanic Whitetip Shark Incidental Catch in the Western Indian Ocean. Front. Mar. Sci. 2022, 9, 863602. [Google Scholar] [CrossRef]
- Lezama-Ochoa, N.; Hall, M.; Román, M.; Vogel, N. Spatial and Temporal Distribution of Mobulid Ray Species in the Eastern Pacific Ocean Ascertained from Observer Data from the Tropical Tuna Purse-Seine Fishery. Environ. Biol. Fishes 2019, 102, 1–17. [Google Scholar] [CrossRef]
- Ayers, J.M.; Lozier, M.S. Physical Controls on the Seasonal Migration of the North Pacific Transition Zone Chlorophyll Front. J. Geophys. Res. Oceans 2010, 115, C05001. [Google Scholar] [CrossRef]
- Lawson, T. Estimation of Catch Rates and Catches of Key Shark Species in Tuna Fisheries of the Western and Central Pacific Ocean Using Observer Data. In Proceedings of the Scientific Committee Seventh Regular Session, Pohnpei, Federated States of Micronesia, 9–17 August 2011. [Google Scholar]
- Molony, B. Fisheries Biology and Ecology of Highly Migratory Species That Commonly Interact with Industrialised Longline and Purse-Seine Fisheries in the Western and Central Pacific Ocean. In Proceedings of the Fourth Scientific Committee Meeting of the Western and Central Pacific Fisheries Commission, Port Moresby, Papua New Guinea, 11–22 August 2008; pp. 11–22. [Google Scholar]
- Matsunaga, H.; Yokawa, K. Distribution and Ecology of Bigeye Thresher Alopias superciliosus in the Pacific Ocean. Fish. Sci. 2013, 79, 737–748. [Google Scholar] [CrossRef]
- Cronin, M.R.; Amaral, J.E.; Jackson, A.M.; Jacquet, J.; Seto, K.L.; Croll, D.A. Policy and Transparency Gaps for Oceanic Shark and Rays in High Seas Tuna Fisheries. Fish Fish. 2023, 24, 56–70. [Google Scholar] [CrossRef]
- Hall, M.; Gilman, E.; Minami, H.; Mituhasi, T.; Carruthers, E. Mitigating Bycatch in Tuna Fisheries. Rev. Fish Biol. Fish. 2017, 27, 881–908. [Google Scholar] [CrossRef]
- Game, E.T.; Grantham, H.S.; Hobday, A.J.; Pressey, R.L.; Lombard, A.T.; Beckley, L.E.; Gjerde, K.; Bustamante, R.; Possingham, H.P.; Richardson, A.J. Pelagic Protected Areas: The Missing Dimension in Ocean Conservation. Trends Ecol. Evol. 2009, 24, 360–369. [Google Scholar] [CrossRef]
- Lewison, R.; Hobday, A.J.; Maxwell, S.; Hazen, E.; Hartog, J.R.; Dunn, D.C.; Briscoe, D.; Fossette, S.; O’Keefe, C.E.; Barnes, M.; et al. Dynamic Ocean Management: Identifying the Critical Ingredients of Dynamic Approaches to Ocean Resource Management. Bioscience 2015, 65, 486–498. [Google Scholar] [CrossRef]
- Hobday, A.J.; Maxwell, S.M.; Forgie, J.; McDonald, J. Dynamic Ocean Management: Integrating Scientific and Technological Capacity with Law, Policy, and Management. Stan. Envtl. LJ 2013, 33, 125. [Google Scholar]
- Maxwell, S.M.; Hazen, E.L.; Lewison, R.L.; Dunn, D.C.; Bailey, H.; Bograd, S.J.; Briscoe, D.K.; Fossette, S.; Hobday, A.J.; Bennett, M.; et al. Dynamic Ocean Management: Defining and Conceptualizing Real-Time Management of the Ocean. Mar. Policy 2015, 58, 42–50. [Google Scholar] [CrossRef]
- Hobday, A.J.; Hartog, J.R.; Spillman, C.M.; Alves, O. Seasonal Forecasting of Tuna Habitat for Dynamic Spatial Management. Can. J. Fish. Aquat. Sci. 2011, 68, 898–911. [Google Scholar] [CrossRef]
- Howell, E.; Kobayashi, D.; Parker, D.; Balazs, G.; Polovina, A. TurtleWatch: A Tool to Aid in the Bycatch Reduction of Loggerhead Turtles Caretta Caretta in the Hawaii-Based Pelagic Longline Fishery. Endanger. Species Res. 2008, 5, 267–278. [Google Scholar] [CrossRef]
- Howell, E.A.; Hoover, A.; Benson, S.R.; Bailey, H.; Polovina, J.J.; Seminoff, J.A.; Dutton, P.H. Enhancing the TurtleWatch Product for Leatherback Sea Turtles, a Dynamic Habitat Model for Ecosystem-based Management. Fish. Oceanogr. 2015, 24, 57–68. [Google Scholar] [CrossRef]
- Hazen, E. Dynamic Ocean Management Approaches to Improve Marine Resource Sustainability. In Proceedings of the Ocean Governance in Archipelagic Regions Conference, Horta, Azores, Portugal, 7–10 October 2019; pp. 78–79. [Google Scholar]
Species | Scientific Names | Species Code | Stock Status from WCPFC | Vulnerability | IUCN Status | ||
---|---|---|---|---|---|---|---|
Overfishing | Overfished | Latest Year | |||||
North blue shark | Prionace glauca | BSH | N | N | 2022 | ≥medium | Near Threatened (2018) |
South blue shark | N | N | 2022 | ||||
North shortfin mako | Isurus oxyrinchus | SMA | N | N | 2019 | high | Endangered (2018) |
South shortfin mako | N | N | 2022 | ||||
Silky shark | Carcharhinus falciformis | FAL | Y | N | 2019 | ≥medium | Vulnerable (2017) |
Bigeye thresher shark | Alopias superciliosus | BTH | - | - | - | high | Vulnerable (2018) |
Oceanic whitetip shark | Carcharhinus longimanus | OCS | Y | Y | 2019 | ≥medium | Critically Endangered (2018) |
Longfin mako | Isurus paucus | LMA | - | - | - | high | Endangered (2018) |
Variable Acronym | Variable Name | Units | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|
SST | Sea surface temperature | °C | 0.25° | Monthly |
SSS | Sea surface salinity | PSU | 0.25° | Monthly |
SSH | Sea surface height | m | 0.25° | Monthly |
MLT | Mixed layer thickness | m | 0.25° | Monthly |
Chl | Chlorophyll-a concentration | mg/m3 | 0.25° | Monthly |
O2 | Oxygen concentration | mmol/m3 | 0.25° | Monthly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, S.; Wang, J.; Gao, X.; Yang, Y.; Huang, H. The Spatial Distribution Dynamics of Shark Bycatch by the Longline Fishery in the Western and Central Pacific Ocean. J. Mar. Sci. Eng. 2025, 13, 315. https://doi.org/10.3390/jmse13020315
Xia S, Wang J, Gao X, Yang Y, Huang H. The Spatial Distribution Dynamics of Shark Bycatch by the Longline Fishery in the Western and Central Pacific Ocean. Journal of Marine Science and Engineering. 2025; 13(2):315. https://doi.org/10.3390/jmse13020315
Chicago/Turabian StyleXia, Shengyao, Jiaqi Wang, Xiaodi Gao, Yiwei Yang, and Heyang Huang. 2025. "The Spatial Distribution Dynamics of Shark Bycatch by the Longline Fishery in the Western and Central Pacific Ocean" Journal of Marine Science and Engineering 13, no. 2: 315. https://doi.org/10.3390/jmse13020315
APA StyleXia, S., Wang, J., Gao, X., Yang, Y., & Huang, H. (2025). The Spatial Distribution Dynamics of Shark Bycatch by the Longline Fishery in the Western and Central Pacific Ocean. Journal of Marine Science and Engineering, 13(2), 315. https://doi.org/10.3390/jmse13020315