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Abstract: Stellera chamaejasme, a toxic invasive species widespread in degraded alpine
grasslands, Qinghai Province, causes a significant threat to the local ecological balance.
Accurate monitoring of the leaf chlorophyll content is essential for preventing its expansion
over large areas. This study presents an optimal approach by integrating hierarchical
dimensionality reduction, stacking ensemble learning, and 1D-CNN models to estimate
leaf chlorophyll content in S. chamaejasme using hyperspectral reflectance data. Field spec-
trometry analysis demonstrates that the combination of Pearson correlation, first derivative,
and SPA algorithms can efficiently select the most chlorophyll-sensitive wavelengths,
red-edge parameters, and spectral indices related to S. chamaejasme leaves. The stacking
ensemble model outperforms the 1D-CNN model in predicting leaf chlorophyll content of
S. chamaejasme over the whole growth stage, while the 1D-CNN excels at prediction in each
individual growth stage. Comparatively, the 1D-CNN model achieved higher accuracy
(R2 > 0.5) in all five growth stages, with optimal performance during the flower bud stage
(R2 = 0.787, RMSE = 2.476). This study underscores the potential of combining feature spec-
tra selection with machine learning and deep learning models to monitor S. chamaejasme
growth, offering valuable insights for invasive species control and ecological management.

Keywords: leaf chlorophyll; hyperspectral prediction; dimensionality reduction; stacking
ensemble learning model; 1D convolutional neural network

1. Introduction
Leaf chlorophyll is crucial for photosynthesis, and converts light energy into chemical

energy to support plant growth [1]. The leaf chlorophyll content is an indicator of plant
health and is considered a vital biochemical parameter [2–4]. Traditional determination of
leaf chlorophyll content mainly adopts the destructive sampling method, a process that is
intricate and time-consuming [5,6]. Hyperspectral remote sensing acquires the collection of
continuous narrowband spectral data related to the target, and provides swift, accurate,
and noninvasive assessment of the leaf chlorophyll content in plants [7].

Current studies mainly utilize various techniques, such as correlation analysis, princi-
pal component analysis (PCA), competitive adaptive reweighted sampling (CARS), and the
successive projection algorithm (SPA), to select feature wavelengths to calculate chlorophyll-
sensitive vegetation indices [8–10]. Furthermore, various regression models, including
linear regression, multiple linear regression (MLR), and partial least squares (PLS), are
widely used in the estimation of leaf chlorophyll content [11,12]. Nonetheless, these meth-
ods exhibit sensitivity to data noise, lack of robustness, and low computational efficiency.
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Owing to powerful modeling capability, high processing efficiency, and strong robustness,
machine learning and deep learning technologies hold great potential when integrated with
hyperspectral remote sensing in the analysis of the physicochemical parameters of plants.
Many studies present the application of machine learning and deep learning algorithms in
the hyperspectral inversion of chlorophyll content. An et al. [13] and Li et al. [14] employed
MLR, support vector machine (SVM), and random forest (RF) models to determine the
chlorophyll content in rice and potato leaves; and the results showed that the SVM and
RF models markedly promoted estimation accuracy compared to the traditional MLR.
Gan et al. [15] and Putra et al. [16] confirmed that the sparse autoencoder (SAE) model
outperformed linear regression in estimating the chlorophyll content in longan leaves
across different maturity stages. Sonobe et al. [17] found the advantages of the integration
of deep belief networks (DBNs) and RF in the estimation of chlorophyll-a and chlorophyll-b
contents in tea leaves. In recent years, some studies on the hyperspectral inversion of
chlorophyll have focused on natural grasslands. Zhang et al. [18] explored the estimation
of grassland chlorophyll content by the combination of fractional-order derivative (FOD),
least squares regression, and support vector regression (SVR) models. Ji and Liu [19]
applied the backward feature elimination (BFE) method in combination with PLS, RF, and
tree-based regression (TBR) models to estimate chlorophyll content in alpine meadows
on the Qinghai–Tibet Plateau. These models showed different suitability in terms of the
accuracy and certainty of their predictions.

Qinghai Province is one of the five principal pastoral regions in China, characterized by
abundant alpine grassland resources. The natural grasslands cover 41.867 million hectares,
occupying 60.5% of the Qinghai area. In recent decades, alpine grasslands have suffered
degradations due to climate change and human activities, accompanied by the notable
increase in toxic weeds. S. chamaejasme possesses strong environmental adaptability and
population competitiveness, and has become one of the major toxic species in moderately
to severely degraded alpine grasslands in Qinghai Province [20]. The rapid expansion of
S. chamaejasme significantly affects the alpine ecosystem balance and animal husbandry
sustainability [21]. Rapid and accurate monitoring of S. chamaejasme growth through the
hyperspectral prediction of leaf chlorophyll can offer key support for the prevention of
S. chamaejasme invasion and the management of degraded grasslands.

Therefore, the primary objectives of this study are as follows: (1) to select the chloro-
phyll content-sensitive wavelengths, parameters, and indices related to S. chamaejasme
leaves, using a hierarchical procedure which combines Pearson correlation analysis, and
first derivative and SPA algorithms; (2) to establish the comparative models for predicting
the leaf chlorophyll content in S. chamaejasme across various growth stages via the stacking
ensemble learning model and 1D-CNN model; and (3) to further determine the applicability
of machine learning and deep learning algorithms in the hyperspectral estimation of the
biochemical properties of toxic invasive species in alpine grasslands.

2. Materials and Methods
2.1. Experimental Site

S. chamaejasme is a perennial herb belonging to the Thymelaeaceae family, and the whole
plant is toxic. Its height is about 20–50 cm, characterized by a terminal head in florescence,
and it is white or red in color. The blooming occurs from late June to late July [22]. The
study area is located in Qilian County, Haibei Tibetan Autonomous Prefecture, Qinghai
Province, with average elevation of 3070 m. The region has a typical plateau continental
climate; the annual average temperature ranges from −1.1 ◦C to 0.3 ◦C, and the annual
average precipitation is about 420 mm. The main vegetation type is alpine meadow, and
the soil type is Mat Cry-gelic Cambisols. The experimental site is in Qingyangou, Babao
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Town, Qilian County, located between 100◦21′38′′ E, 38◦9′32′′ N and 100◦21′52′′ E, 38◦9′40′′

N (Figure 1). S. chamaejasme dominates in the area, and is densely distributed in patches.
Other dominant species are Anemone rivularis, Thermopsis lanceolata, Anaphalis lactea, Morina
kokonorica, and so on [23]. The community coverage ranges from 26.0% to 63.0%. The
average coverage of S. chamaejasme is 15.4%, with a maximum patch coverage of 38.5%.
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Figure 1. Location of the study area.

2.2. Field Data Collection

Field spectral reflectance and SPAD (Soil and Plant Analyzer Development) values of
S. chamaejasme leaves were collected in the middle of July 2020 and 2021. S. chamaejasme
growth was categorized into five distinct stages: the seedling stage, flower bud stage, early
flowering stage, full flowering stage, and withering stage. Plant leaves of different stages
were randomly selected in the experimental site. When sampling, the small leaves from
one side of one plant were used for spectral measurements and the leaves from the other
side were used for SPAD measurements. A total of 307 samples were collected across the
five growth stages, with sample sizes of 60, 63, 62, 61, and 61.

The reflectance spectra of S. chamaejasme leaves were measured using a leaf clip loaded
in an ASD Field Spec4 Hi-RES spectroradiometer. The instrument covers a wavelength
measurement range of 350–2500 nm, with a spectral resolution of 3 nm at 700 nm and 8 nm
at 1400/2100 nm, a spectral sampling interval of 1.4 nm from 350–1000 nm and 1.1 nm from
1001–2500 nm, a wavelength accuracy of ±0.1 nm, and a field of view of 25◦. Standard
white plate calibration was conducted prior to the spectral measuring. Five to ten leaves
were arranged in the leaf chamber flatly, ensuring no gaps between them. The measuring
was conducted 10 times for each plant sample, and the average value was calculated as
its reflectance. Konica Minolta chlorophyll meter SPAD-502 was used to measure SPAD
value of S. chamaejasme leaves. The SPAD value functions as an indicator of the chlorophyll
concentration as discussed by Yadava [24] and Ruiz-Espinoza et al. [25].

2.3. Data Preprocessing

In this study, the input spectra for the modeling of leaf chlorophyll content in S. chamae-
jasme was set to 350–1000 nm. Firstly, the Savitzky-Golay algorithm [26] with a smoothing
window of 3 × 3 was used for denoising via ViewSpecPro (version 5.6) software. The
Monte Carlo method [27] can effectively identify and remove both spectral outliers and
SPAD outliers and reasonably determine the number of samples in both the modeling and
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prediction sets. Thus, the Monte Carlo method was then applied to examine the abnormal
samples of S. chamaejasme leaf spectra and SPAD values, with the threshold of 2.5 times
the mean and standard deviation of the prediction error for the sample set. The number
of abnormal samples detected in the seedling stage, flower bud stage, early flowering
stage, full flowering stage, and withering were 2, 4, 4, 3, and 5, respectively. The remaining
samples of 58, 59, 58, 58, and 56 for the various stages were adopted for modeling and
prediction (Figure 2). The Sample Set Partitioning Based on Joint X-Y Distance (SPXY)
algorithm [28] can integrate both the spectral reflectance and SPAD value of each sample in
determining sample spacing, thereby enhancing the predictive capability. Finally, the SPXY
algorithm was employed to partition S. chamaejasme leaf samples for the various stages into
a modeling set and a validation set, maintaining a 7:3 ratio (Table 1). Data preprocessing
was performed via ViewSpecPro and MATLAB R2019b.
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Figure 2. Detection of abnormal S. chamaejasme leaf samples for various growth periods via the Monte
Carlo method. The numbers on the left of the vertical dashed lines represent 2.5 times the mean
prediction error of SPAD values. The numbers under the horizontal dashed lines represent 2.5 times
the mean standard deviation of SPAD values.

Table 1. S. chamaejasme leaf samples collected at different growth stages.

Growth Stage Sample Set Number SPAD Value Mean Standard Deviation

Seedling stage I 41 20.4~41.4 34.25 6.588
II 17 22.9~42.2 34.65 5.665

Flower bud stage I 42 20.2~38.1 34.46 6.039
II 17 19.3~43 33.39 6.979

Early flowering stage I 41 26.6~42.5 36.48 5.578
II 17 27.8~45.3 37.72 4.565

Full flowering stage I 41 28.5~42.5 37.85 5.028
II 17 30.6~43 36.41 4.153



Agriculture 2025, 15, 288 5 of 18

Table 1. Cont.

Growth Stage Sample Set Number SPAD Value Mean Standard Deviation

Withering stage I 40 35.4~45.5 40.15 4.634
II 16 31.6~46 40.7 4.65

Whole growth stage I 203 19.3~47.6 36.21 6.658
II 86 22.9~42.7 37.33 4.942

I: Modeling set; II: Validation set.

2.4. Methodology

Figure 3 shows the workflow used to predict leaf chlorophyll content in S. chamae-
jasme leaves. First, hyperspectral data preprocessing was performed, followed by feature
spectra selection using hierarchical dimensionality reduction. Next, hyperspectral pre-
diction models for leaf chlorophyll content of S. chamaejasme were established using the
stacking ensemble learning model and 1D-CNN model. Finally, the performance of the
two models was evaluated and the applicability in various growth stages of S. chamaejasme
was compared.
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2.4.1. Hierarchical Dimensionality Reduction

The first derivative (FD) of S. chamaejasme leaf reflectance was calculated to enhance
the spectral characteristics of the biochemical properties of leaves. The Pearson correlation
coefficients (r) between the FD values and the SPAD values were then determined for
various growth stages. Based on the above steps, the leaf chlorophyll content-sensitive
wavelengths with |r| ≥ 0.3 were detected (p < 0.05). The SPA algorithm [29] can remove re-
dundant information and reduce spectral dimensionality. Therefore, the SPA algorithm was
further employed to refine and determine the set of leaf chlorophyll-sensitive wavelengths.
The SPA algorithm was executed via MATLAB R2019b.

2.4.2. Red-Edge Parameter and Spectral Index Calculation

The red-edge parameter is closely related to the leaf chlorophyll content, which
changes as the growth stage progresses, and in turn leads to a more significant red shift [30].
The spectral index is created by the linear or nonlinear combination of specific spectral
bands, which serves as the indicator of vegetation growth status [31]. Qiao et al. [32]
explored the combination of red-edge parameters with spectral indices in order to improve
the monitoring of vegetation health and chlorophyll content. In order to accurately sim-
ulate the chlorophyll content of S. chamaejasme, this study referenced Cui and Zhou [33]
and Tong and He [34] and selected three red edge parameters and 12 spectral indices
(Table 2). The red-edge parameters and spectral indices were calculated from the spectra
of S. chamaejasme leaves at various growth stages. Then, Pearson correlation analysis was
performed; the red-edge parameters and vegetation indices, which were significantly corre-
lated with SPAD values (p < 0.05), were identified as the leaf chlorophyll content-sensitive
parameters/indices. These parameters and indices were calculated via Python 3.9 software.
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As a result, the selected wavelengths, red-edge parameters, and spectral indices were
used as feature spectra parameters for the following hyperspectral prediction.

Table 2. Red-edge parameters and vegetation indices.

Red-Edge Parameter Definition

Red-edge position (λr) [35]
The wavelength corresponding to the maximum
value of the first derivative spectrum within
680–760 nm.

Red-edge area (Sr) [36] The area enclosed by the first derivative
spectrum within 680–760 nm.

Red-edge amplitude (Dλr) [37] The maximum value of the first derivative
spectrum within 680–760 nm.

Spectral index Calculation formula

Normalized Difference Vegetation Index (NDVI705) [38] (R750 − R705)/(R750 + R705)
Normalized Difference Vegetation Index (NDVI) [39] (RNIR − RRED)/(RNIR + RRED)
Normalized Chlorophyll Index (NCPI) [40] (R680 − R430)/(R680 + R430)
Lobate Vegetation Index (LCI) [41] (R850 − R710)/(R850 − R680)
Photochemical Reflectance Index (PRI) [42] (R531 − R570)/(R531 + R570)
Modified Chlorophyll Absorption Reflectance Index (MCARI) [43] [(R702 − R671)−0.2(R702 − R549)] (R702/R671)
Green Normalized Difference Vegetation Index (GNDVI) [44] (R750 − R550)/(R750 + R550)
Modified Normalized Difference Vegetation Index (MNDVI) [45] (R750 − R705)/(R750 + R705−2×R445)
Soil Adjusted Vegetation Index (SAVI) [46] 1.5(R800 − R670)/(R800 − R670 + 0.5)
Enhanced Vegetation Index (EVI) [47] [2.5(R800 − R700)]/(R800 + 6R700 − 7.5R436 + 1)
Difference Vegetation Index (DVI) [48] RNIR − RRED
Ratio Vegetation Index (RVI) [49] RNIR/RRED

2.4.3. Stacking Ensemble Learning

The stacking ensemble learning model [50] integrates multiple base models through a
meta model. The learning structure consists of two levels: a primary learner and a secondary
learner. The establishment of secondary learner depends on the primary learner’s outputs
during the training processing. The procedure effectively promotes the outcome of the base
learners via a meta model, making it appropriate for addressing more intricate issues. In
this study, five algorithms were selected as base models.

• The random forest (RF) method exhibits high learning efficiency and robust general-
ization capabilities, making it appropriate for high-dimensional datasets.

• Extreme gradient boosting (XGBoost) accommodates custom loss functions, thereby
facilitating a reduction in training errors.

• K-nearest neighbour (KNN) classifies a target point on the basis of the categories of
the k-nearest sample data and operates without prior knowledge.

• The Light Gradient Boosting Machine (LightGBM) achieves high-precision predictions
from a small set of samples through the implementation of the GOSS and EFB techniques.

• Ridge regression (RR) addresses the issue of multiple collinearities by modifying the
regularization coefficient to mitigate overfitting.

Linear regression was chosen as the meta model for developing a model to estimate
the leaf chlorophyll content in S. chamaejasme leaves. Using the feature spectra parameters
as input, the five base models were trained via fivefold cross-validation. Then, based on the
derived new training set and testing set, the meta model was established by linear regres-
sion (Figure 4). A grid search method for optimizing the parameters of base models was
also involved. The method systematically explores all potential values of each parameter
to determine the optimal parameter combination for the base modes (Table 3).
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Table 3. Optimal parameter combinations for predicting leaf chlorophyll content of S. chamaejasme.

Model Parameter

Value

Seedling
Stage

Flower Bud
Stage

Early
Flowering

Stage

Full
Flowering

Stage

Withering
Stage

Whole
Growth

Stage

RF
n_estimators 104 105 105 107 104 109

Max_features 5 5 5 5 5 5

Xgboost
n_estimators 100 100 100 100 100 100

Max_depth 3 4 3 3 3 5

KNN K-neighbours 5 5 3 4 3 5

LightGBM
Max_depth 8 8 10 10 10 10

Learning_rate 0.3 0.3 0.3 0.2 0.1 0.1

RR Alpha 0.1 0.1 0.1 0.1 0.1 0.1

2.4.4. One-Dimensional Convolutional Neural Network

The convolutional neural network (CNN) is superior in local connection and parameter
sharing, which reduces the number of optimal parameters and improves model training
efficiency. The application of this method in the spectral analysis of vegetation biochemical
parameters has significant advantages. Therefore, this study explored the prediction of
the leaf chlorophyll content in S. chamaejasme via a one-dimensional convolutional neural
network (1D-CNN). Table 4 presents the model structure and parameter settings. The
model comprised two convolutional layers, each utilizing a set of filters with a specified
size of 5. The initial layer employed a standard convolution operation with a dilation factor
of 1, facilitating the fundamental features extraction from S. chamaejasme leaf spectra. The
second layer, performed with a dilation factor of 2, aimed to obtain broader contextual
information and identify intricate spectral features. To improve the model’s nonlinear
mapping ability, an ReLU activation function was incorporated with the two convolution
layers. Then, a fully connected layer was employed as the output of the model to map the
features extracted by the convolutional layers to the final prediction. The Adam optimizer
was selected for model training, with a learning rate of 0.001 over 100 iterations. Also,
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5-fold cross-validation was implemented on the training dataset to simulate the prediction
model via 1D-CNN.

Table 4. 1D-CNN model parameter settings.

Network Layer Model Parameters

Input layer Feature spectra parameter of S. chamaejasme leaves
Average pooling layer Pool size =10

Convolutional layer C1 filters = 16, filter size = 5, dilation = 1, ReLu activation function
Convolutional layer C2 filters = 32, filter size = 5, dilation = 2, ReLu activation function
Fully connected layer Linear activation function

Output layer Output prediction result

In this study, several strategies were implemented to enhance the model’s generaliza-
tion ability. Early stopping was initially used to track the loss variation on the validation set,
thereby preventing model overfitting. Data augmentation was then employed to increase
the diversity of the training data, thus improving the model’s adaptability to unfamiliar
data. Ultimately, dropout layers were introduced during training to mitigate the model’s
dependence on the training data and enhancing its robustness.

2.4.5. Accuracy Evaluation

The performance of the model was evaluated via the coefficient of determination (R2)
and the root mean square error (RMSE). The closer R2 is to 1, the greater the degree of
agreement between the model prediction and the true value. The lower the RMSE value is,
the more robust the model. The model accuracy evaluation was completed on the PyCharm
platform via Python 3.9.

R2 = 1 − ∑n
i = 1(yi − ŷi)

2

∑n
i = 1(yi − y)2 , (1)

RMSE =

√
1
n

n

∑
i = 1

(Yi − f (xi))
2 , (2)

where ŷi is the predicted value; yi is the actual value; and y is the mean value.

3. Results
3.1. Hyperspectral Response of S. chamaejasme Leaves

Figure 5 shows that the maximum, minimum, and average SPAD value of S. chamae-
jasme leaves consistently increased with the progression of the growth cycle. From the
seedling stage to the flower bud stage, the minimum and average SPAD values of S. chamae-
jasme leaves remained constant, whereas the maximum value decreased. From the early
flowering stage via full flowering stage to withering stage, all three statistical values in-
creased to different degrees, peaking at the withering stage. Notably, the minimum value
showed the most significant increase.

Figure 6 shows that the reflectance spectra of S. chamaejasme leaves at various growth
stages are consistently similar to green plants. In the visible light spectrum (350–689 nm),
the leaf chlorophyll strongly absorbs blue and red light, resulting in the formation of a
blue valley at 395–405 nm and a red valley at 670–675 nm, alongside a green peak at 550
nm owing to the partial reflection of green light. The spectral reflectance in the red edge
band (690–749 nm) increases significantly, exceeding 0.45, and a highly reflective platform
appears in the near-infrared band (750–1000 nm) with a range of 0.45–0.6. The reflectance
spectra of S. chamaejasme leaves across various growth stages are similar within the visible
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light band; however, the reflectances corresponding to the flower bud and early flowering
stages are markedly lower than those corresponding to the other growth stages.
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Figure 6. Reflectance spectra of S. chamaejasme leaves in the range of 350–1000 nm. Numbers in the
brackets represent the average SPAD values of S. chamaejasme leaves at different growth stages.

In the near-infrared band, the reflectance of leaves exhibited notable variations across
the various growth stages, which consistently increased throughout the growth cycle,
beginning at the flower bud stage and peaking at the withering stage. As the growth period
progressed from the flower bud stage, both the SPAD value and the spectral reflectance
gradually increased. The result showed that the leaf chlorophyll content increases in
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conjunction with an increase in the reflectance of S. chamaejasme leaves during the growth
period, except the seedling stage.

3.2. Extraction of Leaf Chlorophyll-Sensitive Feature Spectra

Figure 7 shows the significant differences in the correlation between the first derivative
values of the spectra of S. chamaejasme leaves at various growth stages and the SPAD values
within the range of 350–1000 nm. The distributions of the positive and negative correlation
coefficients are relatively balanced, with values ranging from −0.7 to 0.7. In this study,
the wavelengths with the |r| ≥ 0.3 are emphasized. Table 5 indicates that the wave-
lengths sensitive to leaf chlorophyll content are primarily within the ranges of 351–400 nm,
555–675 nm, 680–880 nm, and 910–970 nm. The correlation between the first-order deriva-
tive spectrum and the SPAD value is most pronounced during the flower bud stage than
during the other growth stages. The highest number of sensitive wavelengths (447) appears
in this stage, and the strongest positive and negative correlations are at 350 nm and 985
nm, with correlation coefficient values of 0.652 and −0.665, respectively. There are 225
and 186 sensitive wavelengths for the full flowering and withering stages, demonstrat-
ing a significant correlation with the SPAD values. The correlations are relatively weak
during the seedling and early flowering stages, with 140 and 120 sensitive wavelengths
identified, respectively.

Leaf chlorophyll-sensitive wavelengths with |r| ≥ 0.3 at each growth stage were
identified as input values, and SPAD values served as response values. SPA was further
performed to identify the most sensitive wavelengths at various growth stages, yielding 13,
16, 15, 19, 13, and 28, respectively. These wavelengths were selected as feature wavelengths
for hyperspectral prediction of S. chamaejasme leaf chlorophyll content (Table 6).

Table 7 indicates that with the exception of SAVI and Sr, the other red-edge parameters
and spectral indices exhibit significant correlations with the leaf SPAD values (p < 0.05).
The correlation displays positive or negative, varying with different red-edge parameters
and spectral indices. The proportion of high correlation (r ≥ 0.7) and medium correlation
(0.3 ≤ r < 0.7) is 90%, whereas the proportion of weak correlation (r < 0.3) is merely
10%. Consequently, the red-edge parameters and spectral indices of high and medium
correlations were selected as the feature parameters and indices for the leaf chlorophyll
estimation across various growth periods.
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Table 5. Leaf chlorophyll-sensitive wavelength of S. chamaejasme selected by correlation analysis
(|r| ≥ 0.30).

Growth Stage Seedling Stage Flower Bud Stage Early Flowering
Stage

Full Flowering
Stage Withering Stage

Wavelength range

351~368, 381~385,
464~470, 478~479,
540~543, 560~566,
571~576, 591~596,
692~696, 722~776,
778~784, 797~804,
820~829, 834~841,

864, 876~877,
881~882, 890~892,
896~907, 909~911,
913~952, 954~985

351~359, 398~462,
479~549, 555~671,
676~822, 915~966,

970~989,
991~1000

351~395, 491~505,
546~561, 626~672,
675~701, 948~964

351~398, 527~543,
672, 696~879,

938~961, 978~982

407~461, 488~552,
574~583, 602~624,
631~675, 680~706,
862~865, 868~870,
909~912, 966~974,

976~977

Wavelength
Number 140 447 120 225 186

Max_r −0.459 −0.665 0.475 0.401 −0.451

Wavelength_
Max_r 350 985 669 384 697

Table 6. Leaf chlorophyll-sensitive wavelength of S. chamaejasme selected by SPA (sorted by importance).

Growth Stage Wavelength/nm

Seedling stage 751, 756, 995, 677, 479, 721, 774, 561, 639, 350, 358, 934, 951

Flower bud stage 432, 577, 618, 652, 704, 778, 954, 983, 985, 699, 643, 720, 387, 470, 924, 362

Early flowering stage 379, 554, 671, 686, 652, 627, 669, 412, 428, 395, 674, 518, 961, 465, 375

Full flowering stage 388, 539, 650, 785, 866, 979, 772, 384, 387, 744, 400, 854, 428, 449, 540, 578, 374, 519, 720

Withering stage 426, 545, 694, 774, 813, 697, 962, 574, 979, 382, 750, 605, 548

Whole growth period 916, 946, 880, 968, 820, 768, 586, 569, 695, 678, 665, 621, 982, 737, 386, 389, 373, 383, 400,
711, 551, 522, 646, 380, 394, 408, 426, 473

Table 7. Pearson correlation between SPAD values and red-edge parameters and spectral indices.

Spectral Index

Correlation Coefficient (r)

Seedling Stage Flower Bud
Stage

Early
Flowering

Stage

Full Flowering
Stage

Withering
Stage

Whole Growth
Stage

NDVI −0.382 * −0.332 * −0.442 * −0.210 * −0.441 * −0.423 *
NDVI705 −0.427 * −0.245 * −0.563 * −0.331 * −0.562 * −0.545 *

NCPI −0.562 * −0.367 * −0.604 * −0.452 * −0.603 * −0.666 *
LCI 0.368 * 0.489 * 0.187 * 0.573 * 0.345 * 0.444 *
PRI 0.588 * 0.512 * 0.209 * 0.644 * 0.467 * 0.567 *

SAVI 0.302 0.634 0.330 0.232 0.589 0.600
MCARI −0.412 * −0.156 * −0.451 * −0.353 * −0.621 * −0.468 *
GNDVI 0.651 * 0.278 * 0.572 * 0.474 * 0.368 * 0.588 *
MNDVI 0.653 * 0.390 * 0.613 * 0.595* 0.480 * 0.620 *

EVI 0.611 * 0.412 * 0.198 * 0.616 * 0.511 * 0.489 *
DVI 0.568 * 0.534 * 0.220 * 0.301 * 0.632 * 0.510 *
RVI −0.391 * −0.656 * −0.341 * −0.422 * −0.399 * −0.633 *
λr 0.609 * 0.378 * 0.462 * 0.543 * 0.410 * 0.499 *
Sr 0.333 0.399 0.583 0.664 0.531 0.555

Dλr −0.554 * −0.321 * −0.624 * −0.320* −0.652 * −0.645 *

* p < 0.05.
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3.3. Establishment of Models for Predicting Leaf Chlorophyll Content

The selected feature wavelength, parameters, and indices served as the input, and the
SPAD values as the output; the models for predicting leaf chlorophyll content were developed
via the stacking ensemble learning model and the 1D-CNN model. Figures 8 and 9 indicate that
the prediction accuracy for the seedling and flower bud stages is optimal with R2 greater than
0.65 and RMSE less than 3.5. In contrast, the prediction accuracy for the early flowering, full
flowering, withering stages, and the entire growth stage is relatively lower, as indicated by
R² values less than 0.6 and RMSE values exceeding 3.5, with the exception of 1D-CNN in the
full-blooming stage. Compared with the stacking ensemble learning model, the 1D-CNN
model enhances the prediction accuracy of SPAD values of S. chamaejasme leaves across
various growth stages (Table 8). The R2 of the modeling set increases by 0.027 to 0.087,
whereas the RMSE decreases by 0.213 to 2.429. The R2 value for the validation set improves
by 0.026 to 0.089, whereas the RMSE decreases by 0.281 to 2.629. The prediction accuracy
for the flower bud stage based on the 1D-CNN model is the highest, with a validation R2 of
0.787 and an RMSE of 2.476. Conversely, the prediction accuracy for the withering stage
based on the stacking ensemble learning model is the lowest, with a validation R2 of 0.490
and an RMSE of 5.529. Compared with the 1D-CNN model, the stacking ensemble learning
model achieves better prediction accuracy for the SPAD values in the whole growth period,
with R2 = 0.518 and RMSE = 3.902 on the validation set.

Agriculture 2025, 15, x FOR PEER REVIEW 13 of 19 
 

 

the prediction accuracy of the S. chamaejasme leaf chlorophyll content consistently de-

creases as the growth stage progresses, demonstrating optimal prediction results for the 

flower bud stage and suboptimal results for the withering stage. 

Table 8. Accuracy evaluation of the prediction models for the leaf chlorophyll content of S. chamae-

jasme. 

Growth Stage 

Stacking Ensemble Learning 1D-CNN 

Model Accuracy 
Validation  

Accuracy 
Model Accuracy 

Validation  

Accuracy 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Seedling stage 0.677 2.905 0.668 3.031 0.764 2.334 0.757 2.476 

Flower bud stage 0.755 3.278 0.748 3.466 0.792 3.065 0.787 3.185 

Early flowering stage 0.529 3.353 0.524 3.573 0.582 3.875 0.566 3.905 

Full flowering stage 0.497 5.238 0.494 5.495 0.574 2.809 0.548 2.866 

Withering stage 0.494 5.312 0.490 5.529 0.521 5.078 0.516 5.092 

Whole growth stage 0.533 3.028 0.518 3.902 0.507 3.386 0.493 3.614 

 

   

   

Figure 8. Prediction accuracy of leaf chlorophyll content in S. chamaejasme leaves based on stacking 

ensemble learning models. (a) Seedling stage; (b) Flower bud stage; (c) Early flowering stage; (d) 

Full flowering stage; (e) Withering stage; (f) Whole growth stage. 

Figure 8. Prediction accuracy of leaf chlorophyll content in S. chamaejasme leaves based on stacking
ensemble learning models. (a) Seedling stage; (b) Flower bud stage; (c) Early flowering stage; (d) Full
flowering stage; (e) Withering stage; (f) Whole growth stage.
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Figure 9. Prediction accuracy of leaf chlorophyll content in S. chamaejasme based on 1D-CNN
model. (a) Seedling stage; (b) Flower bud stage; (c) Early flowering stage; (d) Full flowering stage;
(e) Withering stage; (f) Whole growth stage.

Table 8. Accuracy evaluation of the prediction models for the leaf chlorophyll content of S. chamaejasme.

Growth Stage

Stacking Ensemble Learning 1D-CNN

Model Accuracy Validation
Accuracy Model Accuracy Validation

Accuracy

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Seedling stage 0.677 2.905 0.668 3.031 0.764 2.334 0.757 2.476
Flower bud stage 0.755 3.278 0.748 3.466 0.792 3.065 0.787 3.185
Early flowering stage 0.529 3.353 0.524 3.573 0.582 3.875 0.566 3.905
Full flowering stage 0.497 5.238 0.494 5.495 0.574 2.809 0.548 2.866
Withering stage 0.494 5.312 0.490 5.529 0.521 5.078 0.516 5.092
Whole growth stage 0.533 3.028 0.518 3.902 0.507 3.386 0.493 3.614

Generally, the 1D-CNN model is more effective for predicting the chlorophyll content
in S. chamaejasme leaves across various growth periods, whereas the stacking ensemble
learning model is preferable for the whole growth stage. It also can be observed that the
prediction accuracy of the S. chamaejasme leaf chlorophyll content consistently decreases as
the growth stage progresses, demonstrating optimal prediction results for the flower bud
stage and suboptimal results for the withering stage.

4. Discussion
4.1. The Application of Feature Spectra Selection in Leaf Chlorophyll Content Prediction

Hyperspectral data possess numerous bands, leading to significant redundancy and
noise. This complicates the extraction of meaningful biochemical information and limits
the generalizability of predictive models. Dimensionality reduction effectively mitigates
overfitting multicollinearity, which is essential for extract plant properties [51]. First-order
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derivative transformation, correlation analysis, and the SPA algorithm are commonly
employed for the spectral dimension reduction. First-order derivative transformation
enhances the spectral response of plant characteristics in comparison with the original
spectrum [52–54]. Correlation analysis identifies significant wavelengths that are sensitive
to plant biochemical parameters [55]. SPA effectively reduces the dimensionality of spectral
data and enhances modeling accuracy. However, it is difficult to select the most reasonable
feature wavelengths just using a single algorithm.Grassland spectra are influenced by
various environmental factors such as soil type, vegetation structure, and atmospheric
conditions. Compared to extensively cultivated crops, the leaf chlorophyll content predic-
tion for grassland species is more challenging, due to unobvious variations in chlorophyll
contamination throughout their growth periods. So, the application of hierarchical dimen-
sionality reduction strategies is particularly essential. Zhang et al. [56] used hyperspectral
data combined with first-order derivative spectra and PCA to estimate the chlorophyll
content in the Hulunbuir grassland of Inner Mongolia, and the performance of the predic-
tion model was significantly improved. In our study, the spectral wavelength number was
reduced from 651 to a minimum of 13 through the three levels of dimensionality reduction,
obtaining a reduction efficiency of 98%. As a result, the optimal feature bands for the
chlorophyll content prediction of S. chamaejasme were successfully identified (Table 6).
Our result is consistent with the previous findings, which achieved overall reduction effi-
ciencies of approximately 97.9% and 97.6% [57,58]. The studies demonstrate the distinct
benefits of employing multiple dimensionality reduction techniques for the extraction
of optimal wavelengths in vegetation monitoring. Incorporating red-edge parameters
and spectral indices can enhance the model’s sensitivity to chlorophyll concentration in
plants. The combination of vegetation indices with dimensionality reduction techniques im-
proves the accuracy of chlorophyll content estimation models, particularly for grass species
with significant variations in canopy structure [59]. Also, the integration of vegetation
indices with machine learning models markedly enhances the robustness and applicability
of chlorophyll estimation models in northern Australian grasslands [60]. In this study,
Pearson correlation analysis was employed to identify the red-edge parameters and spectral
indices sensitive to SPAD values of S. chamaejasme leaves, thereby fortifying the spectral
responses related to the leaf chlorophyll content in S. chamaejasme.

4.2. The Accuracy of Prediction Models via Machine Learning and Deep Learning

The stacking ensemble learning model exhibits distinct advantages and potential
in crops growth monitoring. Yang et al. [61] reported that the model outperformed a
single machine learning algorithm in predicting potato leaf chlorophyll content, achieving
accuracies of R2 = 0.839 and RMSE = 0.261. Similarly, Chen et al. [62] reported that the
model excelled in simulating the physiological parameters of maize under drip irrigation,
with an R2 of 0.9 and an RMSE of 0.23, which was an 11% promotion in accuracy compared
to those of a single model. These studies provide new ways for monitoring the growth of
grassland invasive species. Our work reveals that, in addition to the full flowering and
withering stages, the stacking ensemble learning model obtains relatively good prediction
accuracy for predicting the chlorophyll content in S. chamaejasme leaves in other growth
stages and the whole growth period, achieving a validation R2 > 0.5 and RMSE < 3.5. The
prediction accuracy for the flower bud stage is the highest (R2 = 0.748, RMSE = 3.466). It
is noted that the estimation of chlorophyll content in S. chamaejasme leaves is inferior to
crops leaves, which is mainly caused by the obvious ecological and physical variations
between natural plants and cultivated crops. The concurrence of S. chamaejasme plants at
various growth stages results in a complex spectral response. This diminishes the spectral
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difference of chlorophyll content in the leaves, thereby impacting the model’s effectiveness
and generalizability.

Recent studies have extensively examined the use of deep convolutional neural net-
work models in vegetation spectral analysis. Padarian et al. [63] and Furbank et al. [64]
reported that the 1D-CNN model outperforms machine learning models in the analysis of
soil spectra and physiological traits of wheat leaves, with an R2 improvement exceeding
15%. In this study, the 1D-CNN model exhibits generally better prediction accuracy for the
chlorophyll content in S. chamaejasme leaves in the various growth stages, compared with
the stacking ensemble learning model. The optimal prediction was achieved during the
flower bud stage (R² = 0.787, RMSE = 3.185).

The 1D-CNN model excels at capturing the nonlinear and complex differences in
hyperspectral data. The algorithm outperformed in predicting the chlorophyll content in S.
chamaejasme leaves at each individual growth stage. The 1D-CNN model faces challenges in
the case of a large number of wavelengths across the whole growth stage. This reduces the
network’s generalization ability and consequently lowers its predictive performance [65].
The stacking ensemble learning model is well-suited for large datasets and capable of
handling diverse data [66]. Thus, the model demonstrates superior prediction accuracy for
the chlorophyll content in S. chamaejasme leaves during the whole growth period. The result
reveals the different performances of machine learning and deep learning algorithms in the
hyperspectral prediction of plant biochemical properties. Due to the similarity and stability
in the characteristics of leaf chlorophyll of S. chamaejasme, the proposed procedure provides
a good foundation to enable timely monitoring and effective management of this species
over large scales. Also, our research demonstrates the broad potential of machine learning
and deep learning in the hyperspectral inversion of key traits of other toxic invasive species
in alpine grasslands.

5. Conclusions
This paper proposes a procedure that integrates hierarchical dimensionality reduction

and machine learning/deep learning algorithms to establish prediction models for the
chlorophyll content in S. chamaejasme leaves across various growth stages. In comparison,
the 1D-CNN model achieves superior prediction accuracy across the various growth stages,
whereas the stacking ensemble learning model yields the most effective prediction results
during the whole growth period. This work offers a reference for developing rapid, efficient,
and non-destructive methods to predict vegetation biochemical parameters via hyperspec-
tral data. Future research will be carried out to optimize input parameters, enhance the
learning ability of the chlorophyll prediction model, and improve the applicability of the
proposed prediction model.
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