Impacts of Physical Parameterization Schemes on Typhoon Doksuri (2023) Forecasting from the Perspective of Wind–Wave Coupling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Configuration
2.1.1. Atmospheric Model
2.1.2. Wave Model
2.1.3. Experimental Designs
2.1.4. Model Verification
2.2. Data
2.3. Case Description
3. Results
3.1. Comparison of PPS Sensitivity Tests
3.1.1. TC Track and Intensity
3.1.2. Surface Heat Flux
3.2. Comparison of Wind–Wave Coupling
3.2.1. Wind Fields
3.2.2. Wave Fields
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jing, R.; Heft-Neal, S.; Chavas, D.R.; Griswold, M.; Wang, Z.; Clark-Ginsberg, A.; Guha-Sapir, D.; Bendavid, E.; Wagner, Z. Global population profile of tropical cyclone exposure from 2002 to 2019. Nature 2024, 626, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chan, K.T.F. Subsequent tropical cyclogenesis in the South China Sea induced by the pre-existing tropical cyclone over the western North Pacific: A case study. Front. Earth Sci. 2023, 11, 1235748. [Google Scholar] [CrossRef]
- Yang, J.; Chen, M. Landfalls of Tropical Cyclones with Rapid Intensification in the Western North Pacific. Nat. Hazards Earth Syst. Sci. Discuss. 2019, 2019, 1–22. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, M. Assimilation of Data Derived from Optimal-Member Products of TREPS for Convection-Permitting TC Forecasting over Southern China. Atmosphere 2019, 10, 84. [Google Scholar] [CrossRef]
- Bhatia, K.; Baker, A.; Yang, W.; Vecchi, G.; Knutson, T.; Murakami, H.; Kossin, J.; Hodges, K.; Dixon, K.; Bronselaer, B.; et al. A potential explanation for the global increase in tropical cyclone rapid intensification. Nat. Commun. 2022, 13, 6626. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Y.; Wang, S.; Toumi, R.; Song, X.; Wang, Q. Recent increases in tropical cyclone rapid intensification events in global offshore regions. Nat. Commun. 2023, 14, 5167. [Google Scholar] [CrossRef]
- Chu, P.S. Enso and tropical cyclone activity. In Hurricanes and Typhoons: Past, Present, and Potential; Murnane, R.J., Liu, K.-B., Eds.; Columbia University Press: New York, NY, USA, 2004; Volume 297, p. 332. [Google Scholar]
- Lin, I.I.; Camargo, S.J.; Patricola, C.M.; Boucharel, J.; Chand, S.; Klotzbach, P.; Chan, J.C.; Wang, B.; Chang, P.; Li, T. ENSO and tropical cyclones. In El Niño Southern Oscillation in a Changing Climate; American Geophysical Union: Washington, DC, USA, 2020; pp. 377–408. [Google Scholar]
- Guo, Y.P.; Tan, Z.M. Influence of different ENSO types on tropical cyclone rapid intensification over the western North Pacific. J. Geophys. Res. Atmos. 2021, 126, e2020JD033059. [Google Scholar] [CrossRef]
- Camargo, S.J.; Sobel, A.H. Western North Pacific tropical cyclone intensity and ENSO. J. Clim. 2005, 18, 2996–3006. [Google Scholar] [CrossRef]
- Girishkumar, M.; Ravichandran, M. The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October–December. J. Geophys. Res. Ocean 2012, 117, 1–13. [Google Scholar] [CrossRef]
- Tao, L.; Wu, L.; Wang, Y.; Yang, J. Influence of tropical Indian Ocean warming and ENSO on tropical cyclone activity over the western North Pacific. J. Meteorol. Soc. Japan. Ser. II 2012, 90, 127–144. [Google Scholar] [CrossRef]
- Feng, X.; Li, M.; Li, Y.; Yu, F.; Yang, D.; Gao, G.; Xu, L.; Yin, B.J.S.R. Typhoon storm surge in the southeast Chinese mainland modulated by ENSO. Sci. Rep. 2021, 11, 10137. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, K.T.; Vecchi, G.A.; Knutson, T.R.; Murakami, H.; Kossin, J.; Dixon, K.W.; Whitlock, C.E. Recent increases in tropical cyclone intensification rates. Nat. Commun. 2019, 10, 635. [Google Scholar] [CrossRef] [PubMed]
- Leroux, M.-D.; Wood, K.; Elsberry, R.L.; Cayanan, E.O.; Hendricks, E.; Kucas, M.; Otto, P.; Rogers, R.; Sampson, B.; Yu, Z. Recent Advances in Research and Forecasting of Tropical Cyclone Track, Intensity, and Structure at Landfall. Trop. Cyclone Res. Rev. 2018, 7, 85–105. [Google Scholar] [CrossRef]
- Roy, C.; Kovordányi, R. Tropical cyclone track forecasting techniques―A review. Atmos. Res. 2012, 104–105, 40–69. [Google Scholar] [CrossRef]
- Chan, K.T.F.; Chan, J.C.L. Sensitivity of the simulation of tropical cyclone size to microphysics schemes. Adv. Atmos. Sci. 2016, 33, 1024–1035. [Google Scholar] [CrossRef]
- Soloviev, A.V.; Lukas, R.; Donelan, M.A.; Haus, B.K.; Ginis, I. The air-sea interface and surface stress under tropical cyclones. Sci. Rep. 2014, 4, 5306. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, G.; Zhang, J.A.; Liu, L.; Liu, J.; Xu, J.; Yu, H.; Zhao, C.; Yu, X.; Sun, C. The effects of ocean surface waves on tropical cyclone intensity: Numerical simulations using a regional atmosphere-ocean-wave coupled model. J. Geophys. Res. Ocean 2022, 127, e2022JC019015. [Google Scholar] [CrossRef]
- Green, B.W.; Zhang, F. Impacts of Air–Sea Flux Parameterizations on the Intensity and Structure of Tropical Cyclones. Mon. Weather Rev. 2013, 141, 2308–2324. [Google Scholar] [CrossRef]
- Singh, V.K.; Roxy, M.K. A review of ocean-atmosphere interactions during tropical cyclones in the north Indian Ocean. Earth-Sci. Rev. 2022, 226, 103967. [Google Scholar] [CrossRef]
- Frank, W.M. The Structure and Energetics of the Tropical Cyclone II. Dynamics and Energetics. Mon. Weather Rev. 1977, 105, 1136–1150. [Google Scholar] [CrossRef]
- Bryan, G.H. Effects of Surface Exchange Coefficients and Turbulence Length Scales on the Intensity and Structure of Numerically Simulated Hurricanes. Mon. Weather Rev. 2012, 140, 1125–1143. [Google Scholar] [CrossRef]
- Zhang, H.; He, H.; Zhang, W.-Z.; Tian, D. Upper ocean response to tropical cyclones: A review. Geosci. Lett. 2021, 8, 1. [Google Scholar] [CrossRef]
- Li, Y.; Peng, S.; Wang, J.; Yan, J. Impacts of nonbreaking wave-stirring-induced mixing on the upper ocean thermal structure and typhoon intensity in the South China Sea. J. Geophys. Res. Ocean 2014, 119, 5052–5070. [Google Scholar] [CrossRef]
- Young, I.R. A review of parametric descriptions of tropical cyclone wind-wave generation. Atmosphere 2017, 8, 194. [Google Scholar] [CrossRef]
- Needham, H.F.; Keim, B.D.; Sathiaraj, D. A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Rev. Geophys. 2015, 53, 545–591. [Google Scholar] [CrossRef]
- Kutupoğlu, V.; Çakmak, R.E.; Akpınar, A.; van Vledder, G.P. Setup and evaluation of a SWAN wind wave model for the Sea of Marmara. Ocean Eng. 2018, 165, 450–464. [Google Scholar] [CrossRef]
- Smith, T.A.; Chen, S.; Campbell, T.; Martin, P.; Rogers, W.E.; Gaberšek, S.; Wang, D.; Carroll, S.; Allard, R. Ocean–wave coupled modeling in COAMPS-TC: A study of Hurricane Ivan (2004). Ocean Model. 2013, 69, 181–194. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Peng, S.; Qi, Z. The inter-annual variations of the significant wave height in the Western North Pacific and South China Sea region. Clim. Dyn. 2021, 56, 3065–3080. [Google Scholar] [CrossRef]
- Osuri, K.K.; Mohanty, U.C.; Routray, A.; Kulkarni, M.A.; Mohapatra, M. Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Nat. Hazards 2012, 63, 1337–1359. [Google Scholar] [CrossRef]
- Raju, P.; Potty, J.; Mohanty, U. Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model. Meteorol. Atmos. Phys. 2011, 113, 125–137. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y. Why is the simulated climatology of tropical cyclones so sensitive to the choice of cumulus parameterization scheme in the WRF model? Clim. Dyn. 2018, 51, 3613–3633. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System. Ocean Model. 2010, 35, 230–244. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M. A Description of the Advanced Research WRF Version 4; NCAR Technical Note NCAR/tn-556+ str 2019; NCAR: Boulder, CO, USA, 2019; Volume 145. [Google Scholar]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Ocean 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Taylor, P.K.; Yelland, M.J. The Dependence of Sea Surface Roughness on the Height and Steepness of the Waves. J. Phys. Oceanogr. 2001, 31, 572–590. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, J.; Jiang, C.; Deng, B. Simulation of extreme waves using coupled atmosphere-wave modeling system over the South China Sea. Ocean. Eng. 2021, 221, 108531. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Tao, W.K.; Wu, D.; Lang, S.; Chern, J.D.; Peters-Lidard, C.; Fridlind, A.; Matsui, T. High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos. 2016, 121, 1278–1305. [Google Scholar] [CrossRef]
- Milbrandt, J.A.; Yau, M.K. A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description. J. Atmos. Sci. 2005, 62, 3065–3081. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Hamilton, K. Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. Mon. Weather Rev. 2011, 139, 3489–3513. [Google Scholar] [CrossRef]
- Kwon, Y.C.; Hong, S.-Y. A Mass-Flux Cumulus Parameterization Scheme across Gray-Zone Resolutions. Mon. Weather Rev. 2017, 145, 583–598. [Google Scholar] [CrossRef]
- Emanuel, K. Will Global Warming Make Hurricane Forecasting More Difficult? Bull. Am. Meteorol. Soc. 2017, 98, 495–501. [Google Scholar] [CrossRef]
- Elsberry, R.L.; Chen, L.; Davidson, J.; Rogers, R.; Wang, Y.; Wu, L. Advances in Understanding and Forecasting Rapidly Changing Phenomena in Tropical Cyclones. Trop. Cyclone Res. Rev. 2013, 2, 13–24. [Google Scholar] [CrossRef]
- Zambon, J.B.; He, R.; Warner, J.C.; Hegermiller, C.A. Impact of SST and surface waves on Hurricane Florence (2018): A coupled modeling investigation. Weather Forecast. 2021, 36, 1713–1734. [Google Scholar] [CrossRef]
- Leung, N.-C.; Chow, C.-K.; Lau, D.-S.; Lam, C.-C.; Chan, P.-W. WRF-ROMS-SWAN Coupled Model Simulation Study: Effect of Atmosphere–Ocean Coupling on Sea Level Predictions Under Tropical Cyclone and Northeast Monsoon Conditions in Hong Kong. Atmosphere 2024, 15, 1242. [Google Scholar] [CrossRef]
Experiment | CTL | C1 | C2 | C3 | C4 | C5 | ||
---|---|---|---|---|---|---|---|---|
WRF | Microphysics Parameterization | WSM6 | √ | √ | ||||
Goddard 4-ice | √ | √ | ||||||
Milbrandt 2-mom | √ | √ | ||||||
Cumulus Parameterization | New Tiedtke | √ | √ | √ | ||||
KIAPS SAS (KSAS) | √ | √ | √ |
CTL | C1 | C2 | C3 | C4 | C5 | |
---|---|---|---|---|---|---|
Track bias (km) | 83.55 | 70.92 | 58.89 | 62.02 | 58.80 | 65.93 |
MSLP | MWS | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | Bias | MAE | RMSE | SD | NSE | Rate | R | Bias | MAE | RMSE | SD | NSE | Rate | |
CTL | 0.54 | 6.95 | 10.5 | 13.33 | 6.38 | 0.02 | 96.07 | 0.51 | −0.18 | 4.85 | 6.14 | 5.66 | 0.15 | 50.26 |
C1 | 0.62 | 0.03 | 9.43 | 10.58 | 7.56 | 0.38 | 52.07 | 0.47 | 1.28 | 5.63 | 6.89 | 6.45 | −0.08 | 49.79 |
C2 | 0.66 | 4.35 | 9.13 | 11.36 | 6.10 | 0.29 | 65.45 | 0.67 | 3.42 | 5.54 | 6.46 | 6.83 | 0.05 | 29.94 |
C3 | 0.59 | −1.25 | 9.36 | 10.99 | 7.67 | 0.34 | 58.55 | 0.62 | 3.73 | 5.13 | 6.56 | 5.59 | 0.02 | 51.84 |
C4 | 0.61 | 4.42 | 9.03 | 11.67 | 6.75 | 0.25 | 69.61 | 0.67 | 5.10 | 6.43 | 8.11 | 8.32 | −0.49 | 87.42 |
C5 | 0.50 | 2.76 | 9.99 | 11.97 | 7.26 | 0.21 | 78.28 | 0.56 | 2.23 | 5.48 | 6.21 | 5.45 | 0.13 | 52.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Peng, B.; Wang, W.; Chang, M.; Wang, X. Impacts of Physical Parameterization Schemes on Typhoon Doksuri (2023) Forecasting from the Perspective of Wind–Wave Coupling. J. Mar. Sci. Eng. 2025, 13, 195. https://doi.org/10.3390/jmse13020195
Li L, Peng B, Wang W, Chang M, Wang X. Impacts of Physical Parameterization Schemes on Typhoon Doksuri (2023) Forecasting from the Perspective of Wind–Wave Coupling. Journal of Marine Science and Engineering. 2025; 13(2):195. https://doi.org/10.3390/jmse13020195
Chicago/Turabian StyleLi, Lihua, Bo Peng, Weiwen Wang, Ming Chang, and Xuemei Wang. 2025. "Impacts of Physical Parameterization Schemes on Typhoon Doksuri (2023) Forecasting from the Perspective of Wind–Wave Coupling" Journal of Marine Science and Engineering 13, no. 2: 195. https://doi.org/10.3390/jmse13020195
APA StyleLi, L., Peng, B., Wang, W., Chang, M., & Wang, X. (2025). Impacts of Physical Parameterization Schemes on Typhoon Doksuri (2023) Forecasting from the Perspective of Wind–Wave Coupling. Journal of Marine Science and Engineering, 13(2), 195. https://doi.org/10.3390/jmse13020195