Effect of High-Pressure Homogenization on the Functional and Emulsifying Properties of Proteins Recovered from Auxenochlorella pyrenoidosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Biomass
2.2. High-Pressure Homogenization Treatment
2.3. Aqueous Extraction
2.4. Protein Recovery
2.5. Determination of APPC Protein Content
2.6. Determination of Protein Recovery Yield
2.7. Determination of Water- and Oil-Holding Capacity
2.8. Determination of Foaming Capacity and Foaming Stability
2.9. Determination of Fourier-Transform Infrared (FTIR) Spectroscopy
2.10. Determination of Surface and Interfacial Tension
2.11. Preparation of Oil in Water Nanoemulsion
2.12. Determination of Particle-Size Distribution
2.13. Determination of Turbidity
2.14. Determination of Viscosity
2.15. Resistance of Nanoemulsions to Freeze–Thaw and Heating–Cooling Cycles
2.16. Resistance of Nanoemulsions to Centrifugation Cycles
2.17. Monitoring Nanoemulsion Stability During Storage
2.18. Creaming Index
2.19. Statistical Analysis
3. Results and Discussion
3.1. Effect of HPH on Protein Concentrate Recovery from A. pyrenoidosa
3.2. Effect of HPH on Protein Secondary Structure
3.3. Effect of HPH on Protein Functional Properties
3.4. Nanoemulsion Characterization
3.5. Nanoemulsion Resistance to Centrifugation, Heating–Cooling and Freeze–Thaw Cycles
3.6. Nanoemulsion Stability During Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic Emulsification of Food-Grade Nanoemulsion Formulation and Evaluation of Its Bactericidal Activity. Ultrason. Sonochem. 2013, 20, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Katsouli, M.; Giannou, V.; Tzia, C. A Comparative Study of O/W Nanoemulsions Using Extra Virgin Olive or Olive-Pomace Oil: Impacts on Formation and Stability. JAOCS J. Am. Oil Chem. Soc. 2018, 95, 1341–1353. [Google Scholar] [CrossRef]
- Aqil, M.; Kamran, M.; Ahad, A.; Imam, S.S. Development of Clove Oil Based Nanoemulsion of Olmesartan for Transdermal Delivery: Box-Behnken Design Optimization and Pharmacokinetic Evaluation. J. Mol. Liq. 2016, 214, 238–248. [Google Scholar] [CrossRef]
- Katsouli, M.; Thanou, I.V.; Giannakourou, M.C.; Raftopoulou, E.; Ntzimani, A.; Taoukis, P. Bioaccessibility and Stability Studies on Encapsulated Phenolics and Carotenoids from Olive and Tomato Pomace: Development of a Functional Fruit Beverage. Appl. Sci. 2024, 14, 10495. [Google Scholar] [CrossRef]
- Katsouli, M.; Tzia, C. Effect of Lipid Type, Dispersed Phase Volume Fraction and Emulsifier on the Physicochemical Properties of Nanoemulsions Fortified with Conjugated Linoleic Acid (CLA): Process Optimization and Stability Assessment during Storage Conditions. J. Mol. Liq. 2019, 292, 111397. [Google Scholar] [CrossRef]
- McClements, D.J. The Future of Food Colloids: Next-Generation Nanoparticle Delivery Systems. Curr. Opin. Colloid Interface Sci. 2017, 28, 7–14. [Google Scholar] [CrossRef]
- Kralova, I.; Sjöblom, J. Surfactants Used in Food Industry: A Review. J. Dispers. Sci. Technol. 2009, 30, 1363–1383. [Google Scholar] [CrossRef]
- Ozturk, B.; McClements, D.J. Progress in Natural Emulsifiers for Utilization in Food Emulsions. Curr. Opin. Food Sci. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Torres-Tiji, Y.; Fields, F.J.; Mayfield, S.P. Microalgae as a Future Food Source. Biotechnol. Adv. 2020, 41, 107536. [Google Scholar] [CrossRef]
- Widyaningrum, D.; Prianto, A.D. Chlorella as a Source of Functional Food Ingredients: Short Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 794, 012148. [Google Scholar] [CrossRef]
- Waghmare, A.G.; Salve, M.K.; LeBlanc, J.G.; Arya, S.S. Concentration and Characterization of Microalgae Proteins from Chlorella pyrenoidosa. Bioresour. Bioprocess. 2016, 3, 16. [Google Scholar] [CrossRef]
- Safi, C.; Ursu, A.V.; Laroche, C.; Zebib, B.; Merah, O.; Pontalier, P.Y.; Vaca-Garcia, C. Aqueous Extraction of Proteins from Microalgae: Effect of Different Cell Disruption Methods. Algal Res. 2014, 3, 61–65. [Google Scholar] [CrossRef]
- Katsimichas, A.; Karveli, I.; Dimopoulos, G.; Giannakourou, M.; Taoukis, P. Kinetics of High Pressure Homogenization Assisted Protein Extraction from Chlorella pyrenoidosa. Innov. Food Sci. Emerg. Technol. 2023, 88, 103438. [Google Scholar] [CrossRef]
- Katsimichas, A.; Stathi, S.; Dimopoulos, G.; Giannakourou, M.; Taoukis, P. Kinetics of Pulsed Electric Fields Assisted Pigment Extraction from Chlorella pyrenoidosa. Innov. Food Sci. Emerg. Technol. 2024, 91, 103547. [Google Scholar] [CrossRef]
- Nunes, E.; Odenthal, K.; Nunes, N.; Fernandes, T.; Fernandes, I.A.; Pinheiro de Carvalho, M.A.A. Protein Extracts from Microalgae and Cyanobacteria Biomass. Techno-Functional Properties and Bioactivity: A Review. Algal Res. 2024, 82, 103638. [Google Scholar] [CrossRef]
- Carullo, D.; Abera, B.D.; Casazza, A.A.; Donsì, F.; Perego, P.; Ferrari, G.; Pataro, G. Effect of Pulsed Electric Fields and High Pressure Homogenization on the Aqueous Extraction of Intracellular Compounds from the Microalgae Chlorella Vulgaris. Algal Res. 2018, 31, 60–69. [Google Scholar] [CrossRef]
- Dimopoulos, G.; Katsimichas, A.; Tsimogiannis, D.; Oreopoulou, V.; Taoukis, P. Cell Permeabilization Processes for Improved Encapsulation of Oregano Essential Oil in Yeast Cells. J. Food Eng. 2021, 294, 110408. [Google Scholar] [CrossRef]
- Grimi, N.; Dubois, A.; Marchal, L.; Jubeau, S.; Lebovka, N.I.; Vorobiev, E. Selective Extraction from Microalgae Nannochloropsis Sp. Using Different Methods of Cell Disruption. Bioresour. Technol. 2014, 153, 254–259. [Google Scholar] [CrossRef]
- Poojary, M.M.; Barba, F.J.; Aliakbarian, B.; Donsì, F.; Pataro, G.; Dias, D.A.; Juliano, P. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds. Mar. Drugs 2016, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Günerken, E.; D’Hondt, E.; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H. Cell Disruption for Microalgae Biorefineries. Biotechnol. Adv. 2015, 33, 243–260. [Google Scholar] [CrossRef]
- Patrignani, F.; Lanciotti, R. Applications of High and Ultra High Pressure Homogenization for Food Safety. Front. Microbiol. 2016, 7, 1132. [Google Scholar] [CrossRef] [PubMed]
- Yap, B.H.J.; Dumsday, G.J.; Scales, P.J.; Martin, G.J.O. Energy Evaluation of Algal Cell Disruption by High Pressure Homogenisation. Bioresour. Technol. 2015, 184, 280–285. [Google Scholar] [CrossRef]
- Carullo, D.; Abera, B.D.; Scognamiglio, M.; Dons, F.; Ferrari, G.; Pataro, G. Application of Pulsed Electric Fields and High-Pressure Homogenization in Biorefinery Cascade of C. vulgaris Microalgae. Foods 2022, 11, 471. [Google Scholar] [CrossRef] [PubMed]
- Zamora, A.; Guamis, B. Opportunities for Ultra-High-Pressure Homogenisation (UHPH) for the Food Industry. Food Eng. Rev. 2015, 7, 130–142. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, W.; Wang, J.; Zhang, R.; Zhang, J. Comparison of Oil-in-Water Emulsions Prepared by Ultrasound, High-Pressure Homogenization and High-Speed Homogenization. Ultrason. Sonochem. 2022, 82, 105885. [Google Scholar] [CrossRef]
- Baldelli, A.; Shi, J.; Singh, A.; Guo, Y.; Fathordoobady, F.; Amiri, A.; Pratap-Singh, A. Effect of High-Pressure on Protein Structure, Refolding, and Crystallization. Food Chem. Adv. 2024, 5, 100741. [Google Scholar] [CrossRef]
- Fernández-Martín, F.; Otero, L.; Solas, M.T.; Sanz, P.D. Protein Denaturation and Structural Damage during High-Pressure-Shift Freezing of Porcine and Bovine Muscle. J. Food Sci. 2000, 65, 1002–1008. [Google Scholar] [CrossRef]
- Yu, C.; Wu, F.; Cha, Y.; Qin, Y.; Du, M. Effects of High-Pressure Homogenization at Different Pressures on Structure and Functional Properties of Oyster Protein Isolates. Int. J. Food Eng. 2018, 14, 20180009. [Google Scholar] [CrossRef]
- Ursu, A.V.; Marcati, A.; Sayd, T.; Sante-Lhoutellier, V.; Djelveh, G.; Michaud, P. Extraction, Fractionation and Functional Properties of Proteins from the Microalgae Chlorella Vulgaris. Bioresour. Technol. 2014, 157, 134–139. [Google Scholar] [CrossRef]
- López, C.V.G.; del Carmen Cerón García, M.; Fernández, F.G.A.; Bustos, C.S.; Chisti, Y.; Sevilla, J.M.F. Protein Measurements of Microalgal and Cyanobacterial Biomass. Bioresour. Technol. 2010, 101, 7587–7591. [Google Scholar] [CrossRef] [PubMed]
- Katsouli, M.; Polychniatou, V.; Tzia, C. Influence of Surface-Active Phenolic Acids and Aqueous Phase Ratio on w/o Nano-Emulsions Properties; Model Fitting and Prediction of Nano-Emulsions Oxidation Stability. J. Food Eng. 2017, 214, 40–46. [Google Scholar] [CrossRef]
- Ghribi, A.M.; Gafsi, I.M.; Blecker, C.; Danthine, S.; Attia, H.; Besbes, S. Effect of Drying Methods on Physico-Chemical and Functional Properties of Chickpea Protein Concentrates. J. Food Eng. 2015, 165, 179–188. [Google Scholar] [CrossRef]
- Xu, Y.; Coda, R.; Holopainen-Mantila, U.; Laitila, A.; Katina, K.; Tenkanen, M. Impact of in Situ Produced Exopolysaccharides on Rheology and Texture of Fava Bean Protein Concentrate. Food Res. Int. 2019, 115, 191–199. [Google Scholar] [CrossRef]
- da Silva, M.E.T.; Leal, M.A.; de Resende, M.O.; Martins, M.A.; dos Coimbra, J.S.R. Scenedesmus Obliquus Protein Concentrate: A Sustainable Alternative Emulsifier for the Food Industry. Algal Res. 2021, 59, 102468. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Helbig, A.; Wierenga, P.A.; Gruppen, H. Emulsion Properties of Algae Soluble Protein Isolate from Tetraselmis sp. Food Hydrocoll. 2013, 30, 258–263. [Google Scholar] [CrossRef]
- Zhang, R.; Grimi, N.; Marchal, L.; Lebovka, N.; Vorobiev, E. Effect of Ultrasonication, High Pressure Homogenization and Their Combination on Efficiency of Extraction of Bio-Molecules from Microalgae Parachlorella Kessleri. Algal Res. 2019, 40, 101524. [Google Scholar] [CrossRef]
- Wang, W.; Luo, S.; Wang, X.; Wang, L.; Zhang, N.; Wang, R.; Yu, D. Structure and Emulsifying Properties of Rice Bran Protein Alkylated Using an Electrochemical Reactor. Food Res. Int. 2023, 170, 112561. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef]
- Ali, A.; Le Potier, I.; Huang, N.; Rosilio, V.; Cheron, M.; Faivre, V.; Turbica, I.; Agnely, F.; Mekhlouf, G. Effect of High Pressure Homogenization on the Structure and the Interfacial and Emulsifying Properties of β-Lactoglobulin. Int. J. Pharm. 2018, 537, 50425–50427. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, F.; Pradilla, D.; Cruz, J.C.; Alvarez, O. Emerging Emulsifiers: Conceptual Basis for the Identification and Rational Design of Peptides with Surface Activity. Int. J. Mol. Sci. 2021, 22, 4615. [Google Scholar] [CrossRef]
- Dammak, I.; do Sobral, P.J.A.; Aquino, A.; das Neves, M.A.; Conte-Junior, C.A. Nanoemulsions: Using Emulsifiers from Natural Sources Replacing Synthetic Ones—A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2721–2746. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.M.; Razzaghi, A.; Ramachandran, A.; Mikkonen, K.S. Emulsion Characterization via Microfluidic Devices: A Review on Interfacial Tension and Stability to Coalescence. Adv. Colloid Interface Sci. 2022, 299, 102541. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Chang, C.; Chen, J.; Cao, F.; Zhao, J.; Zheng, Y.; Zhu, J. Physicochemical and Functional Properties of Proteins Extracted from Three Microalgal Species. Food Hydrocoll. 2019, 96, 510–517. [Google Scholar] [CrossRef]
- Floury, J.; Desrumaux, A.; Axelos, M.A.V.; Legrand, J. Effect of High Pressure Homogenisation on Methylcellulose as Food Emulsifier. J. Food Eng. 2003, 58, 227–238. [Google Scholar] [CrossRef]
- Calligaris, S.; Plazzotta, S.; Bot, F.; Grasselli, S.; Malchiodi, A.; Anese, M. Nanoemulsion Preparation by Combining High Pressure Homogenization and High Power Ultrasound at Low Energy Densities. Food Res. Int. 2016, 83, 25–30. [Google Scholar] [CrossRef]
- Silva, H.D.; Cerqueira, M.A.; Vicente, A.A. Influence of Surfactant and Processing Conditions in the Stability of Oil-in-Water Nanoemulsions. J. Food Eng. 2015, 167, 89–98. [Google Scholar] [CrossRef]
- Srinivasan, M.; Singh, H.; Munro, P.A. Formation and Stability of Sodium Caseinate Emulsions: Influence of Retorting (121 °C for 15 Min) before or after Emulsification. Food Hydrocoll. 2002, 16, 153–160. [Google Scholar] [CrossRef]
- Huck-Iriart, C.; Álvarez-Cerimedo, M.S.; Candal, R.J.; Herrera, M.L. Structures and Stability of Lipid Emulsions Formulated with Sodium Caseinate. Curr. Opin. Colloid Interface Sci. 2011, 16, 412–420. [Google Scholar] [CrossRef]
- Liang, Y.; Gillies, G.; Matia-Merino, L.; Ye, A.; Patel, H.; Golding, M. Structure and Stability of Sodium-Caseinate-Stabilized Oil-in-Water Emulsions as Influenced by Heat Treatment. Food Hydrocoll. 2017, 66, 307–317. [Google Scholar] [CrossRef]
- O’Regan, J.; Mulvihill, D.M. Heat Stability and Freeze-Thaw Stability of Oil-in-Water Emulsions Stabilised by Sodium Caseinate-Maltodextrin Conjugates. Food Chem. 2010, 119, 182–190. [Google Scholar] [CrossRef]
- Jiménez-Castaño, L.; López-Fandiño, R.; Olano, A.; Villamiel, M. Study on β-Lactoglobulin Glycosylation with Dextran: Effect on Solubility and Heat Stability. Food Chem. 2005, 93, 689–695. [Google Scholar] [CrossRef]
- Jiménez-Castaño, L.; Villamiel, M.; López-Fandiño, R. Glycosylation of Individual Whey Proteins by Maillard Reaction Using Dextran of Different Molecular Mass. Food Hydrocoll. 2007, 21, 433–443. [Google Scholar] [CrossRef]
- Hosseini, A.; Jafari, S.M.; Mirzaei, H.; Asghari, A.; Akhavan, S. Application of Image Processing to Assess Emulsion Stability and Emulsification Properties of Arabic Gum. Carbohydr. Polym. 2015, 126, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, T.; Ahmed, A.; Ahmad, Z.; Javed, M.S.; Sharif, H.R.; Shah, F.U.H.; Imran, M.; Abdelgawad, M.A.; Murtaza, S. Physicochemical Characteristics of Mixed Surfactant-Stabilized l -Ascorbic Acid Nanoemulsions during Storage. Langmuir 2022, 38, 9500–9506. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Chen, S.; Zhang, J.; Liang, H. Robust Stability and Antimicrobial Activity of D-Limonene Nanoemulsion by Sodium Caseinate and High Pressure Homogenization. J. Food Eng. 2022, 334, 111159. [Google Scholar] [CrossRef]
- Montes de Oca-Ávalos, J.M.; Candal, R.J.; Herrera, M.L. Colloidal Properties of Sodium Caseinate-Stabilized Nanoemulsions Prepared by a Combination of a High-Energy Homogenization and Evaporative Ripening Methods. Food Res. Int. 2017, 100, 143–150. [Google Scholar] [CrossRef]
- Kumar, N.; Mandal, A. Thermodynamic and Physicochemical Properties Evaluation for Formation and Characterization of Oil-in-Water Nanoemulsion. J. Mol. Liq. 2018, 266, 147–159. [Google Scholar] [CrossRef]
- Golfomitsou, I.; Mitsou, E.; Xenakis, A.; Papadimitriou, V. Development of Food Grade O/W Nanoemulsions as Carriers of Vitamin D for the Fortification of Emulsion Based Food Matrices: A Structural and Activity Study. J. Mol. Liq. 2018, 268, 734–742. [Google Scholar] [CrossRef]
α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) | |
---|---|---|---|---|
Control | 14.28 ± 0.05 a | 25.71 ± 0.08 a | 37.08 ± 0.03 a | 22.93 ± 0.05 a |
400 bar | 14.25 ± 0.04 a | 25.58 ± 0.08 a | 37.20 ± 0.03 a | 22.97 ± 0.05 a |
600 bar | 13.57 ± 0.01 b | 24.80 ± 0.08 b | 38.03 ± 0.03 b | 23.60 ± 0.05 b |
800 bar | 12.74 ± 0.02 c | 23.58 ± 0.06 c | 39.64 ± 0.02 c | 24.04 ± 0.05 c |
Interfacial Tension (mN/m) | 1 Pass | 4 Passes |
---|---|---|
Control | 4.25 ± 0.19 a | 4.25 ± 0.19 a |
400 bar | 4.62 ± 0.33 ab | 5.20 ± 0.42 bc |
600 bar | 5.48 ± 0.35 c | 5.27 ± 0.39 bc |
800 bar | 5.65 ± 0.41 c | 4.75 ± 0.45 ab |
Biomass Treatment | Oil Content (% w/w) | Emulsion Homogenization | MDD (nm) | PDI (-) | Turbidity (-) |
---|---|---|---|---|---|
Control | 2 | HSH | 471.9 ± 52.3 a | 0.796 ± 0.246 a | 25.9 ± 1.2 xa |
HSH-HPH | 309.4 ± 1.7 b | 0.214 ± 0.009 b | 34.9 ± 1.1 xb | ||
4 | HSH | 527.1 ± 33.9 a | 0.494 ± 0.027 a | 44.1 ± 1.6 ya | |
HSH-HPH | 296.9 ± 5.6 b | 0.257 ± 0.015 b | 70.2 ± 1.8 yb | ||
6 | HSH | 458.2 ± 2.6 a | 0.324 ± 0.012 a | 112.6 ± 2.1 za | |
HSH-HPH | 296.4 ± 3.6 b | 0.315 ± 0.030 b | 119.6 ± 2.3 zb | ||
600 bar 1 pass | 2 | HSH | 341.4 ± 8.2 a | 0.557 ± 0.143 a | 27.0 ± 0.8 xa |
HSH-HPH | 339.5 ± 2.3 b | 0.199 ± 0.016 b | 40.2 ± 1.0 xb | ||
4 | HSH | 528.9 ± 1.9 a | 0.456 ± 0.06 a | 50.8 ± 1.5 ya | |
HSH-HPH | 319.9 ± 10.1 b | 0.260 ± 0.115 b | 74.1 ± 1.8 yb | ||
6 | HSH | 473.4 ± 11.4 a | 0.632 ± 0.023 a | 63.5 ± 0.9 za | |
HSH-HPH | 304.6 ± 3.2 b | 0.347 ± 0.010 b | 138.3 ± 2.3 zb | ||
800 bar 4 passes | 2 | HSH | 356.2 ± 6.6 a | 0.449 ± 0.039 a | 21.2 ± 0.7 xa |
HSH-HPH | 343.7 ± 2.0 b | 0.223 ± 0.016 b | 37.9 ± 1.2 xb | ||
4 | HSH | 434.5 ± 21.6 a | 0.535 ± 0.019 a | 47.0 ± 1.1 ya | |
HSH-HPH | 329.1 ± 1.4 b | 0.287 ± 0.036 b | 84.0 ± 1.9 yb | ||
6 | HSH | 485.2 ± 11.4 a | 0.655 ± 0.035 a | 62.6 ± 1.4 za | |
HSH-HPH | 320.3 ± 3.1 b | 0.332 ± 0.008 b | 124.6 ± 2.4 zb |
Centrifugation | Heating–Cooling | Freeze–Thaw | ||||||
---|---|---|---|---|---|---|---|---|
Cycle | Biomass Treatment | Oil Content (% w/w) | MDD (nm) | PDI (-) | MDD (nm) | PDI (-) | MDD (nm) | PDI (-) |
1 | Control | 2 | 283.1 ± 0.6 xai | 0.195 ± 0.022 xai | 295.6 ± 4.0 xai | 0.215 ± 0.032 xyi | 351.9 ± 1.3 xai | 0.447 ± 0.030 ai |
4 | 282.3 ± 8.3 xai | 0.248 ± 0.042 xaii | 294.0 ± 5.5 xaii | 0.257 ± 0.042 xyii | 413.2 ± 6.8 xaii | 0.509 ± 0.012 aii | ||
6 | 292.2 ± 5.9 xaii | 0.320 ± 0.028 xaiii | 287.0 ± 3.7 xaiii | 0.344 ± 0.046 xyiii | 440.8 ± 7.1 xaii | 0.454 ± 0.050 aiii | ||
HPH 600 bar 1 pass | 2 | 303.1 ± 1.8 xbi | 0.191 ± 0.007 xabi | 327.0 ± 1.5 xbi | 0.207 ± 0.012 xyi | 410.8 ± 5.8 xbi | 0.351 ± 0.054 abi | |
4 | 313.9 ± 4.8 xbi | 0.261 ± 0.018 xabii | 316.2 ± 2.4 xbii | 0.273 ± 0.007 xyii | 473.0 ± 8.2 xbii | 0.401 ± 0.011 abii | ||
6 | 300.2 ± 3.0 xbii | 0.320 ± 0.012 xabiii | 301.9 ± 2.7 xbiii | 0.359 ± 0.020 xyiii | 582.5 ± 7.1 xbii | 0.442 ± 0.005 abiii | ||
HPH 800 bar 4 passes | 2 | 326.9 ± 1.8 xci | 0.209 ± 0.010 xbi | 337.0 ± 0.7 xci | 0.217 ± 0.007 xyi | 418.2 ± 3.5 xbi | 0.259 ± 0.026 bi | |
4 | 323.9 ± 0.9 xci | 0.264 ± 0.014 xbii | 330.1 ± 2.1 xcii | 0.275 ± 0.017 xyii | 518.1 ± 3.8 xbii | 0.256 ± 0.024 bii | ||
6 | 305.6 ± 2.8 xcii | 0.332 ± 0.060 xbiii | 310.4 ± 4.1 xciii | 0.345 ± 0.011 xyiii | 529.7 ± 2.6 xbii | 0.280 ± 0.030 biii | ||
2 | Control | 2 | 273.6 ± 1.9 xyai | 0.165 ± 0.006 yai | 297.9 ± 3.4 xai | 0.218 ± 0.038 xyi | 351.9 ± 9.4 yai | 0.464 ± 0.027 ai |
4 | 284.4 ± 1.6 xyai | 0.232 ± 0.015y aii | 289.6 ± 3.4 xaii | 0.259 ± 0.045 xyii | 422.5 ± 2.6 yaii | 0.446 ± 0.021 aii | ||
6 | 291.7 ± 3.7 xyaii | 0.267 ± 0.014 yaiii | 290.5 ± 2.8 xaiii | 0.315 ± 0.029 xyiii | 467.6 ± 4.3 yaii | 0.456 ± 0.021 aiii | ||
HPH 600 bar 1 pass | 2 | 304.0 ± 3.0 xybi | 0.169 ± 0.010 yabi | 329.4 ± 4.2 xbi | 0.214 ± 0.002 xyi | 416.4 ± 9.2 ybi | 0.335 ± 0.050 abi | |
4 | 304.9 ± 2.7 xybi | 0.266 ± 0.026 yabii | 314.4 ± 0.9 xbii | 0.268 ± 0.008 xyii | 469.7 ± 1.8 ybii | 0.416 ± 0.017 abii | ||
6 | 307.9 ± 3.7 xybii | 0.282 ± 0.051 yabiii | 296.9 ± 2.2 xbiii | 0.348 ± 0.009 xyiii | 516.0 ± 6.7 ybii | 0.441 ± 0.025 abiii | ||
HPH 800 bar 4 passes | 2 | 311.0 ± 1.6 xyci | 0.193 ± 0.005 ybi | 332.1 ± 4.0 xci | 0.223 ± 0.014 xyi | 418.6 ± 1.9 ybi | 0.253 ± 0.018 bi | |
4 | 311.0 ± 4.3 xyci | 0.251 ± 0.014 ybii | 322.0 ± 0.4 xcii | 0.270 ± 0.008 xyii | 512.6 ± 3.4 ybii | 0.245 ± 0.033 bii | ||
6 | 305.4 ± 4.4 xycii | 0.274 ± 0.043 ybiii | 305.0 ± 2.3 xciii | 0.344 ± 0.010 xyiii | 520.9 ± 2.2 ybii | 0.264 ± 0.016 biii | ||
3 | Control | 2 | 268.6 ± 4.7 xyzai | 0.178 ± 0.009 yai | 300.2 ± 6.0 xai | 0.209 ± 0.038 xi | 372.9 ± 7.6 yai | 0.474 ± 0.034 ai |
4 | 273.8 ± 2.4 xyzai | 0.235 ± 0.019 yaii | 295.1 ± 4.5 xaii | 0.263 ± 0.030 xii | 484.2 ± 8.5 yaii | 0.415 ± 0.016 aii | ||
6 | 290.9 ± 5.4 xyzaii | 0.251 ± 0.006 yaiii | 285.1 ± 3.1 xaiii | 0.323 ± 0.047 xiii | 547.6 ± 4.6 yaii | 0.437 ± 0.013 aiii | ||
HPH 600 bar 1 pass | 2 | 291.5 ± 1.3 xyzbi | 0.195 ± 0.010 yabi | 327.0 ± 1.9 xbi | 0.222 ± 0.005 xi | 451.5 ± 2.9 ybi | 0.411 ± 0.010 abi | |
4 | 299.7 ± 1.6 xyzbi | 0.243 ± 0.004 yabii | 314.7 ± 0.8 xbii | 0.287 ± 0.019 xii | 568.5 ± 9.0 ybii | 0.451 ± 0.043 abii | ||
6 | 301.5 ± 2.4 xyzbii | 0.245 ± 0.014 yabiii | 302.9 ± 4.4 xbiii | 0.360 ± 0.034 xiii | 494.6 ± 8.7 ybii | 0.479 ± 0.057 abiii | ||
HPH 800 bar 4 passes | 2 | 305.9 ± 1.7 xyzci | 0.187 ± 0.007 ybi | 337.7 ± 2.6 xci | 0.220 ± 0.013 xi | 447.6 ± 2.0 ybi | 0.258 ± 0.004 bi | |
4 | 318.1 ± 2.9 xyzci | 0.246 ± 0.010 ybii | 318.4 ± 1.0 xcii | 0.275 ± 0.021 xii | 635.6 ± 5.4 ybii | 0.294 ± 0.045 bii | ||
6 | 322.4 ± 2.1 xyzcii | 0.348 ± 0.010 ybiii | 319.1 ± 3.6 xciii | 0.337 ± 0.014 xiii | 495.4 ± 3.9 ybii | 0.292 ± 0.029 biii | ||
4 | Control | 2 | 263.5 ± 2.1 yzai | 0.163 ± 0.006 yai | 296.5 ± 2.3 xai | 0.213 ± 0.021 yi | - | - |
4 | 265.5 ± 1.8 yzai | 0.229 ± 0.004 yaii | 286.7 ± 5.0 xaii | 0.263 ± 0.006 yii | - | - | ||
6 | 296.4 ± 2.3 yzaii | 0.274 ± 0.014 yaiii | 287.1 ± 4.0 xaiii | 0.339 ± 0.018 yiii | - | - | ||
HPH 600 bar 1 pass | 2 | 286.3 ± 2.1 yzbi | 0.164 ± 0.008 yabi | 326.9 ± 2.7 xbi | 0.217 ± 0.010 yi | - | - | |
4 | 283.0 ± 0.6 yzbi | 0.219 ± 0.003 yabii | 319.6 ± 4.4 xbii | 0.257 ± 0.012 yii | - | - | ||
6 | 305.5 ± 2.3 yzbii | 0.302 ± 0.013 yabiii | 312.1 ± 1.5 xbiii | 0.280 ± 0.013 yiii | - | - | ||
HPH 800 bar 4 passes | 2 | 296.9 ± 0.8 yzci | 0.180 ± 0.018 ybi | 337.0 ± 2.2 xci | 0.220 ± 0.010 yi | - | - | |
4 | 297.9 ± 1.2 yzci | 0.225 ± 0.015 ybii | 325.4 ± 0.8 xcii | 0.275 ± 0.001 yii | - | - | ||
6 | 315.7 ± 0.6 yzcii | 0.280 ± 0.014 ybiii | 309.3 ± 0.6 xciii | 0.297 ± 0.008 yiii | - | - | ||
5 | Control | 2 | 269.9 ± 1.5 yzai | 0.184 ± 0.012 yai | 284.2 ± 3.4 yai | 0.215 ± 0.012 xyi | - | - |
4 | 256.7 ± 0.7 yzai | 0.199 ± 0.009 yaii | 281.7 ± 1.9 yaii | 0.250 ± 0.013 xyii | - | - | ||
6 | 295.9 ± 6.8 yzaii | 0.265 ± 0.007 yaiii | 279.1 ± 1.1 yaiii | 0.353 ± 0.033 xyiii | - | - | ||
HPH 600 bar 1 pass | 2 | 306.7 ± 0.8 yzbi | 0.181 ± 0.016 yabi | 314.0 ± 6.2 ybi | 0.208 ± 0.002 xyi | - | - | |
4 | 276.5 ± 1.9 yzbi | 0.210 ± 0.019 yabii | 305.4 ± 4.0 ybii | 0.274 ± 0.007 xyii | - | - | ||
6 | 306.3 ± 0.5 yzbii | 0.298 ± 0.022 yabiii | 296.2 ± 7.2 ybiii | 0.360 ± 0.008 xyiii | - | - | ||
HPH 800 bar 4 passes | 2 | 311.3 ± 3.0 yzci | 0.203 ± 0.001 ybi | 321.7 ± 2.9 yci | 0.220 ± 0.008 xyi | - | - | |
4 | 288.0 ± 5.5 yzci | 0.209 ± 0.018 ybii | 308.4 ± 2.9 ycii | 0.287 ± 0.006 xyii | - | - | ||
6 | 311.7 ± 2.6 yzcii | 0.304 ± 0.005 ybiii | 299.5 ± 5.9 yciii | 0.322 ± 0.014 xyiii | - | - | ||
6 | Control | 2 | 281.9 ± 0.9 zai | 0.201 ± 0.010 yai | 303.2 ± 5.7 yai | 0.241 ± 0.037 xi | - | - |
4 | 266.9 ± 2.0 zai | 0.213 ± 0.009 yaii | 284.6 ± 2.8 yaii | 0.259 ± 0.036 xii | - | - | ||
6 | 285.4 ± 2.5 zaii | 0.244 ± 0.021 yaiii | 271.8 ± 1.3 yaiii | 0.335 ± 0.023 xiii | - | - | ||
HPH 600 bar 1 pass | 2 | 306.6 ± 1.0 zbi | 0.195 ± 0.009 yabi | 331.3 ± 7.0 ybi | 0.230 ± 0.013 xi | - | - | |
4 | 277.3 ± 1.8 zbi | 0.207 ± 0.023 yabii | 299.6 ± 4.8 ybii | 0.279 ± 0.026 xii | - | - | ||
6 | 283.3 ± 1.9 zbii | 0.264 ± 0.024 yabiii | 291.0 ± 2.6 ybiii | 0.351 ± 0.049 xiii | - | - | ||
HPH 800 bar 4 passes | 2 | 294.5 ± 1.6 zci | 0.162 ± 0.006 ybi | 328.2 ± 2.7 yci | 0.233 ± 0.015 xi | - | - | |
4 | 299.3 ± 8.2 zci | 0.227 ± 0.016 ybii | 305.1 ± 1.4 ycii | 0.294 ± 0.010 xii | - | - | ||
6 | 304.8 ± 2.5 zcii | 0.301 ± 0.003 ybiii | 295.2 ± 3.0 yciii | 0.366 ± 0.006 xiii | - | - |
t = 0 d | t = 15 d | t = 30 d | ||||||
---|---|---|---|---|---|---|---|---|
T (°C) | Biomass Treatment | Oil Content (% w/w) | MDD (nm) | PDI (-) | MDD (nm) | PDI (-) | MDD (nm) | PDI (-) |
4 | Control | 2 | 309.4 ± 1.8 aiX | 0.214 ± 0.009 aiX | 305.0 ± 2.5 xaiY | 0.211 ± 0.009 aiY | 301.7 ± 2.0 xaiY | 0.211 ± 0.009 aiY |
4 | 296.9 ± 2.3 aiiX | 0.257 ± 0.016 aiiX | 300.4 ± 2.0 xaiiY | 0.261 ± 0.013 aiiY | 302.3 ± 5.0 xaiiY | 0.254 ± 0.027 aiiY | ||
6 | 296.4 ± 2.0 aiiiX | 0.315 ± 0.016 aiiiX | 293.5 ± 2.3 xaiiiY | 0.351 ± 0.027 aiiiY | 303.3 ± 4.8 xaiiiY | 0.303 ± 0.041 aiiiY | ||
HPH 600 bar 1 pass | 2 | 339.5 ± 1.9 biX | 0.199 ± 0.006 aiX | 321.0 ± 2.4 xbiY | 0.209 ± 0.012 aiY | 306.0 ± 4.7 xaiY | 0.195 ± 0.004 aiY | |
4 | 319.9 ± 5.7 biiX | 0.260 ± 0.015 aiiX | 325.0 ± 4.3 xbiiY | 0.280 ± 0.009 aiiY | 326.4 ± 0.7 xaiiY | 0.277 ± 0.010 aiiY | ||
6 | 304.6 ± 1.4 biiiX | 0.347 ± 0.036 aiiiX | 292.8 ± 3.4 xbiiiY | 0.367 ± 0.008 aiiiY | 289.0 ± 3.9 xaiiiY | 0.374 ± 0.003 aiiiY | ||
HPH 800 bar 4 passes | 2 | 343.7 ± 2.6 ciX | 0.223 ± 0.012 biX | 345.6 ± 1.1 xciY | 0.224 ± 0.022 biY | 345.2 ± 1.6 xbiY | 0.215 ± 0.013 biY | |
4 | 329.1 ± 9.4 ciiX | 0.287 ± 0.023 biiX | 324.1 ± 0.6 xciiY | 0.267 ± 0.008 biiY | 316.5 ± 3.4 xbiiY | 0.271 ± 0.004 biiY | ||
6 | 320.3 ± 8.4 ciiiX | 0.332 ± 0.035 biiiX | 309.4 ± 1.7 xciiiY | 0.371 ± 0.002 biiiY | 325.3 ± 1.4 xbiiiY | 0.367 ± 0.030 biiiY | ||
12 | Control | 2 | 309.4 ± 1.8 aiX | 0.214 ± 0.009 aiX | 298.0 ± 2.0 xaiY | 0.214 ± 0.009 aiY | 304.1 ± 2.2 xaiY | 0.219 ± 0.007 aiY |
4 | 296.9 ± 2.3 aiiX | 0.257 ± 0.016 aiiX | 290.4 ± 5.0 xaiiY | 0.252 ± 0.027 aiiY | 283.7 ± 1.5 xaiiY | 0.251 ± 0.008 aiiY | ||
6 | 296.4 ± 2.0 aiiiX | 0.315 ± 0.016 aiiiX | 300.4 ± 4.8 xaiiiY | 0.342 ± 0.041 aiiiY | 290.2 ± 6.9 xaiiiY | 0.339 ± 0.018 aiiiY | ||
HPH 600 bar 1 pass | 2 | 339.5 ± 1.9 biX | 0.199 ± 0.006 aiX | 325.9 ± 4.7 xbiY | 0.212 ± 0.004 aiY | 330.9 ± 1.4 xaiY | 0.205 ± 0.008 aiY | |
4 | 319.9 ± 5.7 biiX | 0.260 ± 0.015 aiiX | 311.8 ± 0.7 xbiiY | 0.261 ± 0.010 aiiY | 299.0 ± 3.4 xaiiY | 0.278 ± 0.045 aiiY | ||
6 | 304.6 ± 1.4 biiiX | 0.347 ± 0.036 aiiiX | 295.0 ± 3.9 xbiiiY | 0.311 ± 0.003 aiiiY | 286.9 ± 4.3 xaiiiY | 0.333 ± 0.009 aiiiY | ||
HPH 800 bar 4 passes | 2 | 343.7 ± 2.6 ciX | 0.223 ± 0.012 biX | 345.6 ± 1.6 xciY | 0.224 ± 0.013 biY | 342.8 ± 2.7 xbiY | 0.208 ± 0.057 biY | |
4 | 329.1 ± 9.4 ciiX | 0.287 ± 0.023 biiX | 332.3 ± 3.4 xciiY | 0.267 ± 0.004 biiY | 337.5 ± 6.4 xbiiY | 0.276 ± 0.042 biiY | ||
6 | 320.3 ± 8.4 ciiiX | 0.332 ± 0.035 biiiX | 293.4 ± 1.4 xciiiY | 0.373 ± 0.030 biiiY | 291.4 ± 0.5 xbiiiY | 0.351 ± 0.004 biiiY | ||
25 | Control | 2 | 309.4 ± 1.8 aiX | 0.214 ± 0.009 aiX | 286.5 ± 2.5 yaiY | 0.212 ± 0.009 aiY | 280.3 ± 2.0 yaiY | 0.210 ± 0.009 aiY |
4 | 296.9 ± 2.3 aiiX | 0.257 ± 0.016 aiiX | 269.3 ± 2.0 yaiiY | 0.258 ± 0.013 aiiY | 271.9 ± 5.0 yaiiY | 0.271 ± 0.027 aiiY | ||
6 | 296.4 ± 2.0 aiiiX | 0.315 ± 0.016 aiiiX | 265.2 ± 2.3 yaiiiY | 0.351 ± 0.027 aiiiY | 271.1 ± 4.8 yaiiiY | 0.329 ± 0.041 aiiiY | ||
HPH 600 bar 1 pass | 2 | 339.5 ± 1.9 biX | 0.199 ± 0.006 aiX | 322.4 ± 2.4 ybiY | 0.235 ± 0.012 aiY | 307.3 ± 4.7 yaiY | 0.212 ± 0.004 aiY | |
4 | 319.9 ± 5.7 biiX | 0.260 ± 0.015 aiiX | 325.0 ± 4.3 ybiiY | 0.280 ± 0.009 aiiY | 303.2 ± 0.7 yaiiY | 0.277 ± 0.010 aiiY | ||
6 | 304.6 ± 1.4 biiiX | 0.347 ± 0.036 aiiiX | 282.7 ± 3.4 ybiiiY | 0.331 ± 0.008 aiiiY | 284.5 ± 3.9 yaiiiY | 0.327 ± 0.003 aiiiY | ||
HPH 800 bar 4 passes | 2 | 343.7 ± 2.6 ciX | 0.223 ± 0.012 biX | 324.3 ± 1.1 yciY | 0.226 ± 0.022 biY | 314.9 ± 1.6 ybiY | 0.222 ± 0.013 biY | |
4 | 329.1 ± 9.4 ciiX | 0.287 ± 0.023 biiX | 299.4 ± 0.6 yciiY | 0.282 ± 0.008 biiY | 296.7 ± 3.4 ybiiY | 0.271 ± 0.004 biiY | ||
6 | 320.3 ± 8.4 ciiiX | 0.332 ± 0.035 biiiX | 277.0 ± 1.7 yciiiY | 0.367 ± 0.002 biiiY | 291.6 ± 1.4 ybiiiY | 0.371 ± 0.030 biiiY |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsimichas, A.; Katsouli, M.; Spantidos, N.; Giannakourou, M.C.; Taoukis, P. Effect of High-Pressure Homogenization on the Functional and Emulsifying Properties of Proteins Recovered from Auxenochlorella pyrenoidosa. Appl. Sci. 2025, 15, 131. https://doi.org/10.3390/app15010131
Katsimichas A, Katsouli M, Spantidos N, Giannakourou MC, Taoukis P. Effect of High-Pressure Homogenization on the Functional and Emulsifying Properties of Proteins Recovered from Auxenochlorella pyrenoidosa. Applied Sciences. 2025; 15(1):131. https://doi.org/10.3390/app15010131
Chicago/Turabian StyleKatsimichas, Alexandros, Maria Katsouli, Nikolaos Spantidos, Maria C. Giannakourou, and Petros Taoukis. 2025. "Effect of High-Pressure Homogenization on the Functional and Emulsifying Properties of Proteins Recovered from Auxenochlorella pyrenoidosa" Applied Sciences 15, no. 1: 131. https://doi.org/10.3390/app15010131
APA StyleKatsimichas, A., Katsouli, M., Spantidos, N., Giannakourou, M. C., & Taoukis, P. (2025). Effect of High-Pressure Homogenization on the Functional and Emulsifying Properties of Proteins Recovered from Auxenochlorella pyrenoidosa. Applied Sciences, 15(1), 131. https://doi.org/10.3390/app15010131