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Abstract: The paper addresses the dynamic modeling and numerical simulation of a novel
single-rotor wind system with a planetary speed increaser and counter-rotating direct
current (DC) generator, patented by authors, during the transient stage from rest. The
proposed analytical dynamic algorithm involves the decomposition of the wind system
into its component rigid bodies, followed by the description of their dynamic equations
using the Newton–Euler method. The linear mechanical characteristics of the DC generator
and wind rotor are added to these dynamic equations. These equations allow for the
establishment of the close-form equation of motion of the wind system and, implicitly, the
time variation of the mechanical power parameters. Numerical simulations of the obtained
analytical dynamic model were performed in MATLAB-Simulink in start-up mode from
rest for the case study of a 100 kW wind turbine. These results allowed highlighting the
time variation of angular velocities and accelerations, torques, and powers for all system
shafts, both in the transient regime and steady-state. The implementation, in this case, of
the counter-rotating generator indicates a 6.4% contribution of the mobile stator to the
generator’s total power. The paper’s results are useful in the design, virtual prototyping,
and optimization processes of modern wind energy conversion systems.

Keywords: renewable energy; wind turbines; counter-rotating electric generator; dynamic
modeling; simulation; transient regime; steady-state

1. Introduction
Wind turbines can shut down during operation, typically due to lack of wind, high

wind speeds, or need for maintenance, and followed afterward by their transition from rest
to operation state. The start-up of medium-large wind turbines is carried out automatically
and in a controlled manner, and prior knowledge of their dynamics is typically employed
in controllers. Thus, dynamic behavior in transient regimes represents a challenge for
researchers and an advantage for designers in the optimization of the control system and
wind system design [1–3].

An important issue in approaching the wind system dynamics concerns the assump-
tion of variable wind speed and identification of system dynamic behavior in transient
regimes owing to the change in wind speed or starting from rest. Dynamic studies refer
to both the wind system as a whole [2–7] and its component subsystems, such as electric
generators [8] or mechanical gear transmission [9–11] with the role of speed increasers with
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fixed axes [2,12], mobile axes [7,13–17] or combined [18–26]. The overwhelming majority
of speed increasers are monomobile (single degree of freedom, 1-DOF) mechanical trans-
missions [2,16,19,20,23–25,27,28] and rarely differential (2-DOF) transmissions [5,17]. The
dynamic response of wind systems can be electrical or mechanical, depending on the type
of power pursued: electrical or mechanical power, respectively.

Aiming at improving the performance of electric generators, in conjunction with
their overall size reduction, various counter-rotating type generators [2,17,20,29,30] are
addressed in literature: with permanent magnets [31], with liquid metals [32], DFIG (Double
Fed Induction Generator) that uses a back-to-back Pulse-Width converter Modulation
(PWM) for bidirectional control [8], etc.

Dynamic analysis of wind systems and their subsystems requires the use of specific
software such as FAST v8.16 (Fatigue, Aerodynamics, Structures, and Turbulence) for
aero-elastic dynamic modeling [1,33,34], MATLAB-Simulink [1,2,18,24,35,36], with results
having errors below 2% compared to FAST, Ansys 15.0 [15], SIMPACK [33,34] based on
dynamic multibody modeling, PSCAD/EMDTC [37], etc. These software packages allow
the identification of various representative dynamic parameters related to mechanical
efficiency [2,16,38], shaft speeds [3,36,38] and torques [38–40], mechanical powers [3,29,38],
and for electrical response: current intensity [36,38] and voltage [38].

Modeling the dynamic response of a wind system requires also knowledge of the me-
chanical characteristics of both the wind rotor and the electric generator. In literature, these
features are modeled as nonlinear [8,27,33] or linear [2,20] functions. Thus, Neagoe et al. [2]
addressed the dynamic modeling and simulation of a 10 kW wind turbine with a single
wind rotor and counter-rotating generator, equipped with a classical transmission with
fixed axes, by considering only one linearized zone of the WR mechanical characteristic: the
working zone. The dynamic numerical simulations cover scenarios of wind speed changes
during operation by maintaining the operating point on this working zone. However,
this research did not consider the starting phase from rest or optimizing the generator’s
load entry. Similarly, a single linear function for the working zone is proposed for power
flow modeling in the steady state of a dual-rotor wind turbine with a counter-rotating
generator [20].

In most cases, the dynamic response is an analytical or grapho-analytical result, the
most common dynamic modeling methods applied for wind turbines being Newton–
Euler [1,2,13,41–43], Lagrange + Runge–Kutta [6,22,28,39,40], lumped parameter the-
ory [10,26,44] or polynomial chaos [12]. Generally, the approaches of WT dynamics consider
the gearbox effect in a simplified model by neglecting the rotation of the satellite gears in
planetary transmissions.

The dynamic behavior of a wind energy conversion system also depends on the
moment when the electric generator is connected to the grid: either from the begin-
ning [2,29,35,45] or at a time after start-up [36,41]. Oyekola et al. [36] stated that syn-
chronous or DC motors can be operated as induction generators if their shaft rotation speed
overcomes the synchronous speed. However, this study did not address the optimiza-
tion problem or the impact of the generator connecting time to the grid on the system’s
dynamic behavior.

Based on this literature review, the following gaps emerge:

• Choosing an appropriate model of the mechanical characteristics specific to the oper-
ating condition of the wind system is still a challenging issue;

• The rotation of the satellite gears from planetary speed increasers is typically neglected;
• The choice of the optimal time for connecting the electric generator to the grid.
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Aiming at dealing with these gaps and deepening the understanding of the optimal
functioning of a wind system, the present study brings contributions and focuses mainly
on the following aspects:

(a) The dynamic modeling is carried out analytically by applying the Newton–Euler
method and the MATLAB-Simulink R2014a software in numerical simulations;

(b) The functional compatibility of the wind system is ensured by the planetary speed in-
creaser, whose input is connected to the wind rotor, and its two outputs are connected
to the generator rotor and stator, respectively;

(c) The satellite’s own rotation was considered in dynamic modeling by using an equiva-
lent axial moment of inertia;

(d) The mechanical moments of inertia of the transmission components were reduced at
the shafts of the wind rotor and the electric generator;

(e) The nonlinear mechanical characteristic of the wind rotor is linearized on four zones;
(f) The dynamic system response is given by a simulation module that allows the genera-

tor to connect to the grid after the wind rotor enters the maximum power zone. This
simulator also allows the identification of the dynamic behavior of the considered
subsystems through specific parameters such as power, torque, speed, and efficiency.

Based on the actual reported results, to the best of our knowledge, the dynamic
behavior of this type of wind system with a counter-rotating generator and planetary
speed increaser has not been significantly addressed in the literature. Aiming to cover
this literature gap, the paper proposes a generalized algorithm for close-form dynamic
modeling of single-rotor wind turbine class with planetary speed increaser and counter-
rotating generator, patented by authors [46].

The subsequent sections of the paper are organized as follows: Section 2 introduces
the conceptual and block diagrams of a counter-rotating wind turbine and formulates
the dynamic modeling problem. Section 3 details the proposed generalized algorithm for
analytical dynamic modeling. Numerical results for a 100 kW wind turbine are presented
and discussed in Section 4, and the paper concludes in Section 5.

2. Problem Formulation
Designing wind systems with counter-rotating generators is challenging owing to

the branched power flow in planetary transmissions from a single input to dual outputs.
The generalized modeling and numerical simulation of the dynamic response of this wind
turbine (WT) type is addressed in this paper. Without reducing the generality, a case study
of a 1-DOF wind system is considered (Figure 1), consisting of a wind rotor R, a planetary
speed increaser (SI) with one input (satellite-carrier H) and two outputs (gears 1 and 2)
connected to a counter-rotating electric generator G. The rotor GR and the stator GS of the
generator are both mobile and rotate in opposite directions.

The block scheme in Figure 1b highlights the interactions between the three key
components of the wind system: mechanical power is transmitted from the wind rotor R
via the shaft H to the speed increaser SI, which distributes the output power to both the
rotor GR and stator GS. Obviously, the two power outputs are not independent, the rotor
and stator of the generator being permanently characterized in operation by equal and
opposite torques (i.e., TGS = −TGR).

The speed increaser is a planetary mechanical transmission with cylindrical gears (1–5,
Figure 1), three of which are sun gears (1, 2, and 5 ≡ 0), and the solidarized gears 3 and 4
form a double satellite. In practical applications, the planetary transmission includes ns ≥ 2
equiangularly arranged double satellites (3–4).
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Figure 1. Single-rotor wind turbine with counter-rotating electric generator: (a) conceptual scheme;
(b) block scheme.

The power input of the speed increaser (i.e., the satellite carrier H) is solidarized with
the wind rotor R. Satellites 3–4 engage on the one hand with a fixed ring gear 5 and on
the other hand with the sun gear 1, connected with the generator rotor GR, and with the
ring gear 2, coupled to the generator stator GS. The angular speed of a counter-rotating
generator G (ωG) is given by the relative speed of the rotor GR with respect to the stator GS:

ωG = ωGR −ωGS = ω1 −ω2. (1)

As a result, the kinematic amplification ratios, which describe the transmission of the
rotational speed from the wind rotor to the generator rotor (ia1) and to the generator stator
(ia2), respectively, and the total amplification ratio (iaG) achieved by the wind turbine, can
be established through the following relations:

ia1 =
ω1

ωH
; ia2 =

ω2

ωH
; iaG =

ω1 −ω2

ωH
= ia1 − ia2, (2)

where ωx is the angular velocity of the body x = 1, 2, H; iay—the amplification ratio from
the input R to the element y = 1, 2, G.

The dynamic modeling of the analyzed 1-DOF wind system aims to identify its
equation of motion εR = f (ωR, Jx, cst), where Jx is the mechanical axial moment of inertia
of the body x = 1, 2, H, and cst represents the set of other constant parameters. The motion
of the input shaft (of the wind rotor R) is considered as an independent kinematic variable
of the wind turbine. By solving this differential equation, the time variation of the torques
and kinematic variables (velocities and angular accelerations) related to all system shafts is
obtained; the numerical simulations are performed under the assumption of starting the
system from rest at a specified constant wind speed.

In the proposed dynamic modeling, the following working premises are considered:

(1) The rotational elements have geometric symmetry with respect to their own axis of
motion, and they are rigid bodies with uniformly distributed mass; as a result, the
mass center of a body is located on its own axis of rotation;

(2) The inertial masses of the mobile elements in the planetary transmission are reduced
to their outer shafts; thus, the correlations of the torques in the planetary units coincide
with those of static conditions;

(3) Only the gearing friction losses are considered, neglecting the friction in bearings;
(4) The pitch angle of WR blades does not change during operation; therefore, the adjust-

ment parameters of the wind rotor remain constant during operation;
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(5) As 1-DOF transmission is employed, the system has one independent motion at-
tributed to the input element, i.e., the wind rotor;

(6) A direct current (DC) generator is used, and implicitly, its mechanical characteristic is
a linear function with constant coefficients; during generator operation, the balancing
condition of the torques of the rotor GR (TGR) and of the stator GS (TGS) is described
by: TGR + TGS = 0;

(7) The mechanical characteristic of the wind rotor is modeled over four rotational
speed intervals by linear functions with constant coefficients, obviously at a con-
stant wind speed.

Dynamic modeling of the WT mechanical system from Figure 1 is based on the block
scheme depicted in Figure 2a, in which the planetary speed increaser is modeled by two
planetary units (PU) I (H-5-4-3-1) and II (H-5-4-3-2), connected in parallel.
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Figure 2. (a) Block scheme of the wind turbine and its decomposition into components: (b) wind
rotor; (c) intermediate shaft; (d) planetary units; and (e) generator rotor and stator.

By decomposing the wind system from Figure 2a, the six structural components repre-
sented in Figure 2b–e are obtained, characterized by specific kinematic and dynamic equa-
tions, according to the methodology detailed in Section 3. In the proposed approach, the
axial moments of inertia of the components are reduced on the outer shafts of the planetary
transmission (i.e., the shafts of the R, GR, and GS bodies) [37]. Thus, the torque equations
for the components in Figure 2c,d can be described by the classical relations established un-
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der steady-state conditions and for the other components, depicted in Figure 2b,e,—under
dynamic conditions.

The axial moment of inertia of the ns satellites 3–4, mounted in parallel, is reduced
to the satellite-carrier H axis based on the principle of equalizing their kinetic energy. The
satellite body has a combined rotation (around its own axis) and revolution (around the
fixed sun axis) motion; its kinetic energy is considered equal to that of a virtual body with
motion around the sun axis having an equivalent moment of inertia JsH:

Ks =
1
2

ns

(
msv2

Gs + Jsωs
2
)
=

1
2

JsHω
2
H , (3)

JsH = nsms

(
vGs
ωH

)2
+ ns Js

(
ωs

ωH

)2
, (4)

in which

ωs

ωH
=

ωH +ωsH
ωH

= 1 +
ωsH
ωH

= 1 +
ωsH
ωH5

= 1 − ωsH
ω5H

= 1 − i45, vGs = ωH · rH , (5)

yielding to
JsH = ns

(
msr2

H + Js(1 − i45)
2
)

, (6)

where ms and Js are the mass and the axial mechanical moment of a satellite 3–4, respectively
(Js is established with respect to the own axis of rotation), rH is the radius of satellite axis
arrangement on the carrier H, and i45 is the kinematic ratio of the gear pair with fixed
axes 4–5 (i.e., i45 = z5/z4, where z4 and z5 are the numbers of teeth of gears 4 and 5,
respectively).

Next, the main steps of the dynamic modeling algorithm are presented, based on dy-
namic equations of the transmission external shafts, modeled by the Newton–Euler method,
the kinematic and static equations of both planetary units I and II, and the mechanical
characteristics of the wind rotor and counter-rotating electric generator.

3. Dynamic Modelling
The dynamic equations of the wind system components in the mentioned working

premises are linear differential equations of the second order with constant coefficients; they
can be obtained by applying the Newton–Euler method considering the positive direction
of angular velocity and torque vectors according to Figure 2.

According to premise (2), the following kinematic and static equations can be written
for the two planetary units PU-I and PU-II [16], see Figure 2d:

PU-I :

{
ω1 = ωH(1 − i01)

ωHTH1η1 +ω1T1 = 0
PU-II :

{
ω2 = ωH(1 − i02)

ωHTH2η2 +ω2T2 = 0
(7)

where Tx is the resultant torque acting on the element x; i01, i02, and η1, η2 are the internal
kinematic ratio and the efficiency of PU-I and PU-II, respectively, and TH = TH1 + TH2—
Figure 2b.

The relations for the kinematic ratios and transmission efficiencies, specified in Table 1,
can be easily derived from Equation (7).

According to the block diagram in Figure 2 and Equation (2), Table 2 illustrates
the dynamic schemes of the three WT components, resulting from the decomposition
of the wind system into distinctive rigid bodies, as well as their related kinematic and
dynamic equations.
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Table 1. Transmission ratios and efficiencies.

PU i01,2 ia1,2 η1,2

I − z5
z4
· z3

z1
1 − i01

1−i01
1−i01/η01

II z5
z4
· z3

z2
1 − i02

1−i02
1−i02/η02

zj is the no. of teeth of the gear j = 1. . .5 (see Figure 1); η01, η02—internal efficiency of PU-I and PU-II, respectively;
η01 = η02 = η2

g, where ηg is the efficiency of a gear pair with fixed axes.

Table 2. Schemes and dynamic equations of the WT components.

Body Dynamic Schemes Equations
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εx is the angular acceleration of the body x = 1, 2, H; JH = JR + JshR + JsH , J1 = Jg1 + Jsh1 + JGR, J2 = Jg2 + Jsh2 +
JGS, where g—gear and sh—shaft.

The set of equations in Table 2 is augmented by the linear mechanical characteristics
with constant coefficients of the wind rotor (R) and generator (G):

TR = −aRωR + bR; TG = −aG(ωGR −ωGS) + bG, (8)

where aR, bR, aG, bG are constant coefficients under steady-state conditions, and by defini-
tion TG = TGR.

The mechanical characteristic of a wind rotor is a nonlinear function [33,35], which can,
however, be acceptably approximated by straight line segments; in this study, four-zone
nonlinear characteristic modeling was adopted (Figure 3): zones I and II are used at start-up,
zone III includes the point of maximum power Pmax, and zones III and IV designate the
working zones of the wind rotor. Obviously, the coefficients aR, bR in Equation (8) are
replaced specifically by aRi, bRi, i = 1. . .4 for each of the four zones I. . .IV.

Obviously, linearizing the WT mechanical characteristic leads to inaccuracies in the
calculated torque TR, as qualitatively shown in Figure 3. For the case study presented in
Section 4, the most significant torque errors are recorded in zone III, with a relative error
value of less than 3.4% (its maximum value near the midpoint of zone III, Figure 3), an
acceptable level in numerical simulation of such a complex system.
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Substituting the gear ratio and efficiency relations from Table 1 into the kinematic,
static, and dynamic equations from Table 2 and corroborating with Rels. (4) and (5), the
equation of motion is obtained:

εR =
ωR

[
aG

(
ia1ia2(η1 + η2)− η2i2a1 − η1i2a2

)
− aRη1η2

]
+ bG(η2ia1 − η1ia2) + bRη1η2

J1i2a1η2 + J2i2a2η1 + JHη1η2
. (9)

This equation of motion is a nonhomogeneous second-order differential equation
in one variable (independent motion parameter:ωR, where εR = dωR

dt ). This differential
equation is solved by numerical integration in MATLAB-Simulink R2014a under known
initial conditions: the starting from rest is considered (ωR(t=0) = 0), and the electric
machine is coupled to the grid (i.e., the load is activated) when it switches to generator
mode (ωG > bG

aG
).

The dynamic behavior in a transient regime can be determined by solving the equation
of motion (9), obtained using Rels. (7), (8), and Table 2; based on the solution of independent
motion, it becomes possible to derive the time evolution of power parameters for all
transmission shafts.

4. Results and Discussions
Using the previously presented dynamic model, a numerical response is targeted for a

100 kW wind system with parameter values provided in Table 3.

Table 3. Constant intrinsic parameters of the wind system.

zi i0 ia
a [kNms]
b [kNm] η J [kgm2]

z1 = 19

i01 = −14.8052
i02 = 2.0837

ia1 = 15.8052
ia2 = −1.0837
iaG = 16.8889

aR1 = −0.328, bR1 = 1.866
ηg = 0.9560
η1 = 0.9195
η2 = 0.8468

J1 = 0.1 · 103

J2 = 1 · 103

JH = 200 · 103

z2 = 135 aR2 = −11.536, bR2 = −20.533
z3 = 58 aR3 = 2.298, bR3 = 34.014
z4 = 20 aR4 = 20.259, bR4 = 121.065
z5 = 97 aG = 0.368, bG = 27.975

The wind turbine has a nominal power of 100 kW, generated by a wind rotor with
a diameter of 22.5 m at a nominal wind speed of 10.5 m/s. The start-up of the wind



Appl. Sci. 2025, 15, 191 9 of 16

system is performed from rest, and the electric generator load is applied at the time when
ωG = bG/aG = 76 s−1. Thus, the wind system goes through three phases:

(1) In the first phase, the mechanical energy generated by the wind rotor is used exclu-
sively to overcome inertial resistance (implicitly, to accelerate the system);

(2) In the second phase, when the generator is coupled to the grid, the generator-resistant
torque is added to the inertial load;

(3) In the third phase, the wind turbine enters into a steady state (i.e., zero accelerations),
obtaining the operating point described by the values of the angular velocities and
torques, as well as the powers of all the shafts of the wind system, Table 4.

Table 4. Operating point of the wind system in steady-state.

Shaft Torque
[kNm]

Angular Speed
[s−1]

Power
[kW]

R ≡ H 23.208 4.704 109.17
H1 21.600 4.704 101.61
H2 1.608 4.704 7.56

1 ≡ GR −1.256 74.317 −93.34
2 ≡ GS 1.256 −5.097 −6.40

G −1.256 79.414 −99.75

The results of the numerical simulation in MATLAB-Simulink R2014a, based on the
equation of motion (9) and all the other equations of the analytical model, are depicted in
Figures 4–6. The diagrams in these figures highlight the two moments of time delimiting the
three phases of the WT transition from rest to steady-state: the electric generator enters the
load at ≈260 s, and the stabilization of the system takes place at ≈280 s (i.e., the starting time).
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Figure 4 shows comparatively the time variations of the kinematic parameters, torques,
and powers from the system input vs. output. Worth noting the quasi-linear variation of all
input parameters and output motions in the first part of the start-up phase 1, characterized
by TG = 0 (i.e., the generator runs idle) and wind rotor operation on the zone I (see Figure 3).
Since the torque generated by the wind rotor has low values at start-up (TR ≈ 2 kNm,
Figure 4c), the system requires a long time (≈220 s) of slow increase in speed (Figure 4a)
and implicitly in angular acceleration (Figure 4b) as a result of inertial resistance. Once the
wind rotor enters zone II (time t1 ≈ 220 s), the system is rapidly accelerated as a result of the
greater torque extracted by the wind rotor from the wind. The wind rotor torque reaches its
maximum value at the end of zone II (at time t2 ≈ 255 s), followed by a torque decrease into
zone III for ≈5 s. At time t3 ≈ 260 s, the electric generator enters the load (i.e., the wind system
goes into phase 2), as the operating conditions of the DC electric machine as a generator are
being met: ωG ≥ bG/aG = 76 s−1, Figure 4a. The generator torque increases rapidly up to
the value TG = 1.25 kNm (Figure 4c), with the decrease to zero of the angular acceleration
(Figure 4b) and implicitly the entry of the system into steady-state (at time t4 ≈ 280 s).

In phase 3, the generator power stabilizes at PG ≈ −100 kW, the mechanical power
extracted from the wind being PR = 109.4 kW, Figure 4d; implicitly, the transmission
efficiency has the value: ηWT = −PG/PR = −TG ·ωG/(TR ·ωR) = 0.9138. The efficiency
ηWT has a value close to the value η1 and is significantly higher than η2 (see Table 3);
thus, the advantage of power branching in complex mechanisms compared to the serial
connection of component mechanisms is also well emphasized.

Figure 5 shows the distribution of torques and mechanical power on the inputs of
planetary units I and II, as well as the influence of inertia on the WT dynamic behavior.
In the first part of phase 1, a significant difference between the driving torque TR and the
resistant torque TH is noted (Figures 2 and 5a). This fact is owing to the insignificant values
of the torques TH1 and TH2, also caused by the reduced inertial resistances of the output
shafts (the values of the moments of inertia J1 and J2 being much lower compared to JH: JH

≈ 2000·J1 ≈ 200·J2, see Figure 2, Tables 2 and 3); this reduced inertial effect of the output
shafts is also confirmed by their relatively reduced values of angular accelerations. As a
result, the torque TR is mostly used to overcome the inertial load of the input shaft H. Once
the generator enters the load, the TH1 torque increases much faster than TH2, becoming the
major component of TH in the steady state. Although the GR rotor and GS stator torques
are equal in steady-state, the significant difference between TH1 and TH2 is explained
by the large differences in the amplification ratios ia1 = 15.8052 and ia2 = −1.0837 (see
Table 3) corresponding to the two power branches. The power variation on the input
shafts (Figure 5b) follows a similar evolution as the input torques (Figure 5a): most of the
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wind rotor power (over 93%) is directed to the planetary unit I and, implicitly, to the GR
rotor—the body with the highest rotation speed.
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Figure 6 illustrates the WT dynamic behavior at the output side, characterized by
the branched power transmission via the rotor GR and the stator GS, respectively; the
contribution of the mobile stator to the overall performance of the wind system is particu-
larly highlighted. The output angular speeds and accelerations (Figure 6a,b) have a linear
dependence on the independent motion of the wind rotor; according to the relations in
Table 2, they follow the variation profile of the angular velocity ωR and acceleration εR,
respectively (Figure 4a,b), with values amplified with the ratios ia1, ia2, and iaG, respectively.
Note the much lower speed and acceleration of the GS stator compared to the GR rotor,
and finally, the smaller power contribution from the GS stator vs. GR rotor due to the large
inequality: |ia2| << ia1. Obviously, this situation can be improved by optimizing the ratio
between ia2 and ia1, as well as the large ratio between the inertia of the GS stator and the
GR rotor.

At the time the generator enters the load (≈ 260 s), the torques T1 (Figure 6c) and T2

(Figure 6e), respectively, the powers P1 (Figure 6d) and P2 (Figure 6f) reflect the inertial
impact of the output shafts (1 and 2). Although the two shafts have different moments of
inertia (J2 = 10J1, see Table 3), the large acceleration difference in favor of shaft 1 ≡ GR makes
the inertial resistance of shaft 1 greater than that of shaft 2 (maximum 0.172 vs. 0.118 kNm)
in phase (1). In steady-state, the high angular velocity of the GR rotor allows it to receive a
much higher power compared to the GS stator (i.e., |PGR| = 93.34 kW > |PGS| = 6.40 kW).
Thus, the power contribution of the GS stator to the total power of the generator is ~ 6.4%
(Figure 6g), the largest share of the power flow being distributed to the GR rotor.

The results of the dynamic numerical simulations, based on the analytical dynamic
model developed in this study, allow the identification of the WT dynamic behavior in the
transient regime during starting-up from rest, as well as the values of the operating point
parameters in steady-state.

5. Conclusions
The paper proposes a generalized algorithm for dynamic modeling of the wind system

class of type: single-rotor, 1-DOF planetary transmission, and counter-rotating generator.
The counter-rotating generator requires a dual-output speed increaser, leading to a

branched power flow configuration where the input power is distributed to the two parallel-
connected planetary units. The analytical equation of motion is derived by combining the
dynamic equations of the shafts, the mechanical characteristics of the wind rotor and electric
generator, and the kinematic and static equations of the planetary gear transmission, which
together describe the complex interactions within this system. This system of equations
allows the analytical establishment of the wind system equation of motion and implicitly
its operating point by numerical solution in transient mode and in steady-state.

The analytical study and the results of the numerical simulations carried out on
a case study of a wind turbine with a rated power of 100 kW allowed us to draw the
following conclusions:

• The proposed generalized modeling algorithm allows obtaining analytically the equa-
tion of motion of the wind system, formulated as a nonhomogeneous differential
equation of the second order in a single independent variable, describing the wind
rotor motion;

• By numerically solving the equation of motion, using the MATLAB-Simulink R2014a
software, the dynamic response of the wind system in transient mode and the operat-
ing point in steady-state are obtained;

• The analysis of the dynamic response in transient mode, when starting from rest at
constant wind speed, allowed the identification of the starting time of the wind system,
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as well as the stresses induced by the inertial load alone and by its combination with
the generator load;

• Unlike the case of traditional wind turbines, equipped with a conventional generator
with a fixed stator, the counter-rotating generator allows an additional input of power
brought by the mobile stator GS; in the analyzed case, the additional power supply by
GS in steady-state is ~6.4%.

The proposed generalized algorithm can be applied, with rigorous adaptations, to
other types of wind systems, regardless of their complexity: with one or more wind rotors,
with conventional or counter-rotating electric generators, with fixed-axis or planetary speed
increaser. Likewise, the developed MATLAB-Simulink R2014a model can also be applied
iteratively for the purpose of constructive-functional optimization of this particular type
of wind system, as well as in the simulation scenarios of variable operational conditions
determined by the change in wind speed.

The authors intend to address in the future the dynamic optimization of such wind
systems and the validation of theoretical results through the experimental research of some
functional models on specialized testing rigs.
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Nomenclature

aG speed coefficient in the generator mechanical characteristic
aR speed coefficient in the wind rotor mechanical characteristic
bG torque term in the generator mechanical characteristic
bR torque term in the wind rotor mechanical characteristic
DOF degree of freedom
DC direct current
DFIG double fed induction generator
FAST fatigue, aerodynamics, structures, and turbulence
g gear
G electric generator
GR generator rotor
GS generator stator
H satellite carrier
i kinematic ratio
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i0 internal kinematic ratio
ia speed amplification ratio
J mechanical axial moment of inertia
Ks kinetic energy
m mass
ns number of satellites
P power
PWM pulse-width converter modulation
PU planetary unit
r radius
R wind rotor
t time
T torque
η efficiency
η0 internal efficiency
ηg efficiency of a gear pair
ω angular speed
ε angular acceleration
SI speed increaser
sh shaft
v linear speed
WR wind rotor
WT wind turbine
zj number of teeth of gear j
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