An Automated Hierarchy Method to Improve History Record Accessibility in Text-to-Image Generative AI
Abstract
:1. Introduction
2. Related Works
2.1. The Potential of Generative AI as an Efficient Tool
2.2. Conversational User Interface
3. Methods
3.1. Two Approaches for Hierarchy
3.1.1. Vision-Based Approach
3.1.2. Prompt-Based Approach
3.2. Unsupervised Learning for Automatic Hierarchy
3.3. Hierarchy Keyword Extraction
- : A parameter that balances relevance and diversity.
- : The similarity between document d and query Q.
- : The maximum similarity between document d and each document in the selected set .
3.4. Generative AI, Baseline UI, and Automatic Hierarchy UI for User Studies
3.4.1. Generative AI
3.4.2. Baseline UI
3.4.3. Automatic Hierarchy UI
4. User Study
4.1. Participants
4.2. Procedure
4.3. Measures
4.3.1. Questionnaire
4.3.2. Interview
5. Results
5.1. Baseline Versus Automatic Hierarchy Method: Results
5.1.1. Usability
5.1.2. Ease of Learning
5.1.3. Efficiency
5.2. Vision-Based Versus Prompt-Based Approach: Results
5.2.1. Perceived Accuracy
5.2.2. Usability
5.2.3. Efficiency
6. Discussion
6.1. Baseline vs. Automatic Hierarchy Method
6.2. Vision-Based vs. Prompt-Based Approach
6.3. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramdurai, B.; Adhithya, P. The impact, advancements and applications of generative AI. Int. J. Comput. Sci. Eng. 2023, 10, 1–8. [Google Scholar] [CrossRef]
- Caldeira, W.G.; Simões, J.M. Disrupting the Conventional: The Impact of Generative AI Models on Creativity in Visual Communications. E-Rev. Estud. Intercult. 2024. [Google Scholar] [CrossRef]
- Ghosh, A. AI Assisted Visual Communication Through Generative Models. Ph.D. Thesis, University of Oxford, Oxford, UK, 2021. [Google Scholar]
- Cai, A.; Rick, S.R.; Heyman, J.L.; Zhang, Y.; Filipowicz, A.; Hong, M.; Klenk, M.; Malone, T. DesignAID: Using generative AI and semantic diversity for design inspiration. In Proceedings of the ACM Collective Intelligence Conference, Delft, The Netherlands, 6–9 November 2023; pp. 1–11. [Google Scholar]
- Buzzaccarini, G.; Degliuomini, R.S.; Borin, M.; Fidanza, A.; Salmeri, N.; Schiraldi, L.; Di Summa, P.G.; Vercesi, F.; Vanni, V.S.; Candiani, M.; et al. The promise and pitfalls of AI-generated anatomical images: Evaluating midjourney for aesthetic surgery applications. Aesthetic Plast. Surg. 2024, 48, 1874–1883. [Google Scholar] [CrossRef] [PubMed]
- Temsah, M.H.; Alhuzaimi, A.N.; Almansour, M.; Aljamaan, F.; Alhasan, K.; Batarfi, M.A.; Altamimi, I.; Alharbi, A.; Alsuhaibani, A.A.; Alwakeel, L.; et al. Art or artifact: Evaluating the accuracy, appeal, and educational value of AI-generated imagery in DALL· E 3 for illustrating congenital heart diseases. J. Med Syst. 2024, 48, 54. [Google Scholar] [CrossRef]
- Liu, R.; bin Ismail, A.I. Application and Challenges of Generative AI in Architectural Design: A Case Study of GPT-4. Evol. Stud. Imaginative Cult. 2024, 8.2, 991–999. [Google Scholar]
- Hutson, J.; Lively, J.; Robertson, B.; Cotroneo, P.; Lang, M. Expanding Horizons: AI Tools and Workflows in Art Practice. In Creative Convergence: The AI Renaissance in Art and Design; Springer: Cham, Switzerland, 2023; pp. 101–132. [Google Scholar]
- Wojtkiewicz, K. How Do You Solve a Problem like DALL-E 2? J. Aesthet. Art Crit. 2023, 81, 454–467. [Google Scholar] [CrossRef]
- Jin, Y.; Yoon, J.; Self, J.; Lee, K. Understanding Fashion Designers’ Behavior Using Generative AI for Early-Stage Concept Ideation and Revision. Arch. Des. Res. 2024, 37, 25–45. [Google Scholar] [CrossRef]
- Mim, N.J.; Nandi, D.; Khan, S.S.; Dey, A.; Ahmed, S.I. In-Between Visuals and Visible: The Impacts of Text-to-Image Generative AI Tools on Digital Image-making Practices in the Global South. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems (CHI ’24), Honolulu, HI, USA, 11–16 May 2024; Association for Computing Machinery: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Cheng, S.H. Impact of Generative Artificial Intelligence on Footwear Design Concept and Ideation. Eng. Proc. 2023, 55, 32. [Google Scholar] [CrossRef]
- Patel, R. A Deep Dive Into the Advantages and Disadvantages of OpenAI’s Dall-E Model. 2024. Available online: https://www.spaceo.ai/blog/advantages-and-disadvantages-of-using-openai-dalle-model/ (accessed on 22 October 2024).
- Wray, R.; Yeh, R. DALL-E, Midjourney, Stable Diffusion: A Nuclear Medicine How-To for Commercial AI Text-To-Image Generation Tools. J. Nucl. Med. 2023, 64, P1463. [Google Scholar]
- Braguez, J. AI as a Creative Partner: Enhancing Artistic Creation and Acceptance. In Proceedings of the Barcelona Conference on Arts, Media & Culture 2023, Barcelona, Spain, 19–23 September 2023. [Google Scholar]
- Wiemann, J.M.; Knapp, M.L. Turn-taking in conversations. In Communication Theory; Routledge: London, UK, 2017; pp. 226–245. [Google Scholar]
- Bergner, A.S.; Hildebrand, C.; Häubl, G. Machine Talk: How Verbal Embodiment in Conversational AI Shapes Consumer–Brand Relationships. J. Consum. Res. 2023, 50, 742–764. [Google Scholar] [CrossRef]
- Bibauw, S.; François, T.; Desmet, P. Dialogue systems for language learning: Chatbots and beyond. In The Routledge Handbook of Second Language Acquisition and Technology; Routledge: London, UK, 2022; pp. 121–135. [Google Scholar]
- Shawar, B.A.; Atwell, E. Chatbots: Are they really useful? J. Lang. Technol. Comput. Linguist. 2007, 22, 29–49. [Google Scholar] [CrossRef]
- Chin, J.; Lee, S.; Park, C.; Yeoun, M. Proposal of User Interface Based on Heavy User Usage. Arch. Des. Res. 2024, 37, 287–313. [Google Scholar]
- Karren, K.; Schmitz, M.; Schaffer, S. Improving Conversational User Interfaces for Citizen Complaint Management through enhanced Contextual Feedback. In Proceedings of the 6th ACM Conference on Conversational User Interfaces (CUI ’24), Luxembourg, 8–10 July 2024; Association for Computing Machinery: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Dhami, S.; Brisco, R. A comparison of artificial intelligence image generation tools in product design. In Proceedings of the DS 131: Proceedings of the International Conference on Engineering and Product Design Education (E&PDE 2024), Birmingham, UK, 5–6 September 2024; pp. 13–18. [Google Scholar]
- Klopfenstein, L.C.; Delpriori, S.; Malatini, S.; Bogliolo, A. The Rise of Bots: A Survey of Conversational Interfaces, Patterns, and Paradigms. In Proceedings of the 2017 Conference on Designing Interactive Systems (DIS ’17), Edinburgh, UK, 10–14 June 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 555–565. [Google Scholar] [CrossRef]
- Planas, E.; Daniel, G.; Brambilla, M.; Cabot, J. Towards a model-driven approach for multiexperience AI-based user interfaces. Softw. Syst. Model. 2021, 20, 997–1009. [Google Scholar] [CrossRef]
- Caron, M.; Touvron, H.; Misra, I.; Jégou, H.; Mairal, J.; Bojanowski, P.; Joulin, A. Emerging Properties in Self-Supervised Vision Transformers. arXiv 2021, arXiv:2104.14294. [Google Scholar]
- Song, K.; Tan, X.; Qin, T.; Lu, J.; Liu, T.Y. MPNet: Masked and Permuted Pre-training for Language Understanding. arXiv 2020, arXiv:2004.09297. [Google Scholar]
- Fase, H. sentence-transformers/all-mpnet-base-v2. 2021. Available online: https://huggingface.co/sentence-transformers/all-mpnet-base-v2 (accessed on 21 October 2024).
- Malzer, C.; Baum, M. A Hybrid Approach To Hierarchical Density-based Cluster Selection. In Proceedings of the 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Karlsruhe, Germany, 14–16 September 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. How slow is the k-means method? In Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, Sedona, AZ, USA, 5–7 June 2006; pp. 144–153. [Google Scholar]
- Eldridge, J.; Belkin, M.; Wang, Y. Beyond hartigan consistency: Merge distortion metric for hierarchical clustering. In Proceedings of the Conference on Learning Theory, PMLR, Paris, France, 3–6 July 2015; pp. 588–606. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231. [Google Scholar]
- Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. arXiv 2019, arXiv:1910.13461. [Google Scholar]
- Bennani-Smires, K.; Musat, C.; Hossmann, A.; Baeriswyl, M.; Jaggi, M. Simple unsupervised keyphrase extraction using sentence embeddings. arXiv 2018, arXiv:1801.04470. [Google Scholar]
- Esser, P.; Kulal, S.; Blattmann, A.; Entezari, R.; Müller, J.; Saini, H.; Levi, Y.; Lorenz, D.; Sauer, A.; Boesel, F.; et al. Scaling Rectified Flow Transformers for High-Resolution Image Synthesis. arXiv 2024, arXiv:2403.03206. [Google Scholar]
- Jiang, J. When generative artificial intelligence meets multimodal composition: Rethinking the composition process through an AI-assisted design project. Comput. Compos. 2024, 74, 102883. [Google Scholar] [CrossRef]
- Annapureddy, R.; Fornaroli, A.; Gatica-Perez, D. Generative AI literacy: Twelve defining competencies. Digit. Gov. Res. Pract. 2024. [Google Scholar] [CrossRef]
- Kazanidis, I.; Pellas, N. Harnessing Generative Artificial Intelligence for Digital Literacy Innovation: A Comparative Study between Early Childhood Education and Computer Science Undergraduates. AI 2024, 5, 1427–1445. [Google Scholar] [CrossRef]
- Amoozadeh, M.; Daniels, D.; Nam, D.; Kumar, A.; Chen, S.; Hilton, M.; Srinivasa Ragavan, S.; Alipour, M.A. Trust in Generative AI among students: An exploratory study. In Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1, Portland, OR, USA, 20–23 March 2024; pp. 67–73. [Google Scholar]
- Mussa, O.; Rana, O.; Goossens, B.; Orozco Ter wengel, P.; Perera, C. ForestQB: Enhancing Linked Data Exploration through Graphical and Conversational UIs Integration. ACM J. Comput. Sustain. Soc. 2024, 2, 32. [Google Scholar] [CrossRef]
- Schrepp, M. User experience questionnaire handbook. In All You Need to Know to Apply the UEQ Successfully in Your Project; UEQ: Weyhe, Germany, 2015; pp. 50–52. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Maćkiewicz, A.; Ratajczak, W. Principal components analysis (PCA). Comput. Geosci. 1993, 19, 303–342. [Google Scholar] [CrossRef]
Comparison Target | Metric | Item |
---|---|---|
Baseline and Automatic hierarchy method | Usability | I found this tool easy to use. I am likely to use this tool frequently. |
Ease of Learning | I found this tool intuitive to understand. I could use this tool without any special instructions. | |
Efficiency | I experienced fewer interactions when completing my search with this tool. I believe this tool will help save time in finding desired information from records. | |
Vision-based and Prompt-based approach | Perceived Accuracy | I believe this tool correctly categorized the data into appropriate groups. believe the hierarchy results generated by this tool match my expectations. |
Usability | I am satisfied with the overall performance of this tool. I would be willing to recommend this tool to others. | |
Efficiency | I believe this tool will help save time in finding desired information from records. I found the hierarchy organization natural and convenient while using this method. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-J.; Park, J.-S.; Choi, Y.-M.; Kim, S.-H. An Automated Hierarchy Method to Improve History Record Accessibility in Text-to-Image Generative AI. Appl. Sci. 2025, 15, 1119. https://doi.org/10.3390/app15031119
Kim H-J, Park J-S, Choi Y-M, Kim S-H. An Automated Hierarchy Method to Improve History Record Accessibility in Text-to-Image Generative AI. Applied Sciences. 2025; 15(3):1119. https://doi.org/10.3390/app15031119
Chicago/Turabian StyleKim, Hui-Jun, Jae-Seong Park, Young-Mi Choi, and Sung-Hee Kim. 2025. "An Automated Hierarchy Method to Improve History Record Accessibility in Text-to-Image Generative AI" Applied Sciences 15, no. 3: 1119. https://doi.org/10.3390/app15031119
APA StyleKim, H.-J., Park, J.-S., Choi, Y.-M., & Kim, S.-H. (2025). An Automated Hierarchy Method to Improve History Record Accessibility in Text-to-Image Generative AI. Applied Sciences, 15(3), 1119. https://doi.org/10.3390/app15031119