Three-Dimensional Reconstruction, Phenotypic Traits Extraction, and Yield Estimation of Shiitake Mushrooms Based on Structure from Motion and Multi-View Stereo
Abstract
:1. Introduction
2. Materials and Methods
- First, the YOLOv8 model segmented regions of interest (ROI) from RGB images, and the segmented images were utilized for subsequent 3D point cloud reconstruction.
- Subsequently, the obtained point cloud underwent a series of preprocessing steps, and an improved PointNet++ model, incorporating the CBAM module and Partial Convolution (PConv), was utilized for segmentation, generating point clouds for the pileus, stipe, and shiitake mushroom sawdust substrate. The region-growing algorithm and fast Euclidean clustering algorithm were then applied to segment the individual mushroom point clouds, enabling the calculation of phenotypic parameters.
- Finally, the calculated phenotypic parameters were input into machine learning algorithms for yield estimation, as outlined in the detailed workflow shown in Figure 1.
2.1. Shiitake Mushrooms Sample and Data Collection
2.2. Semantic Segmentation and 3D Reconstruction of Multi-View Images
- (1)
- Image Segmentation Based on YOLOv8
- (2)
- Shiitake mushroom Point Cloud 3D Reconstruction
2.3. Point Cloud Data Preprocessing
2.3.1. Point Cloud Down Sampling and Scale Restoration
2.3.2. Point Cloud Filtering and Coordinate Correction
2.4. Shiitake Mushrooms Spawn Point Cloud Segmentation Model
2.4.1. PointNet++ and Its Improvements
- (1)
- CP-PointNet++
- (2)
- Introduction of CBAM Module
- (3)
- Replacement of Conv with PConv
2.4.2. Pileus and Stipe Segmentation and Phenotypic Parameter Calculation
2.5. Yield Estimation
2.6. Model Training and Performance Evaluation
- (1)
- Hardware and software environment for model training
- (2)
- Semantic segmentation evaluation
- (3)
- Point cloud segmentation evaluation
- (4)
- Phenotypic parameter calculation and yield estimation evaluation
3. Results
3.1. Semantic Segmentation Results of YOLOv8x
3.2. Point Cloud Segment Results
3.3. Phenotypic Parameter Calculation Results
3.4. Yield Estimation Results
4. Discussion
4.1. 3D Reconstruction and Point Cloud Segmentation
4.2. Phenotypic Parameter Extraction and Yield Estimation of Shiitake Mushrooms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bell, V.; Silva, C.R.P.G.; Guina, J.; Fernandes, T.H. Mushrooms as Future Generation Healthy Foods. Front. Nutr. 2022, 9, 1050099. [Google Scholar] [CrossRef] [PubMed]
- EMR Mushroom Substrate Market—Size & Industry Share|2032. Available online: https://www.expertmarketresearch.com/reports/mushroom-substrate-market (accessed on 13 November 2024).
- Tao, K.; Liu, J.; Wang, Z.; Yuan, J.; Liu, L.; Liu, X. ReYOLO-MSM: A Novel Evaluation Method of Mushroom Stick for Selective Harvesting of Shiitake Mushroom Sticks. Comput. Electron. Agric. 2024, 225, 109292. [Google Scholar] [CrossRef]
- Li, Y.; Wen, W.; Miao, T.; Wu, S.; Yu, Z.; Wang, X.; Guo, X.; Zhao, C. Automatic Organ-Level Point Cloud Segmentation of Maize Shoots by Integrating High-Throughput Data Acquisition and Deep Learning. Comput. Electron. Agric. 2022, 193, 106702. [Google Scholar] [CrossRef]
- Yin, H.; Wei, Q.; Gao, Y.; Hu, H.; Wang, Y. Moving toward Smart Breeding: A Robust Amodal Segmentation Method for Occluded Oudemansiella Raphanipes Cap Size Estimation. Comput. Electron. Agric. 2024, 220, 108895. [Google Scholar] [CrossRef]
- Shi, L.; Wei, Z.; You, H.; Wang, J.; Bai, Z.; Yu, H.; Ji, R.; Bi, C. OMC-YOLO: A Lightweight Grading Detection Method for Oyster Mushrooms. Horticulturae 2024, 10, 742. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, G.; Zuo, Y.; Chen, X.; Hu, H. A Comprehensive Review of Vision-Based 3D Reconstruction Methods. Sensors 2024, 24, 2314. [Google Scholar] [CrossRef]
- Moreno, H.; Andújar, D. Proximal Sensing for Geometric Characterization of Vines: A Review of the Latest Advances. Comput. Electron. Agric. 2023, 210, 107901. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, J.; Snider, J.L.; Johnsen, K.; Li, C. Cotton Morphological Traits Tracking through Spatiotemporal Registration of Terrestrial Laser Scanning Time-Series Data. Front. Plant Sci. 2024, 15, 1436120. [Google Scholar] [CrossRef]
- Ao, Z.; Wu, F.; Hu, S.; Sun, Y.; Su, Y.; Guo, Q.; Xin, Q. Automatic Segmentation of Stem and Leaf Components and Individual Maize Plants in Field Terrestrial LiDAR Data Using Convolutional Neural Networks. Crop J. 2022, 10, 1239–1250. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Zhang, B.; Wang, Y.; Yao, J.; Zhang, X.; Fan, B.; Li, X.; Hai, Y.; Fan, X. Three-Dimensional Reconstruction and Phenotype Measurement of Maize Seedlings Based on Multi-View Image Sequences. Front. Plant Sci. 2022, 13, 974339. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, H.; Zhao, X.; Fan, C.; Cheng, M. Fast Reconstruction Method of Three-Dimension Model Based on Dual RGB-D Cameras for Peanut Plant. Plant Methods 2023, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.; Lu, J.; Wang, L.; Jiang, H.; Zhou, M. Growth Parameter Acquisition and Geometric Point Cloud Completion of Lettuce. Front. Plant Sci. 2022, 13, 947690. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Li, Z.; Yang, M.; Shao, Y.; Pu, Z.; Yang, W.; Zhai, R. Dynamic Detection of Three-Dimensional Crop Phenotypes Based on a Consumer-Grade RGB-D Camera. Front. Plant Sci. 2023, 14, 1097725. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Wei, S.; Yang, D. Morphological Measurement for Carrot Based on Three-Dimensional Reconstruction with a ToF Sensor. Postharvest Biol. Technol. 2023, 197, 112216. [Google Scholar] [CrossRef]
- He, J.Q.; Harrison, R.J.; Li, B. A Novel 3D Imaging System for Strawberry Phenotyping. Plant Methods 2017, 13, 93. [Google Scholar] [CrossRef]
- Hao, H.; Wu, S.; Li, Y.; Wen, W.; Fan, J.; Zhang, Y.; Zhuang, L.; Xu, L.; Li, H.; Guo, X.; et al. Automatic Acquisition, Analysis and Wilting Measurement of Cotton 3D Phenotype Based on Point Cloud. Biosyst. Eng. 2024, 239, 173–189. [Google Scholar] [CrossRef]
- Xiao, S.; Chai, H.; Wang, Q.; Shao, K.; Meng, L.; Wang, R.; Li, B.; Ma, Y. Estimating Economic Benefit of Sugar Beet Based on Three-Dimensional Computer Vision: A Case Study in Inner Mongolia, China. Eur. J. Agron. 2021, 130, 126378. [Google Scholar] [CrossRef]
- Xiao, S.; Ye, Y.; Fei, S.; Chen, H.; Zhang, B.; Li, Q.; Cai, Z.; Che, Y.; Wang, Q.; Ghafoor, A.; et al. High-Throughput Calculation of Organ-Scale Traits with Reconstructed Accurate 3D Canopy Structures Using a UAV RGB Camera with an Advanced Cross-Circling Oblique Route. ISPRS J. Photogramm. Remote Sens. 2023, 201, 104–122. [Google Scholar] [CrossRef]
- Xiao, S.; Fei, S.; Ye, Y.; Xu, D.; Xie, Z.; Bi, K.; Guo, Y.; Li, B.; Zhang, R.; Ma, Y. 3D Reconstruction and Characterization of Cotton Bolls in Situ Based on UAV Technology. ISPRS J. Photogramm. Remote Sens. 2024, 209, 101–116. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, Y.; Chen, H.; Wang, L.; Li, M.; Sun, X.; Fei, S.; Xiao, S.; Yan, L.; Li, Y.; et al. Improving Soybean Yield Prediction by Integrating UAV Nadir and Cross-Circling Oblique Imaging. Eur. J. Agron. 2024, 155, 127134. [Google Scholar] [CrossRef]
- He, W.; Ye, Z.; Li, M.; Yan, Y.; Lu, W.; Xing, G. Extraction of Soybean Plant Trait Parameters Based on SfM-MVS Algorithm Combined with GRNN. Front. Plant Sci. 2023, 14, 1181322. [Google Scholar] [CrossRef] [PubMed]
- Jardim, S.; António, J.; Mora, C. Image Thresholding Approaches for Medical Image Segmentation—Short Literature Review. Procedia Comput. Sci. 2023, 219, 1485–1492. [Google Scholar] [CrossRef]
- Lei, L.; Yang, Q.; Yang, L.; Shen, T.; Wang, R.; Fu, C. Deep Learning Implementation of Image Segmentation in Agricultural Applications: A Comprehensive Review. Artif. Intell. Rev. 2024, 57, 149. [Google Scholar] [CrossRef]
- Yang, D.; Yang, H.; Liu, D.; Wang, X. Research on Automatic 3D Reconstruction of Plant Phenotype Based on Multi-View Images. Comput. Electron. Agric. 2024, 220, 108866. [Google Scholar] [CrossRef]
- Mollazade, K.; Lucht, J.V.D.; Jörissen, S.; Nüchter, A. 3D Laser Imaging for Measuring Volumetric Shrinkage of Horticultural Products during Drying Process. Comput. Electron. Agric. 2023, 207, 107749. [Google Scholar] [CrossRef]
- Retsinas, G.; Efthymiou, N.; Anagnostopoulou, D.; Maragos, P. Mushroom Detection and Three Dimensional Pose Estimation from Multi-View Point Clouds. Sensors 2023, 23, 3576. [Google Scholar] [CrossRef]
- Jocher, G.; Qiu, J.; Chaurasia, A. Ultralytics YOLO 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 29 January 2025).
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. arXiv 2017, arXiv:1706.02413. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. arXiv 2018, arXiv:1807.06521. [Google Scholar]
- Chen, J.; Kao, S.; He, H.; Zhuo, W.; Wen, S.; Lee, C.-H.; Chan, S.-H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks. arXiv 2023, arXiv:2303.03667. [Google Scholar]
- Liu, C.; Kong, D.; Wang, S.; Wang, Z.; Li, J.; Yin, B. Deep3D Reconstruction: Methods, Data, and Challenges. Front. Inform. Technol. Electron. Eng. 2021, 22, 652–672. [Google Scholar] [CrossRef]
- Guo, R.; Xie, J.; Zhu, J.; Cheng, R.; Zhang, Y.; Zhang, X.; Gong, X.; Zhang, R.; Wang, H.; Meng, F. Improved 3D Point Cloud Segmentation for Accurate Phenotypic Analysis of Cabbage Plants Using Deep Learning and Clustering Algorithms. Comput. Electron. Agric. 2023, 211, 108014. [Google Scholar] [CrossRef]
- Fei, S.; Xiao, S.; Li, Q.; Shu, M.; Zhai, W.; Xiao, Y.; Chen, Z.; Yu, H.; Ma, Y. Enhancing Leaf Area Index and Biomass Estimation in Maize with Feature Augmentation from Unmanned Aerial Vehicle-Based Nadir and Cross-Circling Oblique Photography. Comput. Electron. Agric. 2023, 215, 108462. [Google Scholar] [CrossRef]
- Ghahremani, M.; Williams, K.; Corke, F.; Tiddeman, B.; Liu, Y.; Wang, X.; Doonan, J.H. Direct and Accurate Feature Extraction from 3D Point Clouds of Plants Using RANSAC. Comput. Electron. Agric. 2021, 187, 106240. [Google Scholar] [CrossRef]
- Miao, Y.; Li, S.; Wang, L.; Li, H.; Qiu, R.; Zhang, M. A Single Plant Segmentation Method of Maize Point Cloud Based on Euclidean Clustering and K-Means Clustering. Comput. Electron. Agric. 2023, 210, 107951. [Google Scholar] [CrossRef]
- Zhuang, C.; Li, S.; Ding, H. Instance Segmentation Based 6D Pose Estimation of Industrial Objects Using Point Clouds for Robotic Bin-Picking. Robot. Comput. -Integr. Manuf. 2023, 82, 102541. [Google Scholar] [CrossRef]
- Patel, A.K.; Park, E.-S.; Lee, H.; Priya, G.G.L.; Kim, H.; Joshi, R.; Arief, M.A.A.; Kim, M.S.; Baek, I.; Cho, B.-K. Deep Learning-Based Plant Organ Segmentation and Phenotyping of Sorghum Plants Using LiDAR Point Cloud. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8492–8507. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Wang, C.; Wang, C.; Gong, K.; Li, Y.; Lan, Y. Point Cloud Completion of Plant Leaves under Occlusion Conditions Based on Deep Learning. Plant Phenomics 2023, 5, 0117. [Google Scholar] [CrossRef]
- Li, Y.; Si, S.; Liu, X.; Zou, L.; Wu, W.; Liu, X.; Zhang, L. Three-Dimensional Reconstruction of Cotton Plant with Internal Canopy Occluded Structure Recovery. Comput. Electron. Agric. 2023, 215, 108370. [Google Scholar] [CrossRef]
- Yang, M.; Cho, S.-I. High-Resolution 3D Crop Reconstruction and Automatic Analysis of Phenotyping Index Using Machine Learning. Agriculture 2021, 11, 1010. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Ren, L.; Han, C.; Lv, D.; Zhang, Y.; Ai, F. Estimation of Heavy Metals in Agricultural Soils Using Vis-NIR Spectroscopy with Fractional-Order Derivative and Generalized Regression Neural Network. Remote Sens. 2021, 13, 2718. [Google Scholar] [CrossRef]
Model | P (%) | R (%) | F1 (%) | [email protected] (%) |
---|---|---|---|---|
YOLOv8x | 99.96 | 100 | 94.2 | 99.5 |
Model | OA (%) | mIoU (%) | Memory During Train (G) |
---|---|---|---|
PointNet | 88.65 | 64.18 | 3.2 |
PointNet++ MSG | 91.86 | 76.73 | 3.6 |
BASE | 89.86 | 75.14 | 3.4 |
BASE+CBAM | 96.92 | 87.62 | 3.5 |
BASE+PConv | 94.56 | 83.55 | 2.5 |
CP-PointNet++ | 97.45 | 92.71 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Li, J.; Zhou, J.; Feng, P.; Yu, H.; Ma, Y. Three-Dimensional Reconstruction, Phenotypic Traits Extraction, and Yield Estimation of Shiitake Mushrooms Based on Structure from Motion and Multi-View Stereo. Agriculture 2025, 15, 298. https://doi.org/10.3390/agriculture15030298
Xu X, Li J, Zhou J, Feng P, Yu H, Ma Y. Three-Dimensional Reconstruction, Phenotypic Traits Extraction, and Yield Estimation of Shiitake Mushrooms Based on Structure from Motion and Multi-View Stereo. Agriculture. 2025; 15(3):298. https://doi.org/10.3390/agriculture15030298
Chicago/Turabian StyleXu, Xingmei, Jiayuan Li, Jing Zhou, Puyu Feng, Helong Yu, and Yuntao Ma. 2025. "Three-Dimensional Reconstruction, Phenotypic Traits Extraction, and Yield Estimation of Shiitake Mushrooms Based on Structure from Motion and Multi-View Stereo" Agriculture 15, no. 3: 298. https://doi.org/10.3390/agriculture15030298
APA StyleXu, X., Li, J., Zhou, J., Feng, P., Yu, H., & Ma, Y. (2025). Three-Dimensional Reconstruction, Phenotypic Traits Extraction, and Yield Estimation of Shiitake Mushrooms Based on Structure from Motion and Multi-View Stereo. Agriculture, 15(3), 298. https://doi.org/10.3390/agriculture15030298