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Abstract: Background: Visual perceptual learning plays a crucial role in shaping our understanding
of how the human brain integrates visual cues to construct coherent perceptual experiences. The
visual system is continually challenged to integrate a multitude of visual cues, including form and
motion, to create a unified representation of the surrounding visual scene. This process involves
both the processing of local signals and their integration into a coherent global percept. Over
the past several decades, researchers have explored the mechanisms underlying this integration,
focusing on concepts such as internal noise and sampling efficiency, which pertain to local and global
processing, respectively. Objectives and Methods: In this study, we investigated the influence of
visual perceptual learning on non-directional motion processing using dynamic Glass patterns (GPs)
and modified Random-Dot Kinematograms (mRDKs). We also explored the mechanisms of learning
transfer to different stimuli and tasks. Specifically, we aimed to assess whether visual perceptual
learning based on illusory directional motion, triggered by form and motion cues (dynamic GPs),
transfers to stimuli that elicit comparable illusory motion, such as mRDKs. Additionally, we examined
whether training on form and motion coherence thresholds improves internal noise filtering and
sampling efficiency. Results: Our results revealed significant learning effects on the trained task,
enhancing the perception of dynamic GPs. Furthermore, there was a substantial learning transfer
to the non-trained stimulus (mRDKs) and partial transfer to a different task. The data also showed
differences in coherence thresholds between dynamic GPs and mRDKs, with GPs showing lower
coherence thresholds than mRDKs. Finally, an interaction between visual stimulus type and session
for sampling efficiency revealed that the effect of training session on participants’ performance
varied depending on the type of visual stimulus, with dynamic GPs being influenced differently than
mRDKs. Conclusion: These findings highlight the complexity of perceptual learning and suggest that
the transfer of learning effects may be influenced by the specific characteristics of both the training
stimuli and tasks, providing valuable insights for future research in visual processing.

Keywords: visual perceptual learning; equivalent noise analysis; sampling efficiency; internal noise;
glass patterns; modified random-dot kinematograms; non-directional motion

1. Introduction

Visual perceptual learning is a behavioral method to study long-lasting perceptual
improvements resulting from training [1–5]. Practice induces perceptual improvements

Brain Sci. 2024, 14, 997. https://doi.org/10.3390/brainsci14100997 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci14100997
https://doi.org/10.3390/brainsci14100997
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0003-2361-354X
https://orcid.org/0000-0003-4019-085X
https://orcid.org/0000-0003-3643-2019
https://orcid.org/0000-0003-2735-9155
https://orcid.org/0000-0002-7697-6320
https://doi.org/10.3390/brainsci14100997
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci14100997?type=check_update&version=1


Brain Sci. 2024, 14, 997 2 of 18

across different visual domains, such as motion and form perception [3,6], contrast sensitiv-
ity [7], and more. The long-term effects of visual perceptual learning are linked to brain
plasticity, which refers to the brain’s ability to modify its structure and function [8]. Visual
perceptual learning often shows specific improvements tied to trained features such as
location and orientation. This specificity has led to contrasting theories in the field: one
suggesting localized changes in specific brain regions, and another proposing enhanced
interpretation in higher-level areas [9,10]. These opposing views have shaped research
for decades. Recent studies have expanded our understanding of these mechanisms. For
instance, Ahissar and Hochstein [11,12] proposed a top-down learning process that begins
in higher cortical levels and moves downstream to engage the neurons most relevant for
stimulus encoding. Simpler tasks are processed at these higher levels, allowing for broader
feature transfer, while more complex tasks rely on lower-level cortical areas where neurons
are more finely tuned. Furthermore, Jeter et al. [13] found that task precision, rather than
difficulty, influences the level of transfer in perceptual learning, suggesting that improve-
ments are more specific to the conditions under which training occurs. The structure and
length of training sessions also play a role in generalization, with fewer sessions increasing
the likelihood of transfer [14,15]. McGovern et al. [16] contributed to this research topic
by demonstrating that perceptual learning can facilitate transfer across different tasks.
Their research showed a significant transfer among orientation discrimination, curvature
discrimination, and global form tasks, indicating that perceptual learning improvements
are not confined to a single task, but can extend across various perceptual domains and
tasks. This understanding aligns with the idea that visual perceptual learning involves
multiple brain networks [17,18], making it plausible for learning effects to transfer to visual
stimuli with similar characteristics. Given this complexity, it is reasonable to suggest that
the improvements gained through visual perceptual learning could extend to other stimuli
that activate similar neural pathways.

Visual perceptual learning and learning transfer effects have also been used to study
the mechanisms underlying form–motion integration and to compare it with directional
motion [3]. This is exemplified by our previous study [3], where we conducted an online vi-
sual perceptual learning experiment to investigate whether non-directional motion evoked
by dynamic Glass patterns (GPs) shares the same processing mechanisms as directional
motion evoked by Random-Dot Kinematograms (RDKs). Dynamic GPs are visual stimuli
formed by dot pairs called dipoles, and based on their orientation, they can create different
global shapes such as translational (i.e., oriented), circular, radial, spiral, etc. [19]. GPs be-
come dynamic when composed of multiple independent frames shown in rapid succession.
The frames are independent because dipoles do not follow a specific trajectory throughout
the frames (i.e., no dipole-to-dipole correspondence across frames) but maintain a constant
orientation, creating an illusory directional motion [3,20–27]. This type of motion has been
called non-directional motion [3,28]. Conversely, RDKs are composed of single dots that
follow a specific trajectory throughout the frames. In our previous study [3], we conducted
a ten-session experiment with two distinct groups of participants: one group trained us-
ing dynamic GPs, while the other group trained with RDKs. Participants performed a
two-interval forced-choice (2IFC) task, where they had to detect which of the two stimuli
presented to the screen was the oriented/directional pattern. The results indicated that
visual perceptual learning is specific to the trained stimulus, suggesting that directional
and non-directional motion may rely on different mechanisms [3]. Despite the growing evi-
dence supporting an interconnected system for motion and form processing, a fundamental
question remains: how do these neural networks integrate local form and motion cues to
construct a global and coherent perceptual experience? A substantial body of psychophysi-
cal research has highlighted the potential of internal noise and sampling efficiency as key
parameters in elucidating the interplay between local and global processing of form and
motion information [24,29–32]. Pelli [33] was one of the pioneers of this concept in the field
of psychology and psychophysics. Simplifying his model, the author suggested that when
we perceive something, our brain adds a consistent amount of internal noise to the sensory
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input and then processes it to make a decision. By testing individuals’ ability to see against
different levels of external noise, we can learn about their sensitivity to that specific visual
property tested and how efficiently their brains process that visual information. Within
the domain of form and motion perception, internal noise refers to the observer’s ability to
detect the inherent variability (variance) in the orientation or motion direction of individual
elements within a visual pattern in the absence of any external noise [24,34,35]. Conversely,
sampling efficiency reflects the visual system’s capacity to integrate visual information
from various spatial and temporal locations into a unified global percept [34]. Both internal
noise and sampling efficiency can be estimated using equivalent noise analysis [32,34–37].
Another prevalent approach in psychophysical research to study global motion (and form)
perception has been the use of coherence tasks introduced by Newsome and colleagues [38].
Coherence tasks involve measuring the number of coherently moving or oriented elements
(i.e., same direction or orientation) that can be replaced by randomly moving or oriented
elements while still allowing for reliable discrimination of the overall direction or orienta-
tion, for example, left/right or horizontal/vertical. High motion or orientation coherence
thresholds reflect poor global pooling of motion or orientation signals across space [34].

Building on these considerations, while visual perceptual learning has shed light on
the mechanisms behind long-lasting perceptual improvements, several critical questions re-
main unresolved. Our study addresses three key research questions: (i) Does improvement
in global form–motion integration transfer to non-directional motion in mRDK? (ii) Does
the improvement rely on more efficient noise filtering and/or more efficient sampling?
(iii) Are mRDKs easier to discriminate than GPs, even when both stimuli convey non-
directional motion? These questions form the foundation of our investigation and are
explored in detail in the following sections.

1.1. Does Improvement in Global Form–Motion Integration Transfer to Non-Directional Motion
from mRDK?

In the current study, we focused on visual perceptual learning in visual local and
global processing through two classes of visual stimuli: dynamic translational GPs and a
modified version of RDKs that we call modified Random-Dot Kinematograms (mRDKs). To
recreate non-directional motion with RDKs, we developed the mRDK so that the individual
dots in the coherent portion move either upwards or downwards, while the remaining
ones move randomly. Each coherent dot is randomly assigned an upward or downward
direction for each frame, resulting in a perceived motion of the dots along the vertical axis
(see Video S1b in the Supplementary Material). However, it is not possible to discern an
upward or downward trajectory (for further details, please see Section 2.3). Although we
attempted to recreate non-directional motion with the mRDK, the main difference between
dynamic GPs and the mRDK is that the former is composed of dipoles while the latter is
made of single dots. This means that, unlike mRDKs, dynamic GPs involve both motion
and form processing elicited by dipole orientation. Visual perceptual learning allowed us
to monitor participants’ performance changes on a task involving dynamic GPs to evaluate
form–motion global processing. This methodology enabled us to investigate transfer effects
onto a structurally different yet perceptually similar visual stimulus (i.e., mRDK). We
hypothesized that visual perceptual learning based on a coherence task with dynamic
translational GP would cause a gradual decrease in participants’ coherence thresholds,
implying that observers enhance their sensitivity to integrate form and motion cues at a
global level [3]. We also hypothesized that dynamic translational GPs and mRDKs, being
characterized by the same type of non-directional motion, would be processed similarly.
Therefore, we expected a learning transfer to the non-trained stimulus.

1.2. Does the Improvement of Global Motion–Form Integration Rely upon More Efficient Noise
Filtering and/or More Efficient Sampling?

We also aimed to address the following question: what aspects of visual processing
are enhanced by learning based on a global coherence discrimination task? Dosher and
Lu [39] investigated the mechanisms underlying visual perceptual learning with the aim
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of determining if distinct mechanisms enhance performance in noisy and clear displays.
Two mechanisms—external noise filtering and stimulus amplification—are processes in-
volved in how the human perceptual system adapts to different environments. Their
existence has been identified and examined by the authors using a perceptual template
model, with specific manipulations of external noise. These mechanisms serve distinct
functions: external-noise filtering is crucial in noisy settings, while stimulus amplification
is essential in clear environments. Visual perceptual learning associated with these mecha-
nisms reflects improvements in the enhancement of stimulus information quality through
external-noise filtering, and/or overcoming intrinsic processing limitations of the human
observer through stimulus amplification. The visual stimuli the authors adopted were a
simple Gabor and a Gabor with a random noise mask. Participants’ task was to discriminate
two different orientations, ±8◦ from vertical. The results revealed an asymmetric transfer
of learning. Training with clear displays improved performance in both clear and noisy
environments, suggesting that learning increases the stimulus signal or noise filtering,
while training with noisy displays did not benefit performance with clear displays, sug-
gesting that, in this case, learning reduced only the impact of external noise (external noise
exclusion) [40]. Using an equivalent noise approach, we tested whether visual perceptual
learning could transfer to a task that requires noise filtering and/or sampling efficiency
(integration of local signals). According to this approach, all the individual elements (dots
or dipoles) can be defined as signals, as they contribute to the global motion/form. This
is achieved by assigning the direction/orientation of dots/dipoles based on a Gaussian
distribution around a given mean value. The variability in direction/orientation is intro-
duced by varying the standard deviation of the Gaussian distribution [35,41–43]. By using
an orientation/direction discrimination with variable standard deviation of the Gaussian
distribution, we assessed whether visual perceptual learning of dynamic GPs produced
changes related to noise filtering at a local level, or sampling efficiency at a global level. It
is important to note that in the equivalent noise approach, internal noise is considered even
when dealing with external noise, as the standard deviation of direction/orientation affects
the internal representation of the stimulus.

1.3. Are RDKs Easier to Discriminate than GPs Even When Both Stimuli Convey
Non-Directional Motion?

Finally, some studies have shown that RDKs are easier to discriminate than dynamic
GPs [3,19,44]. Our final objective was to determine whether this difference is maintained
when non-directional motion is introduced into RDKs.

2. Materials and Methods
2.1. Participants

A total of twelve naïve participants (mean age: 21; SD: 4.427; all females) took part in
this experiment. However, two participants were excluded from the final analysis due to
their inability to show perceptual learning. All participants had normal or corrected-to-
normal vision, and binocular viewing was employed throughout the experiment. This study
was conducted in accordance with the tenets of the World Medical Association Declaration
of Helsinki [45]. Ethical approval for this study was obtained by the Department of
Psychology Ethics Committee at the University of Padova (Protocol number: 4764). Written
informed consent was obtained from all participants before the first session.

2.2. Apparatus

Visual stimuli were presented on a 23.8-inch Hp Elite E240 monitor (Coimbra, Por-
tugal), with a spatial resolution of 1920 × 1080 pixels and a refresh rate of 60 Hz. Each
pixel subtended 1.65 arcminutes. Participants were positioned in a dark room at a viewing
distance of 57 cm from the screen. The display of visual stimuli was controlled using
MATLAB R2021b Psychtoolbox-3 [46–48].
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2.3. Stimuli

The visual stimuli consisted of dynamic Glass patterns (GPs) and modified Random-
Dot Kinematograms (mRDKs). Dynamic GPs consisted of 250 white dipoles, while mRDKs
consisted of 500 white dots, each 0.083 deg wide, presented on a gray background. Dipoles
and dots were randomly positioned within a circular window with inner and outer radii
of 0.2◦ and 5◦, respectively. The distance between the centers of adjacent dots within each
dipole was 0.18 degrees [26,49,50]. In the mRDKs, a proportion of dots moved vertically,
either upward or downward, while the other dots moved in random directions. The step
size for each dot in the mRDKs was 0.18 deg. Specifically, the signal dots were randomly
reassigned positions throughout the frames at regular intervals, maintaining a constant
vertical directional axis. This produced a flickering texture that created the perception
of motion along the vertical axis, without following a specific trajectory. Similarly, in
the dynamic GPs, the positions of the signal and noise dipoles (i.e., randomly oriented
dipoles) continuously changed throughout the frames, while their orientation remained
constant. The frames composing the dynamic GPs and mRDKs were sequentially presented
at a rate of 10 Hz, with each frame lasting approximately 0.1 s (see Video S1a,b in the
Supplementary Material).

3. Procedure

This study comprised ten sessions, including a 2 h pre-test, eight training sessions of
approximately 40 min each [3,51,52], and a 2 h post-test session. Participants completed
one training session per day, with a maximum interval of three days between sessions. Both
the pre-test and post-test involved four tasks, each consisting of 300 trials: a coherence task
with dynamic GPs, a coherence task with mRDKs, an equivalent noise task with dynamic
GPs, and an equivalent noise task with mRDKs. The order of tasks was counterbalanced,
except for the post-test, which maintained the same task order as the pre-test. The initial
coherence of the stimuli was set at 50%.

For the coherence task, participants were presented with two rapid intervals: one con-
taining the coherent translational stimulus (either GPs or mRDKs) and the other containing
the noisy stimulus (random dots/dipoles). Participants’ task was to identify which interval
contained the coherent stimulus by pressing ‘1’ on the keyboard if they observed the coher-
ent pattern in the first interval and ‘2’ if they observed it in the second interval (2IFC) (see
Figure 1a,b). A 1-up/2-down Levitt staircase [53] was used to estimate the 70.7% coherence
threshold, calculated as the mean of the last 14 reversals. The steps of the staircase were
25, 20, 15, 10, 5, 2, and 1. These values indicate the extent to which the stimulus coherence
is adjusted after each response. If a response is correct, the stimulus coherence is reduced
according to these values, progressively adapting to the level of difficulty.

In the equivalent noise task, participants were required to discriminate the perceived
orientation or the illusory direction of motion through a two-alternative forced-choice
(2AFC) task. Specifically, they were required to indicate whether the moving dots or
oriented dipoles were tilted clockwise or counterclockwise from vertical by pressing the
left arrow key for counterclockwise perception and the right arrow key for clockwise
perception (see Figure 2a,b). The 70.7% discrimination thresholds were assessed using a
1-up/2-down Levitt staircase [53]. However, due to an error in the equivalent noise task
staircase, additional computations were necessary, as outlined in the Appendix A.

In coherence tasks, participants can readily discriminate between the signal and noise
components. In contrast, within the equivalent noise paradigm, all dots/dipoles are
considered as signals, contributing to the overall motion or form. This is achieved by
determining the direction or orientation of dots or dipoles based on a Gaussian distribution
centered around a specific mean value [35,42,43]. Before starting the pre-test, all participants
underwent a familiarization phase with the tasks, performing a series of trials to ensure
confidence with the visual stimuli and the experimental procedure. The training sessions
focused exclusively on the coherence task with dynamic GPs, comprising two blocks of
300 trials each.
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vertical axis. In both figures, the arrows in the first interval indicate the bidirectional illusory motion 
along the vertical axis. The interval order shown in the figure is just an example; in the actual 
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interval. Additionally, for illustrative purposes, the stimuli are shown at the maximum level (100%) 
of their coherence in this figure. 
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orientation or the illusory direction of motion through a two-alternative forced-choice 

Figure 1. (a,b) depict the 2IFC task procedure. (a) illustrates the procedure using dynamic GPs, where
the first interval contains a vertically oriented GP, and the second interval contains a random/noisy
GP. (b) depicts the procedure using mRDKs, with bidirectional movement along the vertical axis.
In both figures, the arrows in the first interval indicate the bidirectional illusory motion along the
vertical axis. The interval order shown in the figure is just an example; in the actual experiment,
the coherent stimulus could randomly appear in either the first or the second temporal interval.
Additionally, for illustrative purposes, the stimuli are shown at the maximum level (100%) of their
coherence in this figure.
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Figure 2. (a,b) represent the equivalent noise task where participants were required to discriminate
the perceived orientation or illusory direction of motion (either clockwise or counterclockwise from
vertical) using a two-alternative forced-choice task (2AFC). (a) depicts the procedure with dynamic
GPs, while (b) illustrates the mRDKs. The arrows represent the bidirectional illusory motion along
the oblique axis and were not displayed during the experiment.
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4. Results

The analyses and visualizations were conducted using R (v4.4.0; Boston, MA, USA) [54,55].

4.1. Coherence Thresholds: Analysis of Pre- and Post-Test

Figure 3 shows the coherence thresholds measured in both pre- and post-test for each
type of visual stimulus. The Shapiro–Wilk test revealed that the residuals for coherence
thresholds in every condition (i.e., a combination of stimulus and session) deviated from
a normal distribution (W = 0.756, p < 0.001). Each condition’s data also displayed a high
positive skewness ≥ 1.7. Additionally, we identified five outliers (80.28, 51.82, 8.77, 89.82,
and 80.27) using the Double Median Absolute Deviation (MAD) [56], which were included
in the analysis. Due to the non-normality of residuals, we decided to perform a non-
parametric factorial ANOVA using the Aligned Rank Transform (ART) method from the R
package ARTool [57,58]. ART is a robust non-parametric approach specifically designed
for analyzing data when assumptions like normality and equal variances are violated. The
ART process involves ranking the data from lowest to highest, assigning each data point
a rank based on its relative value within the group. These ranks are then aligned across
different conditions by matching ranks of equivalent values, addressing issues related to
varying scales or variances among groups. Following alignment, the ranks are transformed
back to the original data scale, enabling the application of traditional statistical methods
like ANOVA or a linear mixed model. This transformation ensures accurate data analysis
while accommodating rank alignment across groups.
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Figure 3. Boxplots depicting coherence thresholds for pre- and post-test sessions, as well as for GPs
and mRDKs. Each box in the plot represents the interquartile range (IQR) of the data, with the median
indicated by the horizontal line inside the box. The whiskers extend to the minimum and maximum
values within 1.5 times the IQR from the first and third quartiles, respectively. Additionally, the black
point inside each box denotes the mean of that condition. The colored dots represent individual data
points, with blue indicating dynamic GPs and red indicating mRDK.
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Post hoc analysis was conducted using the art.con function [57,59]. Following the
rank assignment, we conducted a linear mixed model with session (pre- and post-test) and
stimulus (GPs and mRDKs) as within-subject factors, and the intercept across participants
functioned as a random effect. Our analysis revealed significant main effects for session
(F(1, 27) = 4.74; p = 0.038) and stimulus (F(1, 27) = 8.17, p = 0.008), indicating that both factors
impact the response variable. However, the interaction between session and stimulus did
not reach statistical significance (F(1, 27) = 0.25, p = 0.621). The analysis revealed that
coherence thresholds were lower in the post-test phase than in the pre-test phase, and
mRDKs showed significantly higher coherence thresholds compared to GPs.

4.2. Equivalent Noise: Analysis of Pre- and Post-Test

For each participant, discrimination thresholds were used to estimate internal noise
(σint) and sampling efficiency (η). This process involves breaking down the total uncer-
tainty in perceiving the stimulus (σobs) into two separate components, which are treated
independently before being combined quadratically. We followed the approach outlined
by Ghin et al. [37], employing the following equivalent noise formula for calculating σobs:

σobs =

√
σ2

int + σ2ext

η
(1)

σext refers to the inherent noise in the stimulus, commonly known as external noise,
while σint represents the intrinsic uncertainty in the observer, referred to as internal noise.
The summation is adjusted by a factor η, which denotes the effective number of simultane-
ous samplings conducted by the observer on the stimulus, a process known as sampling.
In this study, the equivalent noise parametrization was implemented using a two-point
procedure [32]: one with zero external noise (σext fixed at 0) to determine the minimum
detectable directional deviation from vertical in the absence of external noise, and an-
other with high external noise to establish the maximum tolerable noise level in terms of
orientation/direction deviation from the mean.

The values for zero external noise were obtained from the average of the last 14 re-
versals from each 1-up/2-down staircase procedure, the uncertainties being the standard
deviations of the considered reversals. A different procedure, detailed in the Appendix A,
was followed for the high external noise. Here, σobs was set at 45◦ (equivalent to π/4
radians), while σext corresponded to the level of external noise at which an observer
achieves 70.7% accuracy in discriminating motion direction. Simplifying the equivalent
noise parametrization, at 0 external noise, Equation (1) becomes the following:

σobs,0 =
σint√

η
(2)

instead, at high noise, considering σext,H ≫ σint, it becomes the following:

σobs,H ≃ σext,H√
η

(3)

combining Equations (2) and (3) can result in the following:

η =
σ2

ext,H

σ2
obs,H

and σint = σobs,0
√

η. (4)

The uncertainties associated with η and σint can be computed as follows:

δη =
2σext,H

σ2
obs,H

δσext,H and δσint =

√
η(δσobs,0)

2 +
σobs,0

4η
(δη2) (5)
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Based on the extracted values, we conducted an analysis to compare the sampling
efficiency and internal noise for GPs and mRDKs to observe the impact of learning transfer.
Figure 4 shows the results of sampling efficiency measured in both pre- and post-test.
The Shapiro–Wilk test indicated that the residuals deviated from a normal distribution
only for one condition (W = 0.66, p = 0.0003), displaying a high positive skewness in
the same condition 2.17 (SE = 0.69) and a kurtosis of 3.74 (SE = 1.33). We also detected
eight outliers (3.84, 7.58, 5.15, 3.86, 3.90, 7.45, 8.19, and 5.07). Due to the presence of
outliers and non-normally distributed residuals in one condition, we employed again the
ARTool package. Following rank assignment, we performed a linear mixed model with
session (pre- and post-test) and stimulus (GPs vs. mRDKs) as within-subjects factors. The
random effect was always the intercept across participants. The analysis revealed that the
main effect of the session is not significant (F(1, 27) = 3.48, p = 0.07), as well as the main
effect of stimulus (F(1, 27) = 0.01, p = 0.91). However, a significant interaction between
session and stimulus was observed (F(1, 27) = 4.85, p = 0.03). Subsequent Holm-corrected
post hoc comparisons were conducted to further investigate the interaction effect (Holm
correction applied for six tests). A significant difference was identified in the comparison
between GPs and mRDKs in the post-test session (padj = 0.027), as well as between pre-
and post-test for mRDK (padj = 0.029). These results highlight the substantial impact of
visual perceptual learning on sampling efficiency, revealing that sampling efficiency in fact
improved only for the non-trained mRDK stimulus. Specifically, for GPs, there was no
significant difference in terms of simultaneous samplings conducted by the observer on
the stimulus (pre-test: M = 2.26, SEM = 0.14; post-test: M = 2.62, SEM = 0.21). In contrast,
for the mRDKs, a significant reduction in simultaneous samplings was observed (pre-test:
M = 3.38, SEM = 0.27; post-test: M = 1.1, SEM = 0.07).
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Figure 5 shows the variation in internal noise between pre- and post-tests for both
GPs and mRDKs. The Shapiro–Wilk test revealed that the residuals were not normally
distributed in three out of four conditions (all p < 0.01), showing a positive skewness of 2.35.
Four outliers were identified with values of 2.52, 2.87, 1.69, and 2.35. To analyze the internal
noise values, the ARTool method was employed. After rank assignment, a linear mixed
model was performed, revealing significant effects for the session (F(1, 27) = 4.24, p = 0.049)
and stimulus (F(1, 27) = 5.168, p = 0.031). However, the interaction effect between session
and stimulus was not statistically significant (F(1, 27) = 1.535, p = 0.225). Examining the
impact of visual perceptual learning, a significant decrease in internal noise was observed
from the pre-test to the post-test (pre-test: mean = 0.62, SEM = 0.044; post-test: mean = 0.29,
SEM = 0.02). Furthermore, higher levels of internal noise were found for mRDK compared
to GPs (mRDK: mean = 0.7, SEM = 0.045; GP: mean = 0.22, SEM = 0.01).

Brain Sci. 2024, 14, x FOR PEER REVIEW 12 of 20 
 

the impact of visual perceptual learning, a significant decrease in internal noise was ob-

served from the pre-test to the post-test (pre-test: mean = 0.62, SEM = 0.044; post-test: mean 

= 0.29, SEM = 0.02). Furthermore, higher levels of internal noise were found for mRDK 

compared to GPs (mRDK: mean = 0.7, SEM = 0.045; GP: mean = 0.22, SEM = 0.01). 

 

Figure 5. Boxplots of internal noise (σint) for pre- and post-test conditions. For each boxplot, the 

horizontal black line indicates the median, whereas the dot within each box represents the mean 

internal noise (in radians) for each condition. The colored dots represent individual data points, 

with blue indicating dynamic GPs and red indicating mRDK. 

4.3. Learning Curves 

Figure 6 depicts the average coherence thresholds estimated across the eight learning 

sessions with GPs. The starting and ending points on the curve represent the contrast 

thresholds estimated before and after training. To analyze the learning curve and investi-

gate the relationship between learning sessions and coherence threshold, three different 

models were examined: linear, power, and exponential. The models’ forms are described 

as follows. 

These functions were fitted to the learning curve, and the best-fitting model was de-

termined to be the power function based on the lowest values of AIC, AICc, and BIC (refer 

to Table 1). In the power function, parameter ‘a’ represents the scale parameter, indicating 

the power function’s value at x = 1 (initial assessment), while ‘b’ represents the learning 

rate, with smaller values suggesting slower progress across sessions; ‘x’ denotes the extent 

of practice (learning sessions). In this study, the parameters were estimated as a = 33.89 

and b = 0.20. The power fitting model indicates that the rate of improvement in learning 

performance does not follow a linear pattern with the number of practice sessions. This 

nonlinearity suggests that the learning rate is higher at the beginning of the training and 

Figure 5. Boxplots of internal noise (σint) for pre- and post-test conditions. For each boxplot, the
horizontal black line indicates the median, whereas the dot within each box represents the mean
internal noise (in radians) for each condition. The colored dots represent individual data points, with
blue indicating dynamic GPs and red indicating mRDK.

4.3. Learning Curves

Figure 6 depicts the average coherence thresholds estimated across the eight learning
sessions with GPs. The starting and ending points on the curve represent the contrast
thresholds estimated before and after training. To analyze the learning curve and investigate
the relationship between learning sessions and coherence threshold, three different models
were examined: linear, power, and exponential. The models’ forms are described as follows.
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These functions were fitted to the learning curve, and the best-fitting model was
determined to be the power function based on the lowest values of AIC, AICc, and BIC
(refer to Table 1). In the power function, parameter ‘a’ represents the scale parameter,
indicating the power function’s value at x = 1 (initial assessment), while ‘b’ represents the
learning rate, with smaller values suggesting slower progress across sessions; ‘x’ denotes
the extent of practice (learning sessions). In this study, the parameters were estimated as
a = 33.89 and b = 0.20. The power fitting model indicates that the rate of improvement in
learning performance does not follow a linear pattern with the number of practice sessions.
This nonlinearity suggests that the learning rate is higher at the beginning of the training
and decreases as the number of sessions increases. The linear and exponential models did
not fit as well because the linear model assumes a constant rate of improvement over time,
and the exponential model assumes rapid early gains that continue exponentially. Neither
model captured the gradual slowing of the learning rate observed in our data. The power
function, with its flexibility, better modeled this nonlinear learning process.

Table 1. Functions used to fit the coherence threshold values and associated estimators of predic-
tion error.

Model Name Model Function Estimators of Prediction Error

Linear function y = ax + b
AIC = 59.12
AICc = 63.15
BIC = 60.06

Power function y = ax−b
AIC = 52.08
AICc = 56.08
BIC = 52.98
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Table 1. Cont.

Model Name Model Function Estimators of Prediction Error

Exponential function y = aebx
AIC = 58.5
AICc = 62.5
BIC = 59.41

5. Discussion

The primary objective of this study was to further investigate the impact of visual
perceptual learning on visual stimuli containing form and motion cues that evoke non-
directional motion. We aimed to examine the learning transfer effects to a different, yet
similar, stimulus, as well as to a different task. To achieve this, we estimated coherence
thresholds for dynamic Glass patterns (GPs) during a motion discrimination task across ten
sessions, where participants identified in which of the two presented intervals the coherent
pattern appeared. Additionally, to assess learning transfer at both the stimulus and task
levels, we introduced tasks in the pre- and post-test to evaluate coherence thresholds for
modified Random-Dot Kinematograms (mRDKs) and discrimination thresholds for both
high- and zero-noise levels, computing internal noise and sampling efficiency for both
dynamic GPs and mRDKs. This study is the first to test a new class of visual stimuli that
simulates the illusory directional motion elicited by mRDKs in the absence of form cues.
This approach was crucial for better understanding the dynamics underlying learning
transfer to a different visual stimulus.

As reported in the introduction, our previous visual perceptual learning study [3]
showed that eight days of training on dynamic translational GPs did not lead to learning
transfer to directional RDKs, suggesting that distinct mechanisms may underly directional
and non-directional motion processing. In contrast to directional RDKs, where each dot
follows a specific trajectory, the current study found not only significant learning effects
on the trained stimulus (i.e., dynamic GPs) and task (i.e., coherence thresholds) but also
substantial learning transfer to the non-trained stimulus (i.e., mRDKs). This suggests that
the processing mechanisms underlying two forms of non-directional motion—one induced
by dynamic GPs, which integrate both form and motion cues, and the other by mRDKs,
which contain only ambiguous motion cues—share overlapping processing mechanisms.

We also observed partial learning transfer to a different task, evidenced by improved
internal noise filtering after eight days of training on coherence thresholds. According
to signal detection theory, internal responses to stimuli are probabilistic, meaning that
a particular stimulus has only a certain probability of triggering a specific internal re-
sponse [60,61]. In the context of perceptual learning, each trial elicits an internal response
in the observer that may be based on decreasing the internal noise, enhancing processing
efficiency (external noise exclusion), or both. Our findings indicate that training on global
features discrimination tasks can enhance local noise filtering. However, the ability to
integrate local information into a global percept did not achieve statistical significance
(p = 0.07). Nonetheless, the trend observed suggests that a larger sample size may help
clarify this effect. Our results also show that the variance in sampling efficiency and internal
noise decreases drastically between pre- and post-training sessions. This may reflect an
optimization of perceptual processes, such as local and global cues processing, leading to
more accurate and reliable performance on visual discrimination tasks.

A slightly different outcome was observed in a study by Gold et al. [60], where the
authors investigated visual perceptual learning using the signal detection theory. Their
aim was to determine whether perceptual improvements resulted from increased internal
signal strength or decreased internal noise. They employed an external noise masking and
a double-pass response consistency method (which measures how reliably participants
provide the same answers when repeating the same task under identical conditions) to
analyze how observers learned to detect unfamiliar visual stimuli. Specifically, the tasks
involved discriminating between two types of unfamiliar patterns: human faces and
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abstract textures. Although participants’ performance improved with practice, internal
noise filtering did not change. This suggested that learning enhanced internal signal
strength without decreasing internal noise. Similarly, Kurki and Eckstein [62] used a
classification image methodology to investigate which parts and features of the stimulus
the visual system processes at different stages of learning. They found that while sampling
efficiency increased with training, internal noise filtering was not affected. These differences
between studies may arise from the distinct methodologies and models used, suggesting
that future research should explore the variations between these models in the context of
visual perceptual learning.

Furthermore, we observed a significant interaction between the visual stimulus and
the session, as well as a generalization of learning to the non-trained stimulus (mRDK) for
sampling efficiency. This indicates that the impact of the training session varied depending
on the type of visual stimulus, revealing distinct effects in the post-test tasks. In other words,
for sampling efficiency, the training had a different impact on participants’ performance
depending on whether the stimulus was a dynamic GP or an mRDK. It is important to
consider that the equivalent noise model is a mathematical framework, and we did not
specifically train participants on any equivalent noise tasks. Since sampling efficiency
for dynamic GPs was already at floor level in the pre-test, there was likely little room for
improvement, suggesting that the task with dynamic GPs was relatively simple. For the
mRDK, being a more challenging stimulus to discriminate, there might have been a small
generalization effect. These different effects suggest that the type of visual stimulus plays a
critical role in how training influences visual perceptual learning and the ability to integrate
the orientations/directions of dynamic GPs and mRDKs.

Finally, we found a statistical difference between dynamic GPs and mRDKs, with
mRDKs showing higher coherence thresholds compared with dynamic GPs. This indicates
that participants could more easily discriminate the motion axis orientation in dynamic
GPs than in mRDKs. This could be attributed to the increased difficulty in processing
mRDKs due to the random scrambling of the positions of individual elements within the
pattern, as mRDKs introduce visual noise and disrupt a coherent motion direction, thus
requiring more complex computation to be perceived. Therefore, we can conclude that the
well-defined directional motion in directional RDKs makes them easier to process than
dynamic GPs, as supported by previous investigations [3,19,44].

6. Conclusions

This study examined the impact of visual perceptual learning on stimuli that inte-
grate both form and motion cues, with a particular focus on non-directional motion. The
primary aim was to evaluate the transferability of learning across different stimuli and
tasks. The results showed that training on dynamic Glass patterns (GPs) not only improved
performance on the trained task (coherence threshold) but also transferred to an untrained
stimulus—modified Random-Dot Kinematograms (mRDKs). This suggests that both types
of non-directional motion share common processing mechanisms. Additionally, partial
transfer to a different task was observed, as reflected by enhanced internal noise filtering.

Participants also found dynamic GPs easier to process than mRDKs.
Overall, these findings deepen our understanding of visual perceptual learning and its

transfer mechanisms in non-directional motion perception, highlighting the importance of
stimulus characteristics and the potential for visual perceptual learning to enhance internal
processing efficiency.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci14100997/s1, Video S1. (a) Illustrates the dynamic GPs,
where dipoles appear to shift along the vertical axis, creating an illusion of directional motion despite
the absence of coherent motion (i.e., no dipole-to-dipole correspondence between successive patterns).
(b) Shows the mRDKs, depicting randomly distributed dots drifting along the vertical axis. In both
videos, two temporal intervals are presented: the first interval always contains the coherent pattern
(100% coherence), while the second interval always contains a random/noise pattern (GPs and

https://www.mdpi.com/article/10.3390/brainsci14100997/s1
https://www.mdpi.com/article/10.3390/brainsci14100997/s1
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mRDKs). However, in the actual experiment, the temporal intervals with the coherent non-directional
motion and the noise pattern were presented in random order.
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Appendix A

By design, a Levitt staircase autonomously converges to a value of the parameter
which corresponds to a specific fraction of correct answers. Such a fraction depends on
the implementation details of the staircase: for example, it is equal to 70.7% in the case of
1-up/2-down. Now, let us highlight a noteworthy difference between the zero-noise and
the high-noise task. In the former case, where the staircase parameter is the deviation of
the stimulus orientation from the vertical direction, the complexity of the task increases
as the parameter approaches zero. Conversely, in the high-noise task, where the average
orientation is fixed and the parameter is the spread of the stimulus around this average,
complexity increases with the parameter. To ensure that both tasks converge to the same
fraction of correct answers, “up” and “down” in the staircase should be interpreted as
“easier” and “harder”, thus leading to an inversion of the up/down directions for the
high-noise task.

Unfortunately, an error in the coding of the staircase for the high-noise task caused
it to function as a “2-easier/1-harder” staircase. As a result, instead of converging to
the intended fraction of correct answers, these staircases inexorably drifted towards the
parameter regime corresponding to pure noise. To estimate the 70.7% threshold, we sorted
the trials of each staircase into bins based on external noise levels, calculated the fraction of
correct answers for each bin, fitted the resulting distribution against a sigmoid curve, and
determined the external noise level at which the curve crosses the threshold. The specific
sigmoid function was a logistic curve:

Σ(p) = 1/2 (1 + 1/(1 + exp(k(p − p0))))

where p represents the staircase parameter, p0 is the center of the sigmoid, and k is the
growth rate. This curve is constrained to interpolate between the low-noise regime (where
all answers are correct) and the very high-noise regime (where responses are entirely
random, resulting in a 50% correct rate). Figure A1 illustrates this procedure for clarity.

https://osf.io/whtpd/?view_only=4229c09c807d47beb88dbab6b78a7681
https://osf.io/whtpd/?view_only=4229c09c807d47beb88dbab6b78a7681
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