Impact of Exercise on Tramadol-Conditioned Place Preference
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chronic Daily Treadmill Exercise Regimen
2.2. Conditioning Place Preference (CPP) Apparatus
2.2.1. Pre-Conditioning Phase
2.2.2. Conditioning Phase
2.2.3. Post-Conditioning Test
3. Harvesting of Brain Tissue
3.1. Gene Expression Analysis
3.2. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akerele, E. Global Drug Use. In Substance and Non-Substance Related Addictions: A Global Approach; Springer: Berlin/Heidelberg, Germany, 2022; pp. 211–218. [Google Scholar]
- Dydyk, A.M.; Jain, N.K.; Gupta, M. Opioid use disorder. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Justinova, Z.; Panlilio, L.V.; Goldberg, S.R. Drug addiction. Behav. Neurobiol. Endocannabinoid Syst. 2009, 1, 309–346. [Google Scholar]
- Pierce, R.C.; Kumaresan, V. The mesolimbic dopamine system: The final common pathway for the reinforcing effect of drugs of abuse? Neurosci. Biobehav. Rev. 2006, 30, 215–238. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Boyle, M. Neuroscience of addiction: Relevance to prevention and treatment. Am. J. Psychiatry 2018, 175, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Nestler, E.J. Is there a common molecular pathway for addiction? Nat. Neurosci. 2005, 8, 1445–1449. [Google Scholar] [CrossRef]
- Sanaeifar, F.; Pourranjbar, S.; Pourranjbar, M.; Ramezani, S.; Mehr, S.R.; Wadan, A.-H.S.; Khazeifard, F. Beneficial effects of physical exercise on cognitive-behavioral impairments and brain-derived neurotrophic factor alteration in the limbic system induced by neurodegeneration. Exp. Gerontol. 2024, 195, 112539. [Google Scholar] [CrossRef]
- Geoffroy, H.; Noble, F. BDNF during withdrawal. Vitam. Horm. 2017, 104, 475–496. [Google Scholar]
- Buzin, N.R. Role of BDNF-TrkB Signaling in Cocaine Addiction. Ph.D. Thesis, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA, 2014. [Google Scholar]
- Sun, W.-L.; Quizon, P.M.; Zhu, J. Molecular mechanism: ERK signaling, drug addiction, and behavioral effects. Prog. Mol. Biol. Transl. Sci. 2016, 137, 1–40. [Google Scholar]
- Kohno, M.; Link, J.; Dennis, L.E.; McCready, H.; Huckans, M.; Hoffman, W.F.; Loftis, J.M. Neuroinflammation in addiction: A review of neuroimaging studies and potential immunotherapies. Pharmacol. Biochem. Behav. 2019, 179, 34–42. [Google Scholar] [CrossRef]
- Barakat, A. Revisiting tramadol: A multi-modal agent for pain management. CNS Drugs 2019, 33, 481–501. [Google Scholar] [CrossRef]
- Baldo, B.A. Opioid analgesic drugs and serotonin toxicity (syndrome): Mechanisms, animal models, and links to clinical effects. Arch. Toxicol. 2018, 92, 2457–2473. [Google Scholar] [CrossRef] [PubMed]
- Vearrier, D.; Grundmann, O. Clinical pharmacology, toxicity, and abuse potential of opioids. J. Clin. Pharmacol. 2021, 61, S70–S88. [Google Scholar] [CrossRef] [PubMed]
- Babalonis, S.; Lofwall, M.R.; Nuzzo, P.A.; Siegel, A.J.; Walsh, S.L. Abuse liability and reinforcing efficacy of oral tramadol in humans. Drug Alcohol Depend. 2013, 129, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Malak, M.; AbuKamel, A. Self-medication Practices among University Students in Jordan. Malays. J. Med. Health Sci. 2019, 15, 112–119. [Google Scholar]
- Edinoff, A.N.; Kaplan, L.A.; Khan, S.; Petersen, M.; Sauce, E.; Causey, C.D.; Cornett, E.M.; Imani, F.; Moghadam, O.M.; Kaye, A.M. Full opioid agonists and tramadol: Pharmacological and clinical considerations. Anesthesiol. Pain Med. 2021, 11, e119156. [Google Scholar] [CrossRef]
- Jovanović-Čupić, V.; Martinović, Ž.; Nešić, N. Seizures associated with intoxication and abuse of tramadol. Clin. Toxicol. 2006, 44, 143–146. [Google Scholar] [CrossRef]
- Fleming, M.L.; Driver, L.; Sansgiry, S.S.; Abughosh, S.M.; Wanat, M.; Sawant, R.V.; Ferries, E.; Reeve, K.; Todd, K.H. Physicians’ intention to prescribe hydrocodone combination products after rescheduling: A theory of reasoned action approach. Res. Soc. Adm. Pharm. 2017, 13, 503–512. [Google Scholar] [CrossRef]
- Tzschentke, T.M. Review on CPP: Measuring reward with the conditioned place preference (CPP) paradigm: Update of the last decade. Addict. Biol. 2007, 12, 227–462. [Google Scholar] [CrossRef]
- Cami, J.; Farré, M. Drug addiction. N. Engl. J. Med. 2003, 349, 975–986. [Google Scholar] [CrossRef]
- Childs, E.; de Wit, H. Amphetamine-induced place preference in humans. Biol. Psychiatry 2009, 65, 900–904. [Google Scholar] [CrossRef]
- Tzschentke, T.M. Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol. 1998, 56, 613–672. [Google Scholar] [CrossRef] [PubMed]
- Thanos, P.K.; Tucci, A.; Stamos, J.; Robison, L.; Wang, G.-J.; Anderson, B.J.; Volkow, N.D. Chronic forced exercise during adolescence decreases cocaine conditioned place preference in Lewis rats. Behav. Brain Res. 2010, 215, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Kitanaka, N.; Kitanaka, J.; Hall, F.S.; Uhl, G.R.; Watabe, K.; Kubo, H.; Takahashi, H.; Takemura, M. Attenuation of methamphetamine-induced conditioned place preference in mice after a drug-free period and facilitation of this effect by exposure to a running wheel. J. Exp. Neurosci. 2012, 6, JEN.S10046. [Google Scholar] [CrossRef]
- Kitanaka, N.; Kitanaka, J.; Hall, S.; Okumura, S.; Sakamoto, T.; Uhl, G.; Takemura, M. How the histamine N-methyltransferase inhibitor metoprine alleviates methamphetamine reward. J. Addict. Med. Ther. Sci. 2017, 3, 16–23. [Google Scholar] [CrossRef]
- Hammad, A.M.; Amawi, H.; Hall, F.S.; Tiwari, A.K.; Al-Trad, B. Effect of amoxicillin/clavulanic acid in attenuating pregabalin-induced condition place preference. Behav. Brain Res. 2023, 439, 114244. [Google Scholar] [CrossRef]
- Soares-Cardoso, C.; Leal, S.; Sá, S.I.; Dantas-Barros, R.; Dinis-Oliveira, R.J.; Faria, J.; Barbosa, J. Unraveling the Hippocampal Molecular and Cellular Alterations behind Tramadol and Tapentadol Neurobehavioral Toxicity. Pharmaceuticals 2024, 17, 796. [Google Scholar] [CrossRef]
- Sprague, J.E.; Leifheit, M.; Selken, J.; Milks, M.M.; Kinder, D.H.; Nichols, D.E. In vivo microdialysis and conditioned place preference studies in rats are consistent with abuse potential of tramadol. Synapse 2002, 43, 118–121. [Google Scholar] [CrossRef]
- Hosseini, M.; Alaei, H.A.; Naderi, A.; Sharifi, M.R.; Zahed, R. Treadmill exercise reduces self-administration of morphine in male rats. Pathophysiology 2009, 16, 3–7. [Google Scholar] [CrossRef]
- Hammad, A.M.; Alasmari, F.; Sari, Y. Effect of Modulation of the Astrocytic Glutamate Transporters’ Expression on Cocaine-Induced Reinstatement in Male P Rats Exposed to Ethanol. Alcohol Alcohol. 2021, 56, 210–219. [Google Scholar] [CrossRef]
- Hammad, A.M.; Alasmari, F.; Althobaiti, Y.S.; Sari, Y. Modulatory effects of Ampicillin/Sulbactam on glial glutamate transporters and metabotropic glutamate receptor 1 as well as reinstatement to cocaine-seeking behavior. Behav. Brain Res. 2017, 332, 288–298. [Google Scholar] [CrossRef]
- Cunningham, C.L.; Gremel, C.M.; Groblewski, P.A. Drug-induced conditioned place preference and aversion in mice. Nat. Protoc. 2006, 1, 1662–1670. [Google Scholar] [CrossRef] [PubMed]
- Hammad, A.M.; Sari, Y. Effects of Cocaine Exposure on Astrocytic Glutamate Transporters and Relapse-Like Ethanol-Drinking Behavior in Male Alcohol-Preferring Rats. Alcohol Alcohol 2020, 55, 254–263. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Apkarian, A.V.; Lavarello, S.; Randolf, A.; Berra, H.H.; Chialvo, D.R.; Besedovsky, H.O.; del Rey, A. Expression of IL-1beta in supraspinal brain regions in rats with neuropathic pain. Neurosci. Lett. 2006, 407, 176–181. [Google Scholar] [CrossRef]
- Jaehne, E.J.; Kent, J.N.; Antolasic, E.J.; Wright, B.J.; Spiers, J.G.; Creutzberg, K.C.; De Rosa, F.; Riva, M.A.; Sortwell, C.E.; Collier, T.J. Behavioral phenotyping of a rat model of the BDNF Val66Met polymorphism reveals selective impairment of fear memory. Transl. Psychiatry 2022, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Tjäderborn, M.; Jönsson, A.K.; Ahlner, J.; Hägg, S. Tramadol dependence: A survey of spontaneously reported cases in Sweden. Pharmacoepidemiol. Drug Saf. 2009, 18, 1192–1198. [Google Scholar] [CrossRef]
- Tjäderborn, M.; Jönsson, A.K.; Hägg, S.; Ahlner, J. Fatal unintentional intoxications with tramadol during 1995–2005. Forensic Sci. Int. 2007, 173, 107–111. [Google Scholar] [CrossRef]
- Sansone, R.A.; Sansone, L.A. Tramadol: Seizures, serotonin syndrome, and coadministered antidepressants. Psychiatry 2009, 6, 17. [Google Scholar]
- Cha, H.J.; Song, M.J.; Lee, K.W.; Kim, E.J.; Kim, Y.H.; Lee, Y.; Seong, W.K.; Hong, S.I.; Jang, C.G.; Yoo, H.S.; et al. Dependence potential of tramadol: Behavioral pharmacology in rodents. Biomol. Ther. 2014, 22, 558–562. [Google Scholar] [CrossRef]
- Senay, E.C.; Adams, E.H.; Geller, A.; Inciardi, J.A.; Muñoz, A.; Schnoll, S.H.; Woody, G.E.; Cicero, T.J. Physical dependence on Ultram® (tramadol hydrochloride): Both opioid-like and atypical withdrawal symptoms occur. Drug Alcohol Depend. 2003, 69, 233–241. [Google Scholar] [CrossRef]
- Abdel-Ghany, R.; Nabil, M.; Abdel-Aal, M.; Barakat, W. Nalbuphine could decrease the rewarding effect induced by tramadol in mice while enhancing its antinociceptive activity. Eur. J. Pharmacol. 2015, 758, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Morris, T.; Roychowdhury, D. Physical activity for health and wellbeing: The role of motives for participation. Health Psychol. Rep. 2020, 8, 391–407. [Google Scholar] [CrossRef]
- Carnethon, M.R. Physical activity and cardiovascular disease: How much is enough? Am. J. Lifestyle Med. 2009, 3, 44S–49S. [Google Scholar] [CrossRef] [PubMed]
- McInnis, K.J. Diet, exercise, and the challenge of combating obesity in primary care. J. Cardiovasc. Nurs. 2003, 18, 93–100. [Google Scholar] [CrossRef]
- Takahashi, H.; Kawaguchi, M.; Kitamura, K.; Narumiya, S.; Kawamura, M.; Tengan, I.; Nishimoto, S.; Hanamure, Y.; Majima, Y.; Tsubura, S. An exploratory study on the anti-inflammatory effects of fucoidan in relation to quality of life in advanced cancer patients. Integr. Cancer Ther. 2018, 17, 282–291. [Google Scholar] [CrossRef]
- Lubans, D.; Richards, J.; Hillman, C.; Faulkner, G.; Beauchamp, M.; Nilsson, M.; Kelly, P.; Smith, J.; Raine, L.; Biddle, S. Physical activity for cognitive and mental health in youth: A systematic review of mechanisms. Pediatrics 2016, 138, e20161642. [Google Scholar] [CrossRef]
- Beavers, K.M.; Brinkley, T.E.; Nicklas, B.J. Effect of exercise training on chronic inflammation. Clin. Chim. Acta 2010, 411, 785–793. [Google Scholar] [CrossRef]
- Smith, M.A.; Lynch, W.J. Exercise as a potential treatment for drug abuse: Evidence from preclinical studies. Front. Psychiatry 2012, 2, 82. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, T.-F. Exercise and substance abuse. Int. Rev. Neurobiol. 2019, 147, 269–280. [Google Scholar]
- Sanchez, V.; Moore, C.F.; Brunzell, D.H.; Lynch, W.J. Effect of wheel-running during abstinence on subsequent nicotine-seeking in rats. Psychopharmacology 2013, 227, 403–411. [Google Scholar] [CrossRef]
- Zlebnik, N.E.; Saykao, A.T.; Carroll, M.E. Effects of combined exercise and progesterone treatments on cocaine seeking in male and female rats. Psychopharmacology 2014, 231, 3787–3798. [Google Scholar] [CrossRef] [PubMed]
- Aarde, S.M.; Miller, M.L.; Creehan, K.M.; Vandewater, S.A.; Taffe, M.A. One day access to a running wheel reduces self-administration of D-methamphetamine, MDMA and methylone. Drug Alcohol Depend. 2015, 151, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Lynch, W.J.; Peterson, A.B.; Sanchez, V.; Abel, J.; Smith, M.A. Exercise as a novel treatment for drug addiction: A neurobiological and stage-dependent hypothesis. Neurosci. Biobehav. Rev. 2013, 37, 1622–1644. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.A.; Prince, M.A.; Minami, H.; Abrantes, A.M. An exploratory analysis of changes in mood, anxiety and craving from pre-to post-single sessions of exercise, over 12 weeks, among patients with alcohol dependence. Ment. Health Phys. Act. 2016, 11, 1–6. [Google Scholar] [CrossRef]
- Smith, M.A.; Witte, M.A. The effects of exercise on cocaine self-administration, food-maintained responding, and locomotor activity in female rats: Importance of the temporal relationship between physical activity and initial drug exposure. Exp. Clin. Psychopharmacol. 2012, 20, 437. [Google Scholar] [CrossRef]
- Zlebnik, N.E.; Carroll, M.E. Prevention of the incubation of cocaine seeking by aerobic exercise in female rats. Psychopharmacology 2015, 232, 3507–3513. [Google Scholar] [CrossRef]
- Ehringer, M.A.; Hoft, N.R.; Zunhammer, M. Reduced alcohol consumption in mice with access to a running wheel. Alcohol 2009, 43, 443–452. [Google Scholar] [CrossRef]
- Collingwood, T.R.; Sunderlin, J.; Reynolds, R.; Kohl III, H.W. Physical training as a substance abuse prevention intervention for youth. J. Drug Educ. 2000, 30, 435–451. [Google Scholar] [CrossRef]
- Pichard, C.; Gorwood, P.A.; Hamon, M.; Cohen-Salmon, C. Differential effects of free versus imposed motor activity on alcohol consumption in C57BL/6J versus DBA/2J mice. Alcohol 2009, 43, 593–601. [Google Scholar] [CrossRef]
- Adams, J.; Kirkby, R.J. Excessive exercise as an addiction: A review. Addict. Res. Theory 2002, 10, 415–437. [Google Scholar] [CrossRef]
- Dishman, R.K.; Berthoud, H.R.; Booth, F.W.; Cotman, C.W.; Edgerton, V.R.; Fleshner, M.R.; Gandevia, S.C.; Gomez-Pinilla, F.; Greenwood, B.N.; Hillman, C.H. Neurobiology of exercise. Obesity 2006, 14, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Bardo, M.T.; Compton, W.M. Does physical activity protect against drug abuse vulnerability? Drug Alcohol Depend. 2015, 153, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.R. An Assessment of the Neurobiological and Behavioral Changes That Occur During Abstinence Following Chronic Alcohol Drinking. Ph.D. Thesis, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2008. [Google Scholar]
- Maynard, M.E.; Leasure, J.L. Exercise enhances hippocampal recovery following binge ethanol exposure. PLoS ONE 2013, 8, e76644. [Google Scholar] [CrossRef] [PubMed]
- Lynch, W.J.; Bakhti-Suroosh, A.; Abel, J.M.; Davis, C. Shifts in the neurobiological mechanisms motivating cocaine use with the development of an addiction-like phenotype in male rats. Psychopharmacology 2021, 238, 811–823. [Google Scholar] [CrossRef]
- Peterson, A.B.; Hivick, D.P.; Lynch, W.J. Dose-dependent effectiveness of wheel running to attenuate cocaine-seeking: Impact of sex and estrous cycle in rats. Psychopharmacology 2014, 231, 2661–2670. [Google Scholar] [CrossRef]
- Strickland, J.C.; Abel, J.M.; Lacy, R.T.; Beckmann, J.S.; Witte, M.A.; Lynch, W.J.; Smith, M.A. The effects of resistance exercise on cocaine self-administration, muscle hypertrophy, and BDNF expression in the nucleus accumbens. Drug Alcohol Depend. 2016, 163, 186–194. [Google Scholar] [CrossRef]
- Smith, M.A.; Fronk, G.E.; Abel, J.M.; Lacy, R.T.; Bills, S.E.; Lynch, W.J. Resistance exercise decreases heroin self-administration and alters gene expression in the nucleus accumbens of heroin-exposed rats. Psychopharmacology 2018, 235, 1245–1255. [Google Scholar] [CrossRef]
- Shahroodi, A.; Mohammadi, F.; Vafaei, A.A.; Miladi-Gorji, H.; Bandegi, A.R.; Rashidy-Pour, A. Impact of different intensities of forced exercise on deficits of spatial and aversive memory, anxiety-like behavior, and hippocampal BDNF during morphine abstinence period in male rats. Metab. Brain Dis. 2020, 35, 135–147. [Google Scholar] [CrossRef]
- Pilc, J. The effect of physical activity on the brain derived neurotrophic factor: From animal to human studies. J. Physiol. Pharmacol. 2010, 61, 533–541. [Google Scholar]
- Chen, M.J.; Russo-Neustadt, A.A. Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent. Hippocampus 2009, 19, 962–972. [Google Scholar] [CrossRef]
- Neeper, S.A.; Gómez-Pinilla, F.; Choi, J.; Cotman, C.W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 1996, 726, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Groves-Chapman, J.L.; Murray, P.S.; Stevens, K.L.; Monroe, D.C.; Koch, L.G.; Britton, S.L.; Holmes, P.V.; Dishman, R.K. Changes in mRNA levels for brain-derived neurotrophic factor after wheel running in rats selectively bred for high-and low-aerobic capacity. Brain Res. 2011, 1425, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.H.; Wiley, C.A.; Bradberry, C.W. Psychostimulant abuse and neuroinflammation: Emerging evidence of their interconnection. Neurotox. Res. 2013, 23, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Lippai, D.; Bala, S.; Csak, T.; Kurt-Jones, E.A.; Szabo, G. Chronic alcohol-induced microRNA-155 contributes to neuroinflammation in a TLR4-dependent manner in mice. PLoS ONE 2013, 8, e70945. [Google Scholar] [CrossRef]
- Moretti, S.; Castelli, M.; Franchi, S.; Raggi, M.A.; Mercolini, L.; Protti, M.; Somaini, L.; Panerai, A.E.; Sacerdote, P. Δ9-Tetrahydrocannabinol-induced anti-inflammatory responses in adolescent mice switch to proinflammatory in adulthood. J. Leukoc. Biol. 2014, 96, 523–534. [Google Scholar] [CrossRef]
- Liu, L. CNS Immune Signalling and Drug Addiction: The Role of Interleukin-1 Beta. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2011. [Google Scholar]
- Achur, R.N.; Freeman, W.M.; Vrana, K.E. Circulating cytokines as biomarkers of alcohol abuse and alcoholism. J. Neuroimmune Pharmacol. 2010, 5, 83–91. [Google Scholar] [CrossRef]
- Campbell, L.A.; Avdoshina, V.; Rozzi, S.; Mocchetti, I. CCL5 and cytokine expression in the rat brain: Differential modulation by chronic morphine and morphine withdrawal. Brain Behav. Immun. 2013, 34, 130–140. [Google Scholar] [CrossRef]
- Spielman, L.J.; Little, J.P.; Klegeris, A. Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res. Bull. 2016, 125, 19–29. [Google Scholar] [CrossRef]
- Svensson, M.; Lexell, J.; Deierborg, T. Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behavior: What we can learn from animal models in clinical settings. Neurorehabilit. Neural Repair 2015, 29, 577–589. [Google Scholar] [CrossRef]
- Nichol, K.E.; Poon, W.W.; Parachikova, A.I.; Cribbs, D.H.; Glabe, C.G.; Cotman, C.W. Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid. J. Neuroinflam. 2008, 5, 13. [Google Scholar] [CrossRef]
- Mota, B.C.; Pereira, L.; Souza, M.A.; Silva, L.F.; Magni, D.V.; Ferreira, A.P.; Oliveira, M.S.; Furian, A.F.; Mazzardo-Martins, L.; Silva, M.D.; et al. Exercise pre-conditioning reduces brain inflammation and protects against toxicity induced by traumatic brain injury: Behavioral and neurochemical approach. Neurotox. Res. 2012, 21, 175–184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amawi, H.; Hammad, A.M.; Ibrahim, A.A.; Alsbih, N.; Hall, F.S.; Alasmari, F.; Al-Trad, B. Impact of Exercise on Tramadol-Conditioned Place Preference. Brain Sci. 2025, 15, 89. https://doi.org/10.3390/brainsci15010089
Amawi H, Hammad AM, Ibrahim AA, Alsbih N, Hall FS, Alasmari F, Al-Trad B. Impact of Exercise on Tramadol-Conditioned Place Preference. Brain Sciences. 2025; 15(1):89. https://doi.org/10.3390/brainsci15010089
Chicago/Turabian StyleAmawi, Haneen, Alaa M. Hammad, Aseel Abdullah Ibrahim, Nosyba Alsbih, Frank Scott Hall, Fawaz Alasmari, and Bahaa Al-Trad. 2025. "Impact of Exercise on Tramadol-Conditioned Place Preference" Brain Sciences 15, no. 1: 89. https://doi.org/10.3390/brainsci15010089
APA StyleAmawi, H., Hammad, A. M., Ibrahim, A. A., Alsbih, N., Hall, F. S., Alasmari, F., & Al-Trad, B. (2025). Impact of Exercise on Tramadol-Conditioned Place Preference. Brain Sciences, 15(1), 89. https://doi.org/10.3390/brainsci15010089