Telerehabilitation and Its Impact Following Stroke: An Umbrella Review of Systematic Reviews
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Criteria for Considering Studies for This Umbrella Review
2.2.1. Type of SRs
2.2.2. Types of Participants
2.2.3. Types of Interventions
2.2.4. Types of Comparators
2.2.5. Types of Outcome Measures
2.3. Search Methods for the Identification of Studies
2.4. Data Collection Process and Analysis
2.4.1. Selection of SRs
2.4.2. Methodological Quality Assessment of SRs
2.4.3. Data Extraction and Management
2.4.4. Managing Overlap of Primary Studies
2.5. Data Synthesis
3. Results
3.1. Study Inclusion
3.2. Methodological Quality Assessment of SRs
3.3. Overlapping of Primary Studies
3.4. Characteristics of the Included Studies
3.4.1. Number, Types, and Date Range of the Included Studies
3.4.2. Country of Origin of Included Studies
3.4.3. Participants (Total Number/Characteristics)
3.4.4. Appraisal Instruments and Rating
- Random sequence generation (selection bias): Reported in 10 reviews. Four reviews included studies at high or unclear risk of selection bias, while six reviews included studies at low risk of selection bias.
- Allocation concealment (selection bias): Evaluated in 13 SRs. Ten reviews included studies at low risk of bias and three reviews included studies at high or unclear risk of selection bias.
- Blinding of participants and personnel (performance bias): Reported in 12 reviews. Only two reviews included primary studies at a low risk of performance bias, while 10 reviews included studies at a high or unclear risk of performance bias. Some reviews reported that it was difficult to blind participants and personnel due to the nature of the intervention.
- Blinding outcome assessment (detection bias): Assessed in 10 reviews. Eight reviews included studies with a low risk of detection bias and two reviews reported a high or unclear risk of detection bias.
- Incomplete outcome data (attrition bias); Evaluated in six reviews. Three reviews included primary studies at low risk of attrition bias, whereas the remaining three reviews included studies at a high or unclear risk of attrition bias.
- Selective reporting (reporting bias) Evaluated in five reviews. Three reviews included primary studies at low risk of reporting bias, while two included studies with high or unclear risk of bias.
- Intention to treat (attrition bias) was assessed in three reviews. Two reviews were at high risk of bias whereas one review was at low risk of bias due to not performing an intention-to-treat analysis.
- Group similarities at the baseline: Three reviews reported whether groups were similar at the baseline. Only one review had a similar group at baseline.
3.4.5. Method of Analysis
3.4.6. Intervention Characteristics
- Mixed telerehabilitation interventions include telephone, videoconferencing, a combination of telephone calls, in-home messaging devices, and video recording, a combination of email, an online chat program, and an online resource room (a virtual online library) established for caregivers of stroke survivors, digital video disk (DVD), educational videos, web-based chat, virtual reality system, internet-enabled computers, inertial motion sensors (IMUs) and cloud databases, games, 3D motion equipment and software to generate virtual movements, video consulting systems, text messaging, and 3D animation exercise videos) [2,12,24,26,27,28,29,30,33,34,35,37,39,40,41,43,44,45].
- Virtual reality (non-immersive VR and semi-immersive VR) and augmented reality (AR) as a standalone approach includes gaming devices to provide VR, exercises delivered through computers with monitors, an eye movement controller, a joystick, a Logitech trackpad, software platforms, a Microsoft Kinect V2 RGB-D camera, and gloves equipped with bend sensors that can be controlled remotely through the internet [25,36,46,47].
- Robot-assisted devices, VR, and games [25].
- Videoconferencing only [38].
3.4.7. Outcomes
3.5. Effectiveness of Telerehabilitation Interventions on Primary Outcomes
3.5.1. Motor Function
3.5.2. Balance
3.5.3. Gait
3.5.4. Activities of Daily Living (ADLs)
3.5.5. Quality of Life (QoL)
3.6. Effectiveness of Telerehabilitation Interventions on Feasibility Outcomes
3.6.1. Adherence to Treatment
3.6.2. Participant Satisfaction with the Intervention
3.6.3. Cost-Effectiveness
4. Discussion
- Recommendations for future research:
- Strengths and limitations:
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Norrving, B.; Mensah, G.A. Global burden of stroke. Circ. Res. 2017, 120, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, C.; Islam, M.S. Stroke survivors’ acceptance and satisfaction of telerehabilitation delivery of physiotherapy services: A systematic review. Phys. Ther. Rev. 2023, 28, 261–277. [Google Scholar] [CrossRef]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Todhunter-Brown, A.; Baer, G.; Campbell, P.; Choo, P.L.; Forster, A.; Morris, J.; Pomeroy, V.M.; Langhorne, P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef]
- Xing, Y.; Xiao, J.; Zeng, B.; Wang, Q. ICTs and interventions in telerehabilitation and their effects on stroke recovery. Front. Neurol. 2023, 14, 1234003. [Google Scholar] [CrossRef]
- Stephenson, A.; Howes, S.; Murphy, P.J.; Deutsch, J.E.; Stokes, M.; Pedlow, K.; McDonough, S.M. Factors influencing the delivery of telerehabilitation for stroke: A systematic review. PLoS ONE 2022, 17, e0265828. [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, G.; Kollen, B.J.; Krebs, H.I. Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabilit. Neural Repair 2008, 22, 111–121. [Google Scholar] [CrossRef]
- Lohse, K.R.; Lang, C.E.; Boyd, L.A. Is more better? Using metadata to explore dose–response relationships in stroke rehabilitation. Stroke 2014, 45, 2053–2058. [Google Scholar] [CrossRef]
- Hailey, D.; Roine, R.; Ohinmaa, A.; Dennett, L. Evidence of benefit from telerehabilitation in routine care: A systematic review. J. Telemed. Telecare 2011, 17, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Hung KN, G.; Fong, K.N. Effects of telerehabilitation in occupational therapy practice: A systematic review. Hong Kong J. Occup. Ther. 2019, 32, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Suso-Martí, L.; La Touche, R.; Herranz-Gómez, A.; Angulo-Díaz-Parreño, S.; Paris-Alemany, A.; Cuenca-Martínez, F. Effectiveness of telerehabilitation in physical therapist practice: An umbrella and mapping review with meta–meta-analysis. Phys. Ther. 2021, 101, pzab075. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska, P.M.; Sliwinski, M.; Studnicki, R.; Hansdorfer-Korzon, R. Telerehabilitation of Post-Stroke Patients as a Therapeutic Solution in the Era of the COVID-19 Pandemic. Healthcare 2021, 9, 654. [Google Scholar] [CrossRef]
- Akbar, K.; Passaro, A.; Di Gioia, M.; Martini, E.; Dragone, M.; Zullo, A.; Stasolla, F. Reviewing the Horizon: The Future of Extended Reality and Artificial Intelligence in Neurorehabilitation for Brain Injury Recovery. Information 2024, 15, 501. [Google Scholar] [CrossRef]
- Nikolaev, V.A.; Nikolaev, A.A. Recent trends in telerehabilitation of stroke patients: A narrative review. NeuroRehabilitation 2022, 51, 1–22. [Google Scholar] [CrossRef]
- Timurtaş, E.; Selçuk, H.; Uğur Canöz, E.; Inceer, M.; Batar, S.; Demirbüken, İ.; Polat, M.G. Synchronous and asynchronous telerehabilitation methods produce similar benefits in individuals with non-specific neck pain. Arch. Orthop. Trauma Surg. 2023, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.C.; Dodakian, L.; McKenzie, A.; See, J.; Zhou, R.J.; Dhand, A.; Heckhausen, J. A feasibility study of expanded home-based telerehabilitation after stroke. Front. Neurol. 2021, 11, 611453. [Google Scholar] [CrossRef]
- Aromataris, E.; Fernandez, R.; Godfrey, C.; Holly, C.; Khalil, H.; Tungpunkom, P. Chapter 10: Umbrella Reviews. In JBI Manual for Evidence Synthesis; Aromataris, E., Munn, Z., Eds.; JBI: Adelaide, Australia, 2024; Available online: https://synthesismanual.jbi.global (accessed on 5 October 2023). [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 372, n71. [Google Scholar]
- Aromataris, E.; Fernandez, R.; Godfrey, C.; Holly, C.; Khalil, H.; Tungpunkom, P. Summarizing systematic reviews: Methodological development, conduct and reporting of an Umbrella review approach. Int. J. Evid. Based Healthc. 2015, 13, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Pieper, D.; Antoine, S.-L.; Mathes, T.; Neugebauer, E.A.; Eikermann, M. Systematic review finds overlapping reviews were not mentioned in every other overview. J. Clin. Epidemiol. 2014, 67, 368–375. [Google Scholar] [CrossRef]
- McKenzie, J.E.; Brennan, S.E. Overviews of systematic reviews: Great promise, greater challenge. Syst. Rev. 2017, 6, 185. [Google Scholar] [CrossRef] [PubMed]
- Pollock, M.; Fernandes, R.M.; Newton, A.S.; Scott, S.D.; Hartling, L. A decision tool to help researchers make decisions about including systematic reviews in overviews of reviews of healthcare interventions. Syst. Rev. 2019, 8, 29. [Google Scholar] [CrossRef]
- Deeks, J.J.; Higgins, J.P.; Altman, D.G.; Cochrane Statistical Methods Group. Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions; Wiley: New York, NY, USA, 2019; pp. 241–284. [Google Scholar]
- Su, Z.; Guo, Z.; Wang, W.; Liu, Y.; Liu, Y.; Chen, W.; Zheng, M.; Michael, N.; Lu, S.; Wang, W.; et al. The effect of telerehabilitation on balance in stroke patients: Is it more effective than the traditional rehabilitation model? A meta-analysis of randomized controlled trials published during the COVID-19 pandemic. Front. Neurol. 2023, 14, 1156473. [Google Scholar] [CrossRef]
- Bok, S.; Song, Y.; Lim, A.; Jin, S.; Kim, N.; Ko, G. High-Tech Home-Based Rehabilitation after Stroke: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 2668. [Google Scholar] [CrossRef] [PubMed]
- Toh, S.F.M.; Chia, P.F.; Fong, K.N.K. Effectiveness of home-based upper limb rehabilitation in stroke survivors: A systematic review and meta-analysis. Front. Neurol. 2022, 13, 964196. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.R.; Rocha, R.J.; Boening, A.; Ferreira, G.P.; Perovano, M.C. Home-based exercises are as effective as equivalent doses of centre-based exercises for improving walking speed and balance after stroke: A systematic review. J. Physiother. 2022, 68, 174–181. [Google Scholar] [CrossRef]
- Tchero, H.; Teguo, M.T.; Lannuzel, A.; Rusch, E.; Tabue Teguo, M. Telerehabilitation for Stroke Survivors: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2018, 20, 80. [Google Scholar] [CrossRef]
- Johansson, T.; Wild, C. Telerehabilitation in stroke care—A systematic review. J. Telemed. Telecare 2011, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sarfo, F.S.; Ulasavets, U.; Opare-Sem, O.K.; Ovbiagele, B. Tele-Rehabilitation after Stroke: An Updated Systematic Review of the Literature. J. Stroke Cerebrovasc. Dis. 2018, 27, 2306–2318. [Google Scholar] [CrossRef]
- Rintala, A.; Kossi, O.; Bonnechere, B.; Evers, L.; Printemps, E.; Feys, P. Mobile health applications for improving physical function, physical activity, and quality of life in stroke survivors: A systematic review. Disabil. Rehabil. 2023, 45, 4001–4015. [Google Scholar] [CrossRef] [PubMed]
- Everard, G.; Luc, A.; Doumas, I.; Ajana, K.; Stoquart, G.; Edwards, M.; Lejeune, T. Self-Rehabilitation for Post-Stroke Motor Function and Activity-A Systematic Review and Meta-Analysis. Neurorehabilit. Neural Repair 2021, 35, 1043–1058. [Google Scholar] [CrossRef] [PubMed]
- Coupar, F.; Pollock, A.; Legg, L.A.; Sackley, C.; Van Vliet, P. Home-based therapy programmes for upper limb functional recovery following stroke. Cochrane Database Syst. Rev. 2012, 5, CD006755. [Google Scholar] [CrossRef] [PubMed]
- Laver, K.E.; Adey-Wakeling, Z.; Crotty, M.; Lannin, N.A.; George, S.; Sherrington, C. Telerehabilitation services for stroke. Cochrane Database Syst. Rev. 2020, 1, CD010255. [Google Scholar] [CrossRef]
- Deshmukh, S.; Madhavan, S. Can post stroke walking improve via telerehabilitation? A systematic review in adults with stroke. Front. Rehabil. Sci. 2023, 4, 1154686. [Google Scholar] [CrossRef]
- Hao, J.; Pu, Y.; Chen, Z.; Siu, K. Effects of virtual reality-based telerehabilitation for stroke patients: A systematic review and meta-analysis of randomized controlled trials. J. Stroke Cerebrovasc. Dis. 2023, 32, 106960. [Google Scholar] [CrossRef] [PubMed]
- Saragih, I.D.; Tarihoran, D.E.T.A.U.; Batubara, S.O.; Tzeng, H.M.; Lin, C.J. Effects of telehealth interventions on performing activities of daily living and maintaining balance in stroke survivors: A systematic review and meta-analysis of randomised controlled studies. J. Clin. Nurs. 2022, 31, 2678–2690. [Google Scholar] [CrossRef] [PubMed]
- Tarihoran, D.; Daryanti Saragih, I.; Saragih, I.S.; Tzeng, H.M. Effects of videoconferencing intervention on stroke survivors: A systematic review and meta-analysis of randomised controlled studies. J. Clin. Nurs. 2023, 32, 5938–5947. [Google Scholar] [CrossRef] [PubMed]
- Sharififar, S.; Ghasemi, H.; Geis, C.; Azari, H.; Adkins, L.; Speight, B.; Vincent, H.K. Telerehabilitation service impact on physical function and adherence compared to face-to-face rehabilitation in patients with stroke: A systematic review and meta-analysis. PM R J. Inj. Funct. Rehabil. 2023, 15, 1654–1672. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jin, W.; Zhang, X.X.; Xu, W.; Liu, X.N.; Ren, C.C. Telerehabilitation Approaches for Stroke Patients: Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Stroke Cerebrovasc. Dis. 2015, 24, 2660–2668. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Cai, C.; Chen, X.; Wei, X. Effect of home-based interventions on basic activities of daily living for patients who had a stroke: A systematic review with meta-analysis. BMJ Open 2022, 12, e056045. [Google Scholar] [CrossRef]
- Lunny, C.; Pieper, D.; Thabet, P.; Kanji, S. Managing overlap of primary study results across systematic reviews: Practical considerations for authors of overviews of reviews. BMC Med. Res. Methodol. 2021, 21, 140. [Google Scholar] [CrossRef] [PubMed]
- Appleby, E.; Gill, S.; Hayes, L.; Walker, T.; Walsh, M.; Kumar, S. Effectiveness of telerehabilitation in the management of adults with stroke: A systematic review. PLoS ONE 2019, 14, e0225150. [Google Scholar] [CrossRef] [PubMed]
- Alayat, M.; Almatrafi, N.; Almutairi, A.; El Fiky, A.; Elsodany, A. The Effectiveness of Telerehabilitation on Balance and Functional Mobility in Patients with Stroke: A Systematic Review and Meta-Analysis. Int. J. Telerehabil. 2022, 14, e6532. [Google Scholar] [CrossRef] [PubMed]
- Rintala, A.; Paivarinne, V.; Hakala, S.; Paltamaa, J.; Heinonen, A.; Karvanen, J.; Sjogren, T. Effectiveness of Technology-Based Distance Physical Rehabilitation Interventions for Improving Physical Functioning in Stroke: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arch. Phys. Med. Rehabil. 2019, 100, 1339–1358. [Google Scholar] [CrossRef]
- Schroder, J.; van Criekinge, T.; Embrechts, E.; Celis, X.; Van Schuppen, J.; Truijen, S.; Saeys, W. Combining the benefits of tele-rehabilitation and virtual reality-based balance training: A systematic review on feasibility and effectiveness. Disabil. Rehabil. Assist. Technol. 2019, 14, 2–11. [Google Scholar] [CrossRef]
- Lazem, H.; Hall, A.; Gomaa, Y.; Mansoubi, M.; Lamb, S.; Dawes, H. The Extent of Evidence Supporting the Effectiveness of Extended Reality Telerehabilitation on Different Qualitative and Quantitative Outcomes in Stroke Survivors: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 6630. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Du, M.; Zhou, L. Use of mobile applications in post-stroke rehabilitation: A systematic review. Top. Stroke Rehabil. 2018, 25, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Szeto, S.G.; Wan, H.; Alavinia, M.; Dukelow, S.; MacNeill, H. Effect of mobile application types on stroke rehabilitation: A systematic review. J. Neuroeng. Rehabil. 2023, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Hwang, N.; Park, J.; Chang, M. Telehealth Interventions to Support Self-Management in Stroke Survivors: A Systematic Review. Healthcare 2021, 9, 472. [Google Scholar] [CrossRef]
- Dias, J.F.; Oliveira, V.C.; Borges, P.R.T.; Dutra, F.C.M.S.; Mancini, M.C.; Kirkwood, R.N.; Resende, R.A.; Sampaio, R.F. Effectiveness of exercises by telerehabilitation on pain, physical function and quality of life in people with physical disabilities: A systematic review of randomised controlled trials with GRADE recommendations. Br. J. Sports Med. 2021, 55, 155–162. [Google Scholar] [CrossRef]
- Ciortea, V.M.; Motoașcă, I.; Ungur, R.A.; Borda, I.M.; Ciubean, A.D.; Irsay, L. Telerehabilitation—A viable option for the recovery of post-stroke patients. Appl. Sci. 2021, 11, 10116. [Google Scholar] [CrossRef]
- Mihai, E.E.; Popescu, M.N.; Beiu, C.; Gheorghe, L.; Berteanu, M. Tele-rehabilitation strategies for a patient with post-stroke spasticity: A powerful tool amid the COVID-19 pandemic. Cureus 2021, 13, e19201. [Google Scholar] [CrossRef] [PubMed]
- Del Pino, R.; Díez-Cirarda, M.; Ustarroz-Aguirre, I.; Gonzalez-Larragan, S.; Caprino, M.; Busnatu, S.; Gand, K.; Schlieter, H.; Gabilondo, I.; Gómez-Esteban, J.C. Costs and effects of telerehabilitation in neurological and cardiological diseases: A systematic review. Front. Med. 2022, 9, 832229. [Google Scholar] [CrossRef]
- O’Flaherty, D.; Ali, K. Recommendations for Upper Limb Motor Recovery: An Overview of the UK and European Rehabilitation after Stroke Guidelines (2023). Healthcare 2024, 12, 1433. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, B.M.; Wiley, E.; Barclay, R.; Bayley, M.; Davis, J.C.; Eng, J.J.; Harris, A.; Inness, E.L.; MacKay-Lyons, M.; Monaghan, J. TeleRehabilitation with Aims to Improve Lower extremity recovery in community-dwelling individuals who have had a stroke: Protocol for a multisite, parallel group, assessor-blinded, randomised attention-controlled trial. BMJ Open 2023, 13, e076723. [Google Scholar] [CrossRef] [PubMed]
- Doherty, F.; Powell, P.; McBride, C.; Monaghan, K. Physical Telerehabilitation interventions for Gait and balance in Multiple sclerosis: A Scoping review. J. Neurol. Sci. 2024, 456, 122827. [Google Scholar] [CrossRef] [PubMed]
- Silva-Batista, C.; de Almeida, F.O.; Wilhelm, J.L.; Horak, F.B.; Mancini, M.; King, L.A. Telerehabilitation by Videoconferencing for Balance and Gait in People with Parkinson’s Disease: A Scoping Review. Geriatrics 2024, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, L.; Wang, L.; Jin, X.; Zhang, H. Physical activity for executive function and activities of daily living in AD patients: A systematic review and meta-analysis. Front. Psychol. 2020, 11, 560461. [Google Scholar] [CrossRef] [PubMed]
- Federico, S.; Cacciante, L.; Cieślik, B.; Turolla, A.; Agostini, M.; Kiper, P.; Picelli, A. Telerehabilitation for neurological motor impairment: A systematic review and meta-analysis on quality of life, satisfaction, and acceptance in stroke, multiple sclerosis, and Parkinson’s disease. J. Clin. Med. 2024, 13, 299. [Google Scholar] [CrossRef]
- Shenoy, M.P.; Shenoy, P.D. Identifying the Challenges and Cost-Effectiveness of Telerehabilitation: A Narrative Review. J. Clin. Diagn. Res. 2018, 12, 1. [Google Scholar] [CrossRef]
- Cramer, S.C. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann. Neurol. 2008, 63, 272–287. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Xie, H.; Harp, K.; Chen, Z.; Siu, K.-C. Effects of virtual reality intervention on neural plasticity in stroke rehabilitation: A systematic review. Arch. Phys. Med. Rehabil. 2022, 103, 523–541. [Google Scholar] [CrossRef] [PubMed]
- Voinescu, A.; Sui, J.; Stanton Fraser, D. Virtual reality in neurorehabilitation: An umbrella review of meta-analyses. J. Clin. Med. 2021, 10, 1478. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Izumi, S.-I. Rehabilitation with poststroke motor recovery: A review with a focus on neural plasticity. Stroke Res. Treat. 2013, 2013, 128641. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.C.; Deutsch, J.E.; Holdsworth, L.; Kaplan, S.L.; Kosakowski, H.; Latz, R.; McNeary, L.L.; O’Neil, J.; Ronzio, O.; Sanders, K. Telerehabilitation in Physical Therapist Practice: A Clinical Practice Guideline From the American Physical Therapy Association. Phys. Ther. 2024, 104, pzae045. [Google Scholar] [CrossRef]
Telerehabilitation Interventions | SRs | Outcomes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Motor Function | Balance | Gait | ADL | QoL | Adherence | Participant Satisfaction | Cost Effectiveness | |||||||
Post Intervention | Follow Up | Post Intervention | Follow Up | Post Intervention | Follow Up | Post Intervention | Follow Up | Post Intervention | Follow Up | Post Intervention | Post Intervention | Post Intervention | ||
Virtual reality | Bok et al. (2023) [25] | UL | ||||||||||||
Coupar et al. (2012) [33] | UL | |||||||||||||
Chen et al. (2015) [40] | ||||||||||||||
Deshmukh and Madhavan (2023) [35] | UL/LL | |||||||||||||
Hao et al. (2023) [36] | UL | |||||||||||||
Johansson and Wild (2011) [29] | UL | |||||||||||||
Lazem et al. (2023) [47] | UL | |||||||||||||
Nascimento et al. (2022) [27] | UL | |||||||||||||
Schroder et al. (2018) [46] | ||||||||||||||
Sarfo et al. (2018) [30] | ||||||||||||||
Tchero et al. (2018) [28] | ||||||||||||||
Toh et al. (2022) [26] | UL | UL/LL | ||||||||||||
VR exercises combined with sensor gloves or music gloves | Lazem et al. (2023) [47] | No effect UL | ||||||||||||
Robot-assisted devices | Bok et al. (2023) [25] | UL | ||||||||||||
Games | Bok et al. (2023) [25] | No effect/UL | ||||||||||||
Ostrowaska et al. (2021) [12] | UL | |||||||||||||
Sharififar et al. (2023) [39] | ||||||||||||||
Augmented reality | Lazem et al. (2023) [47] | LL | No effect | No effect | ||||||||||
Technology-assisted self-rehabilitation | Everard et al. (2021) [32] | UL | ||||||||||||
Hwang et al. (2021) [50] | ||||||||||||||
Mixed telerehabilitation interventions | Appleby et al. (2019) [43] | UL | ||||||||||||
Alayat et al. (2022) [44] | ||||||||||||||
Chen et al. (2015) [40] | UL | No effect | ||||||||||||
Johansson and Wild (2011) [29] | ||||||||||||||
Laver et al. (2020) [34] | UL | |||||||||||||
Lombardo and Islam (2023) [2] | ||||||||||||||
Rintala et al. (2019) [45] | UL/LL | |||||||||||||
Sarfo et al. (2018) [30] | UL/LL | |||||||||||||
Saragih et al. (2022) [37] | ||||||||||||||
Sharififar et al. (2023) [39] | ||||||||||||||
Su et al. (2023) [24] | UL | |||||||||||||
Tchero et al. (2018) [28] | UL | |||||||||||||
Qin et al. (2022) [41] | ||||||||||||||
Videoconferencing only | Deshmukh and Madhavan (2023) [35] | No effect | ||||||||||||
Tarihoran et al. (2023) [38] | ||||||||||||||
Smartphone- or tablet-based mHealth apps | Rintala et al. (2023) [31] | UL | ||||||||||||
LL | ||||||||||||||
Szeto et al. (2023) [49] | UL | |||||||||||||
No effect | ||||||||||||||
Zhou et al. (2018) [48] | UL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alwadai, B.; Lazem, H.; Almoajil, H.; Hall, A.J.; Mansoubi, M.; Dawes, H. Telerehabilitation and Its Impact Following Stroke: An Umbrella Review of Systematic Reviews. J. Clin. Med. 2025, 14, 50. https://doi.org/10.3390/jcm14010050
Alwadai B, Lazem H, Almoajil H, Hall AJ, Mansoubi M, Dawes H. Telerehabilitation and Its Impact Following Stroke: An Umbrella Review of Systematic Reviews. Journal of Clinical Medicine. 2025; 14(1):50. https://doi.org/10.3390/jcm14010050
Chicago/Turabian StyleAlwadai, Bayan, Hatem Lazem, Hajar Almoajil, Abigail J. Hall, Maedeh Mansoubi, and Helen Dawes. 2025. "Telerehabilitation and Its Impact Following Stroke: An Umbrella Review of Systematic Reviews" Journal of Clinical Medicine 14, no. 1: 50. https://doi.org/10.3390/jcm14010050
APA StyleAlwadai, B., Lazem, H., Almoajil, H., Hall, A. J., Mansoubi, M., & Dawes, H. (2025). Telerehabilitation and Its Impact Following Stroke: An Umbrella Review of Systematic Reviews. Journal of Clinical Medicine, 14(1), 50. https://doi.org/10.3390/jcm14010050