Down Syndrome, Obesity, Alzheimer’s Disease, and Cancer: A Brief Review and Hypothesis
Abstract
:1. Introduction
2. Hypothesis
3. Section 1: Clinical, Etiologic and Epidemiologic Features of DS and the Involvement of Fat-Related Adipokines
3.1. DS Clinical Features
3.2. DS Causes
3.3. DS and Alzheimer’s Disease
3.4. DS and Cancer
3.5. DS, Body Weight and Body Mass Index (BMI)
3.6. Body Fat Function: Adipokines
3.7. Genes on Chromosome 21
4. Section 2: Cellular and Molecular Effects of Leptin and Adiponectin on Alzheimer’s Disease and Cancer Risk in DS
4.1. Cellular Effects: Apoptosis and Angiogenesis
4.2. Molecular Effects and Signaling Factors: APP, p53, Wnt, and Notch
5. Limitations of This Review
6. Discussion
Acknowledgments
Conflicts of Interest
References
- Oliver, C.; Holland, A.J. Down’s syndrome and Alzheimer’s disease: A review. Psychol. Med. 1986, 16, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Hasle, H.; Clemmensen, I.H.; Mikkelsen, M. Risks of leukemia and solid tumors in individuals with Down’s syndrome. Lancet 2000, 355, 165–169. [Google Scholar] [CrossRef]
- Havercamp, S.M.; Tasse, M.J.; Navas, P.; Benson, B.A.; Allain, D.; Manickam, K. Exploring the weight and health status of adults with Down syndrome. J. Educ. Train. Stud. 2017, 5, 97–108. [Google Scholar] [CrossRef]
- Nixon, D.W. The inverse relationship between cancer and Alzheimer’s disease: A possible mechanism. Curr. Alzheimer Res. 2017, 14, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Behrens, M.I.; Lendon, C.; Roe, C.M. A common biological mechanism in cancer and Alzheimer’s disease. Curr. Alzheimer Res. 2009, 6, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Esbensen, A.J. Health conditions associated with aging and end of life of adults with Down’s syndrome. Int. Rev. Res. Ment. Retard. 2010, 39, 107–126. [Google Scholar] [PubMed]
- Down, J.L.H. Observations on an ethnic classification of idiots. Lond. Hosp. Rep. 1866, 3, 259–262. [Google Scholar]
- Leshin, L. Trisomy 21: The Story of Down Syndrome. 2003. Available online: Http://www.ds-health.com/trisomy.htm (accessed on 1 February 2018).
- Head, E.; Powell, D.; Gold, B.T.; Schmitt, F.A. Alzheimer’s disease in Down Syndrome. Eur. J. Neurodegener. Dis. 2012, 1, 353–364. [Google Scholar] [PubMed]
- Xavier, A.C.; Yubin, G.E.; Taub, G.E. Down syndrome and malignancies: A unique clinical relationship. J. Mol. Diagn. 2009, 11, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Jancar, M.P.; Jancar, J. Cancer and mental retardation. Bristol. Med. Chir. J. 1977, 92, 3–7. [Google Scholar] [PubMed]
- Hasle, H.; Friedman, J.M.; Olsen, J.H.; Rasmussen, S.A. Low risk of solid tumors in persons with Down syndrome. Genet. Med. 2016, 18, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Satge, D.; Sommelet, D.; Geneix, A.; Nishi, M.; Malet, P.; Vekemans, M. A tumor profile in Down syndrome. Am. J. Med. Genet. 1998, 78, 207–216. [Google Scholar] [CrossRef]
- Artioli, T. Understanding obesity in Down’s syndrome children. J. Obes. Metab. 2017, 1, 1–3. [Google Scholar]
- Prasher, V.P. Overweight and obesity amongst Down’s syndrome adults. J. Intell. Dis. Res. 1995, 39, 437–441. [Google Scholar] [CrossRef]
- Attele, A.S.; Shi, Z.Q.; Yuan, C.-S. Leptin, gut and food intake. Biochem. Pharmacol. 2002, 63, 1579–1583. [Google Scholar] [CrossRef]
- Yang, R.; Barouch, L.A. Leptin signaling and obesity. Circ. Res. 2007, 101, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Ikuni, N.; Lam, Q.L.K.; Liwei, L.; Matarese, G.; La Cava, A. Leptin and inflammation. Curr. Immunol. Rev. 2008, 4, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Fantuzzi, G. Adiponectin and inflammation: Consensus and controversy. J. Allergy Clin. Immunol. 2008, 121, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Nigro, E.; Scudiero, O.; Monaco, M.L.; Palmieri, A.; Mazzarella, G.; Costagliola, C.; Bianca, A.; Daniele, A. New insight into adiponectin role in obesity and obesity-related diseases. Biomed. Res. Int. 2014, 2014, 658913. [Google Scholar] [CrossRef] [PubMed]
- Moschen, A.R.; Molnar, C.; Wolf, A.M.; Weiss, H.; Grazidei, I.; Kaser, S.; Ebenbichler, C.F.; Stadlmann, S.; Moser, P.L.; Tilg, H. Effects of weight loss induced by bariatric surgery on hepatic adipocyte expression. J. Hepatol. 2009, 51, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Magge, S.N.; O’Neill, K.L.; Shults, J.; Stallings, V.A.; Stettler, N. Leptin levels among prepubertal children with Down syndrome compared to their siblings. J. Pediatr. 2008, 152, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Sridevi, S.; Adalarasan, N.; Babu, R.N.; Sathyamurthi, B.; Seeralar, A.T.A.; Srilakshmi, R.; Anadan, H. Serum leptin levels in Down’s syndrome versus normal children. Int. J. Sci. Stud. 2016, 4, 175–178. [Google Scholar]
- Tenneti, N.; Dayal, D.; Sharda, S.; Panigrahi, I.; Didi, M.; Attri, S.V.; Sachdeva, N.; Bhalla, A.K. Concentrations of leptin, adiponectin and other metabolic parameters in non-obese children with Down syndrome. J. Pediatr. Endocrinol. Metab. 2017, 30, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Corsi, M.M.; Dogliotti, G.; Pedroni, F.; Galliera, E.; Malavazos, A.E.; Villa, R.; Chiappelli, M.; Licastro, F. Adipocytokines in Down’s syndrome, an atheroma free model: Role of adiponectin. Arch. Gerontol. Geriatr. 2009, 48, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Yahia, Y.; EL-farahaty, R.M.; El-Hawary, A.K.; El-hussiny, M.A.; Abdel-maseih, H.; El-Dahtory, F.; El-Gilany, A.-H. Leptin, insulin and thyroid hormone in a cohort of Egyptian obese Down syndrome children: A comparative study. BMC Endocr. Disord. 2012. [Google Scholar] [CrossRef] [PubMed]
- Lieb, W.; Beiser, A.S.; Vasan, R.S.; Tan, Z.S.; Au, R.; Harris, T.B.; Roubenoff, R.; Auerbach, S.; DeCarli, C.; Wolf, P.A.; et al. Association of plasma leptin levels with incident Alzheimer’s disease and MRI measures of brain aging. JAMA 2009, 302, 2565–2572. [Google Scholar] [CrossRef] [PubMed]
- Holden, K.F.; Lindquist, K.; Tylavsky, F.A.; Rosano, C.; Harris, T.B.; Yaffe, K. Serum leptin level and cognition in the elderly: Findings from the Health ABC Study. Neurobiol. Aging 2009, 30, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Greco, S.J.; Sarkar, S.; Johnston, J.M.; Tezapsidis, N. Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells. Biochem. Biophys. Res. Commun. 2009, 380, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Fewlass, D.C.; Noboa, K.; Pi-Sunyer, F.X.; Johnaton, J.M.; Yan, S.D.; Tezapsidis, N. Obesity-related leptin regulates Alzheimer’s abeta. FASEB J. 2004, 18, 1870–1879. [Google Scholar] [CrossRef] [PubMed]
- Niedowicz, D.M.; Studzinski, C.M.; Weidner, A.M.; Platt, T.L.; Kingry, K.N.; Beckett, T.L.; Bruce-Keller, A.J.; Keller, J.N.; Murphy, M.P. Leptin regulates amyloid beta production via the gamma-secretase complex. Biochem. Biophys. Acta 2013, 1832, 439–444. [Google Scholar] [PubMed]
- Doherty, G.H.; Beccano-Kelly, D.; Yan, S.D.; Gunn-Moore, F.J.; Harvey, J. Leptin prevents hippocampal synaptic disruption and neuronal cell death induced by amyloid beta. Neurobiol. Aging 2013, 34, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Greco, S.J.; Sarkar, S.; Johnston, J.M.; Zhu, X.; Su, B.; Smith, M.A.; Tezapsidis, N. Leptin reduces Alzheimer’s disease-related tau phosphorylation in neuronal cells. Biochem. Biophys. Res. Commun. 2008, 376, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gonzalez, R.; Alvira-Botero, M.X.; Robayo, O.; Antequera, D.; Garzon, M.; Martin-Moreno, A.M.; Brera, B.; de Ceballos, M.L.; Carro, E. Leptin gene therapy attenuates neuronal damages evoked by amyloid-beta and rescues memory deficits in APP/PS1 mice. Gene Ther. 2014, 21, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Greco, S.J.; Bryan, K.J.; Sarkar, S.; Zhu, S.; Smith, M.A.; Ashford, J.W.; Johnston, J.M.; Tezapsidis, N.; Cassadesus, G. Leptin reduces pathology and memory and improves memory in a transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2010, 19, 1155–1167. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.L.; Diniz, B.S.; Campos, A.C.; Miranda, A.S.; Rocha, N.P.; Talib, L.L.; Gattaz, W.F.; Fortenza, O.V. Decreased levels of circulating adiponectin in mild cognitive impairment and Alzheimer’s disease. Neuromol. Med. 2013, 15, 115–121. [Google Scholar] [CrossRef] [PubMed]
- van Himbergen, T.M.; Beiser, A.S.; Ai, M.; Seshadri, S.; Otokozawa, S.; Au, R.; Thongtang, N.; Wolf, P.A.; Schaefer, E.J. Biomarkers for insulin resistance and inflammation and the risk for all-cause dementia and Alzheimer’s disease: Results from the Framingham Heart Study. Arch. Neurol. 2012, 69, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Une, K.; Takei, Y.A.; Tomita, N.; Asamura, T.; Ohrui, T.; Furakawa, K.; Arai, H. Adiponectin in plasma and cerebrospinal fluid in MCI and Alzheimer’s disease. Eur. J. Neurol. 2011, 18, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Wyss-Coray, T. Inflammation and Alzheimer's disease. Neurobiol. Aging 2000, 21, 383–421. [Google Scholar] [CrossRef]
- Wan, Z.; Mah, D.; Simtchchouk, S.; Klegeris, A.; Little, J.P. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells. Biochem. Biophys. Res. Commun. 2014, 446, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.H.; Lam, K.S.; Cheng, O.Y.; Kwan, J.S.; Ho, P.W.; Cheng, K.K.; Chung, S.K.; Ho, J.W.; Guo, V.Y.; Xu, A. Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity. PLoS ONE 2012, 7, E52354. [Google Scholar] [CrossRef] [PubMed]
- Grossman, M.E.; Ray, A.; Nkhata, K.J.; Malakhov, D.A.; Rogozina, O.P.; Dogan, S. Obesity and breast cancer: Status of leptin and adiponectin in pathological processes. Cancer Metastasis Rev. 2010, 29, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Sulkowska, M.; Golaszewska, J.; Wincewicz, A.; Koda, M.; Baltaziak M Sulkowski, S. Leptin–from regulation of fat metabolism to stimulation of breast cancer growth. Pathol. Oncol. Res. 2006, 12, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-H.; Chou, Y.-C.; Chou, W.-Y.; Hsu, G.C.; Chu, C.-H.; Yu, C.-P. Circulating levels of leptin, adiposity, and breast cancer risk. Br. J. Cancer 2009, 100, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Mistry, T.; Digby, J.E.; Desai, K.M.; Randeva, H.S. Obesity and prostate cancer: A role for adipokines. Eur. Urol. 2007, 52, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, D.; Rachiglio, A.M.; la Montagna, R.; Giordano, A.; Normanno, N. Leptin signaling in breast cancer: An overview. J. Cell. Biochem. 2008, 105, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Somasundar, P.; McFadden, D.W.; Hilleman, S.M.; Vona-Davis, L. Leptin is a growth factor in cancer. J. Surg. Res. 2004, 116, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Wang, D.; Zhang, H.; Yi, X.; Sun, X.; Shi, B.; Wu, H.; Wu, G.; Wang, X.; Shang, Y. Molecular mechanisms involved in the growth stimulation of breast cancer cells by leptin. Cancer Res. 2004, 64, 5870–5875. [Google Scholar] [CrossRef] [PubMed]
- Nalabolu, M.R.; Palasamudram, K.; Jamil, K. Adiponectin and leptin molecular actions and clinical significance in breast cancer. Int. J. Hematol. Oncol. Stem Cell Res. 2014, 8, 31–40. [Google Scholar] [PubMed]
- Zhou, W.; Guo, S.; Gonzalez-Perez, R.R. Leptin pro-angiogenic signature in breast cancer is linked to IL-1 signaling. Br. J. Cancer 2011, 104, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Han, T.-J.; Wang, X. Leptin and its receptor in hematologic malignancies. Int. J. Clin. Exp. Med. 2015, 8, 19840–19849. [Google Scholar] [PubMed]
- Hino, M.; Nakao, T.; Yamane, T.; Ohta, K.; Takubo, T.; Tatsumi, N. Leptin receptor and leukemia. Leuk Lymphoma 2000, 36, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Housa, D.; Housova, J.; Vernerova, Z.; Haluzik, M. Adipocytokines and cancer. Physiol. Res. 2006, 55, 233–244. [Google Scholar] [PubMed]
- Kelesidis, I.; Kelesidis, T.; Mantzoros, C.S. Adiponectin and cancer: A systematic review. Br. J. Cancer 2006, 94, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- Izadi, Z.; Farabad, E.; Azadbakht, L. Serum adiponectin level and different kinds of cancer: A review of recent evidence. ISRN Oncol. 2012, 2012, 982769. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Kitayama, J.; Kazama, S.; Hiramatsu, T.; Hatano, K.; Nagawa, H. Plasma adiponectin and gastric cancer. Clin. Cancer Res. 2005, 11, 466–472. [Google Scholar] [PubMed]
- Gotkas, S.; Yimaz, M.I.; Caglar, K.; Sonmez, A.; Killic, S.; Bedir, S. Prostate cancer and adiponectin. Urology 2005, 65, 1168–1172. [Google Scholar]
- Bub, J.D.; Miyazaki, T.; Iwamoto, Y. Adiponectin as a growth inhibitor in prostate cancer cells. Biochem. Bipohys. Res. Commun. 2006, 340, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Dalamaga, M.; Koumaki, V. Adiponectin and cancer. Atlas Genet. Cytogenet. Oncol. Haematol. 2014, 18, 361–367. [Google Scholar] [CrossRef]
- Mantzoros, C.; Petridou, E.; Dessypris, N.; Chavelas, C.; Dalamaga, M.; Alexe, D.M.; Papadiamantis, Y.; Markopoulos, C.; Spanos, E.; Chrousos, G.; et al. Adiponectin and breast cancer risk. J. Clin. Endocrinol. Metab. 2004, 89, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Petridou, E.; Mantzoros, C.S.; Dessypris, N.; Dikalioti, S.K.; Trichopoulos, D. Adiponectin in relation to childhood myeloblastic leukemia. Br. J. Cancer 2006, 94, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; Oritani, K.; Takahashi, I.; Ishikawa, J.; Matsuyama, A.; Ouchi, N.; Kihara, S.; Funahashi, T.; Tenner, A.J.; Tomiyama, Y.; et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000, 96, 1723–1732. [Google Scholar] [PubMed]
- Gardiner, K.; Davisson, M. The sequence of human chromosome 21 and implications for research into Down syndrome. Genome Biol. 2000, 1. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, K.; Costa, A.C.S. The proteins of human chromosome 21. Am. J. Med. Genet. C Semin. Med. Genet. 2006, 142C, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Baek, K.-H.; Zaslavsky, A.; Lynch, R.C.; Britt, C.; Okada, Y.; Siarey, R.J.; Lensch, M.W.; Park, I.-H.; Yoon, S.S.; Minami, T.; et al. Down’s syndrome suppression of tumor growth and the role of the calcineurin inhibitor DSCR1. Nature 2009, 459, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Cairney, C.J.; Sanguinetti, G.; Ranghini, E.; Chantry, A.G.; Nostro, M.C.; Battacharyna, A.; Svendsen, C.N.; Keith, W.N.; Bellantuono, L. A systems biology approach to Down syndrome: Identification of Notch/Wnt dysregulation in a model of stem cell aging. Biochem. Biophys. Acta Mol. Basis Dis. 2009, 1732, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Seidi, R.; Bidmon, B.; Bajo, M.; Yoo, P.C.; Cairns, N.; LaCasse, E.C.; Lubec, G. Evidence for apoptosis in the fetal Down syndrome brain. J. Child Neurol. 2001, 16, 438–442. [Google Scholar]
- Busciglio, J.; Yanker, B.A. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 1995, 378, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Maedler, K.; Schulthess, F.T.; Bielman, C.; Berney, T.; Bonny, C.; Prentki, M.; Donath, M.Y.; Roduit, R. Glucose and leptin induce apoptosis in human B-cells and impair glucose-stimulated insulin secretion though activation of c-Jun N-terminal kinases. FASEB J. 2008, 22, 1905–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Chang, Y.C.; Liu, C.L.; Liu, T.P.; Chang, K.J.; Guo, I.C. Leptin induces proliferation and anti-apoptosis in human hepatocarcinoma cells by up-regulating cyclin D1 and down-regulating Bax via a Janus kinase 2-linked pathway. Endocr. Relat. Cancer 2007, 14, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Artwohl, M.; Roden, M.; Holzenbein, T.; Freudenthaler, A.; Waldhausl, W.; Baumgartner-Parzer, S.M. Modulation by leptin of proliferation and apoptosis in vascular endothelial cells. Int. J. Obes. 2002, 26, 577–580. [Google Scholar] [CrossRef]
- Brakenhielm, E.; Veitonmaki, N.; Cao, R.; Kihara, S.; Matsuzawa, Y.; Zhivotovsky, B.; Funahashi, T.; Cao, Y. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc. Natl. Acad. Sci. USA 2004, 101, 2476–2481. [Google Scholar] [CrossRef] [PubMed]
- Akifusa, S.; Kamio, N.; Shimazaki, Y.; Yamaguchi, N.; Yamashita, Y. Regulation of globular adiponectin-induced apoptois by reactive oxygen/nitrogen species in RAW264 macrophages. Free Radic. Biol. Med. 2008, 45, 1326–1339. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Gasser, J.; Zhao, J.; Yang, B.; Li, F.; Zhao, A.Z. Human adiponectin inhibits cell growth and induces apoptosis in human endometrial carcinoma cells, HEC-1-A and TL95-2. Endocr. Relat. Cancer 2007, 14, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Cheng, X.; Wang, D.; Peng, M.; Xue, Z.; Da, Y.; Zhang, N.; Yao, Z.; Li, M.; Xu, A.; et al. Adiponectin promotes pancreatic cancer progression by inhibiting apoptosis via the activation of AMPK/Sirt1/PGC-1a signaling. Oncotarget 2014, 5, 4732–4745. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Kobyashi, H.; Kihara, S.; Kumada, M.; Sato, K.; Inoue, T.; Funahashi, T.; Walsh, K. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 2003, 279, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Little, J.P. Adiponectin and Alzheimer’s disease: Is there a link? Inflamm. Cell Signal. 2014, 1, E154. [Google Scholar] [CrossRef]
- Lichtenthaler, S.F. Alpha-secretase cleavage of the amyloid precursor protein: Proteolysis regulated by signaling pathways and protein trafficking. Curr. Alzheimer Res. 2012, 9, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Ishii, M.; Wang, G.; Racchumi, G.; Dyke, J.P.; Iadecola, C. Transgenic mice overexpressing amyloid precursor protein exhibit early metabolic deficits and a pathologically low leptin state associated with hypothalamic dysfunction in arcuate neuropeptide Y neutrons. J. Neurosci. 2014, 34, 9096–9106. [Google Scholar] [CrossRef] [PubMed]
- Pandev, P.; Sliker, B.; Peters, H.I.; Tuli, A.; Herskovitz, J.; Smits, K.; Porohit, A.; Singh, R.K.; Dong, J.; Batra, S.K.; et al. Amyloid precursor protein and amyloid precursor-like protein 2 in cancer. Oncotarget 2016, 7, 19430–19444. [Google Scholar]
- Takagi, K.; Ito, S.; Miyazaki, T.; Miki, Y.; Shibahara, Y.; Ishida, T.; Watanabe, M.; Inoue, S.; Sasano, H.; Suzuki, T. Amyloid precursor protein in human breast cancer: An androgen-induced gene associated with cell proliferation. Cancer Sci. 2013, 104, 1532–1538. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Ikeda, K.; Horie-Inoue, H.; Inoue, S. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells. Biochem. Biophys. Res. Commun. 2014, 452, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Waragi, M.; Ho, G.; Takamatsu, Y.; Shijama, K.; Sugama, S.; Takenouchi, T.; Masliah, I.; Hashimoto, M. Importance of adiponectin activity in the pathogenesis of Alzheimer’s disease. Ann. Clin. Trans. Neurol. 2017, 4, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liao, J.-M.; Zeng, S.X.; Lu, H. p53 downregulates Down syndrome-associated DYRK1A through miR-1246. Embo Rep. 2011, 12, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Tramutola, A.; Popo, G.; DiDomenico, F.; Barone, E.; Arena, A.; Lanzillotta, C.; Brokeaart, D.; Blarzino, C.; Head, E.; Butterfield, D.A.; et al. Activation of p53 in Down syndrome and in the Ts65Dn mouse brain is associated with a pro-apoptotic phenotype. J. Alzheimer’s Dis. 2016, 52, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Hooper, C.; Meimaridou, E.; Tavassoli, M.; Melino, G.; Lovestone, S.; Killick, R. p54 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci. Lett. 2007, 418, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Toro, A.R.; Maymo, J.L.; Ibarbalz, F.M.; Perez, A.P.; Maskin, B.; Falleti, A.G.; Sanchez-Margalet, V.; Valone, C.L. Leptin is an anti-apoptotic effector in placental cells involving p53 downregulation. PLoS ONE 2014, 9, E99187. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.P.; Gilhooly, E.M.; Nixon, D.W. Adverse effect of obesity on breast cancer prognosis and the biological effects of leptin (review). Int. J. Oncol. 2002, 21, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chang, Y.C.; Liu, C.L.; Chang, K.J.; Guo, I.C. Leptin-induced growth of human ZR-75-1 breast cancer cells is associated with up-regulation of cyclin D1 and c-Myc and down regulation of tumor suppressor p53 and p21WAF1/CIPI. Breast Cancer Res. Treat. 2006, 98, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, E.; Benaitreau, D.; Dieudonne, M.-N.; Leneveu, M.-C.; Serozin, V.; Giudicelli, Y.; Pecquery, R. Adiponectin mediates an anti-proliferation response in human MDA-MB 231 breast cancer cells. Oncol. Rep. 2008, 20, 971–977. [Google Scholar] [PubMed]
- Tolloh, R. Purification of Monocytes from Peripheral Blood for a Study into Wnt Signalling in Down’s Syndrome; NHS Health Research Authority: London, UK, 2013; IRAS ID 126981. [Google Scholar]
- Shao, M.; Liu, Z.-Z.; Wang, C.-D.; Li, H.-Y.; Carron, C.; Zhang, H.-W.; Shi, D.-L. Down syndrome critical region protein 5 regulates membrane localization of Wnt receptors, Dishevelled stability and convergent extension in vertebrate embryos. Development 2009, 136, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Park, J.L.; Lee, M.; Munoz, W.A.; Miller, R.K.; Hong, J.; Gu, D.; Ezan, J.; Sokol, S.Y.; McCrea, P.D. Down’s-syndrome-related kinase Dyrk1A modulates the p120-catenin-Kaiso trajectory of the Wnt signaling pathway. J. Cell Sci. 2012, 125, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Ohba, S.; Lanigan, T.M.; Roessler, B.J. Leptin receptor JAK2/STAT3 signaling modulates expression of frizzled receptors in articular chondrocytes. Osteoarthr. Cartilege 2010, 18, 1620–1629. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Xia, S.; Kalionis, B.; Liu, L.; Li, Y. The role of Wnt signaling in the development of Alzheimer’s disease: A potential therapeutic target. Biomed. Res. Int. 2014, 2014, 30175. [Google Scholar] [CrossRef] [PubMed]
- Boonen, R.A.; van Tijn, P.; Zivkovic, D. Wnt signaling in Alzheimer’s disease: Up or down, that is the question. Ageing Res. Rev. 2009, 8, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Lasky, J.L.; Wu, H. Notch signaling, brain development and human disease. Pediatr. Res. 2005, 57, 104R–109R. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.F.; van Dijk, R.; Sluijs, J.A.; Nair, S.M.; Racchi, M.; Levelt, C.M.; van Leeuwen, F.W.; Hol, E.M. Activation of the Notch pathway in Down syndrome: Cross talk of Notch and APP. FASEB J. 2005, 19, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Ethell, D.W. An amyloid-notch hypothsis for Alzheimer’s disease. Neuroscientist 2010, 16, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Martinez, J.; Vela, E.M.; Tora-Ponsioen, M.; Ocana, O.H.; Nieto, M.A.; Galceran, J. Attenuation of Notch signalling by the Down-syndrome-associated kinase DYRK1a. J. Cell Sci. 2009, 122, 1574–1583. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Liu, M.; Gonzalez-Perez, R.R. Role of notch and its oncogenic signaling crosstalk in breast cancer. Biochem. Biophys. Acta 2011, 1815, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Battle, M.; Gillespie, C.; Quarshie, A.; Lanier, V.; Harmon, T.; Wilson, K. Obesity induced a leptin-Notch signaling axis in breast cancer. Int. J. Cancer 2014, 134, 1605–1606. [Google Scholar] [CrossRef] [PubMed]
- Holohan, K.N.; Lahiri, D.K.; Schneider, B.P.; Foroud, T.; Saykin, A.J. Functional micreRna’s in Alzheimer’s disease and cancer: Differential regulation of common mechanisms and pathways. Front. Genet. 2012, 3, 323–354. [Google Scholar] [PubMed]
- Alexandrov, P.N.; Percy, M.E.; Lukiw, W.J. Chromosome 21-encoded microRNAs (mRNA’s): Impact on Down’s syndrome and trisomy-21 linked disease. Cell. Mol. Neurobiol. 2017. [Google Scholar] [CrossRef]
- Stagi, S.; Lapi, E.; Romano, S.; Bargiacchi, S.; Brambilla, A.; Giglio, S.; Seminara, S.; deMartino, M. Determinants of vitamin d levels in children and adolescents with Down syndrome. Int. J. Endocrinol. 2015, 2015, 896758. [Google Scholar] [CrossRef] [PubMed]
- Menendez, C.; Lage, M.; Peino, R.; Baldelli, R.; Concheiro, P.; Dieguez, C.; Casanueva, F.F. Retinoic acid and vitamin D(3) powerfully inhibit in vitro leptin secretion by human adipose tissue. J. Endocrinol. 2001, 170, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Bertapelli, F.; Pitetti, K.; Agiovlasitis, S.; Guerra-Junior, G. Overweight and obesity in children and adolescents with Down syndrome- prevalence, determinants, consequences, and interventions: A literature review. Res. Dev. Disabil. 2016, 57, 181–192. [Google Scholar] [CrossRef] [PubMed]
- O’Caoimh, R.; Clune, Y.; Molloy, D.W. Screening for Alzheimer’s disease in Downs syndrome. J. Alzheimer’s Dis. Parkinsonism 2013, S7. [Google Scholar] [CrossRef]
- Zhang, S.; Smailagic, N.; Hyde, C.; Noel-Storr, A.H.; Takwoingi, Y.; McShane, R.; Feng, J. (11)C-PIB-PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. 2014, 23. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, C.; Smailagic, N.; Noel-Storr, A.H.; Okoumunne, O.; Ladds, E.C.; Martin, S. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. 2017, 22. [Google Scholar] [CrossRef] [PubMed]
Mechanism | Down Syndrome | Leptin | Adiponectin |
---|---|---|---|
Angiogenesis | Decreased | Increased | Decreased |
Apoptosis | Increased | Decreased | Increased |
APP cleavage | Increased | Decreased | Increased |
p53 | Increased | Decreased | Increased |
Wnt | Increased | Increased | Decreased |
Notch | Increased | Increased | Unclear |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nixon, D.W. Down Syndrome, Obesity, Alzheimer’s Disease, and Cancer: A Brief Review and Hypothesis. Brain Sci. 2018, 8, 53. https://doi.org/10.3390/brainsci8040053
Nixon DW. Down Syndrome, Obesity, Alzheimer’s Disease, and Cancer: A Brief Review and Hypothesis. Brain Sciences. 2018; 8(4):53. https://doi.org/10.3390/brainsci8040053
Chicago/Turabian StyleNixon, Daniel W. 2018. "Down Syndrome, Obesity, Alzheimer’s Disease, and Cancer: A Brief Review and Hypothesis" Brain Sciences 8, no. 4: 53. https://doi.org/10.3390/brainsci8040053
APA StyleNixon, D. W. (2018). Down Syndrome, Obesity, Alzheimer’s Disease, and Cancer: A Brief Review and Hypothesis. Brain Sciences, 8(4), 53. https://doi.org/10.3390/brainsci8040053