Mineralurgical and Environmental Characterization of the Mine Tailings of the IOCG Mine of Guelb Moghrein, Akjoujt, Mauritania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Presentation of the Study Area
2.2. Geological Context of the Deposit and Mineralization
2.3. Tailings Storage Facilities (TSF)
2.4. Sampling
2.5. Methods
3. Results and Discussion
3.1. Site Prospection
3.2. Physical Properties of the TSF Tailings
3.3. Mineralogical Analysis
3.4. Chemical Composition
3.5. Environmental Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Samples | Sampling Points | GPS Coordinates | ||
---|---|---|---|---|
Y | X | Z | ||
TSF1 | 1130 | 2184739 | 559979 | 116 |
TSF1 | 1131 | 2184654 | 559732 | 117 |
TSF1 | 1132 | 2184897 | 559611 | 130 |
TSF1 | 1154 | 2184972 | 559641 | 128 |
TSF1 | 1136 | 2185022 | 559757 | 128 |
TSF1 | 1137 | 2185020 | 559530 | 128 |
TSF1 | 1138 | 2185096 | 559554 | 131 |
TSF2 | 1089 (Salts) | 2184704 | 557167 | 111 |
TSF2 | 1090 | 2184142 | 557372 | 113 |
TSF2 | 1128 | 2183896 | 556868 | 110 |
TSF2 | 1129 | 2184496 | 556611 | 108 |
TSF3 | 1077 | 2183030 | 557152 | 112 |
TSF3 | TSF3-13A | 2182904 | 557125 | 106 |
TSF3 | 1081 | 2182997 | 556716 | 106 |
TSF3 | TSF3-10A | 2183172 | 556521 | 107 |
TSF3 | TSF3-6 | 2183243 | 556830 | 179 |
TSF3 | 1082 | 2182861 | 557147 | 108 |
TSF3 | 1083 | 2182796 | 557230 | 105 |
TSF3 | 1084 | 2182218 | 556781 | 108 |
TSF3 | 1085 (Salts) | 2182267 | 556748 | 110 |
TSF3 | 1086 | 2182577 | 556859 | 109 |
TSF3 | 1087 2182445 | 557135 | 111 | |
TSF3 | TSF3-9 | 2182216 | 556342 | 104 |
TSF3 | TSF3-8 | 2182508 | 556493 | 114 |
TSF3 | TSF3-11 | 2182551 | 556164 | 107 |
TSF3 | 1088 | 2182811 | 555983 | 104 |
References
- Kolb, J.; Meyer, F.; Prantl, S.; Sindern, S.; Sakellaris, G.A.; Vennemann, T.; Böttcher, M. Characteristics of Hydrothermal Fluids Forming the Guelb Moghrein Fe Oxide-Cu-Au-Co Deposit, Mauritania: Ore Mineral Chemistry, Fluid Inclusions and Isotope Geochemistry. In Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2010; Volume 4, 298p, ISBN 978-0-9871196-2-9. [Google Scholar]
- Kolb, J.; Meyer, F.; Vennemann, T.; Hoffbauer, R.; Gerdes, A.; Sakellaris, G.A. Geological setting of the Guelb Moghrein Fe oxide-Cu-Au-Co mineralization, Akjoujt area, Mauritania. Geol. Soc. 2008, 297, 53–75. [Google Scholar] [CrossRef]
- Kolb, J.; Sakellaris, G.A.; Meyer, F. Controls on hydrothermal Fe oxide–Cu–Au–Co mineralization at the Guelb Moghrein deposit, Akjoujt area, Mauritania. Miner. Depos. 2006, 41, 68–81. [Google Scholar] [CrossRef]
- Meyer, F.; Kolb, J.; Sakellaris, G.A.; Gerdes, A. New ages from the Mauritanides Belt: Recognition of Archean IOCG mineralization at Guelb Moghrein, Mauritania. Terra Nova 2006, 18, 345–352. [Google Scholar] [CrossRef]
- Groves, D.I.; Bierlein, F.P.; Meinert, L.D.; Hitzman, M. Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits. Econ. Geol. 2010, 105, 641–654. [Google Scholar] [CrossRef]
- Porter, T. Advances in the Understanding of IOCG and Related Deposits. In Hydrothermal Iron Oxide Copper–Gold and Related Deposits: A Global Perspective; Geokniga: Moscow, Russia, 2010; Volume 3, pp. 5–106. [Google Scholar]
- Strickland, C.; Martyn, J. The Guelb Moghrein Fe oxide copper-gold-cobalt deposit and associated mineral occurrences, Mauritania: A geological introduction. In Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2002; Volume 2, pp. 275–291. [Google Scholar]
- Plante, B. Évaluation des Principaux Facteurs D’influence sur la Prédiction du Drainage Neutre Contaminé (Assessment of the Main Influencing Factors on the Prediction of Contaminated Neutral Drainage). Ph.D. Thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 2010. [Google Scholar]
- Plante, B.; Bussière, B.; Benzaazoua, M. Static tests response on 5 Canadian hard rock mine tailings with low net acid-generating potentials. J. Geochem. Explor. 2012, 114, 57–69. [Google Scholar] [CrossRef]
- Othmani, M.A.; Souissi, F.; Benzaazoua, M.; Bouzahzah, H.; Bussière, B.; Mansouri, A. The Geochemical Behaviour of Mine Tailings from the Touiref Pb–Zn District in Tunisia in Weathering Cells Leaching Tests. Mine Water Environ. 2013, 32, 28–41. [Google Scholar] [CrossRef]
- Lindsay, M.; Moncur, M.; Bain, J.; Jambor, J.; Ptacek, C.; Blowes, D. Geochemical and mineralogical aspects of sulfide mine tailings. Appl. Geochem. 2015, 57, 157–177. [Google Scholar] [CrossRef]
- Aubertin, M.; Bernier, L.; Bussière, B. Environnement et Gestion des Rejets Miniers [Ressource Électronique]: Manuel sur Cédérom; Technique et Documentation; Presses Internationales Polytechnique: Montréal, QC, Canada, 2002. [Google Scholar]
- Benzaazoua, M.; Perez, P.; Tikou, B.; Fall, M. A Laboratory Study of the Behaviour of Surface Paste Disposal; Minefill: Rouyn-Noranda, QC, Canada, 2004; pp. 180–192. [Google Scholar]
- Souissi, F.; Souissi, R.; Bouchardon, J.; Munoz, M.; Chakroun, H.; Othmani, M.; Ghorbel, M. Mineralogical and geochemical characterization of mine tailings and the effect of Pb, Zn, Cd and Cu mobility on the quality of soil sand stream sediments in northern Tunisia. Hammamet, Tunisia. Mine Water Environ. 2008, 32, 313–317. [Google Scholar]
- Bussière, B. Colloquium 2004: Hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches. Can. Geotech. J. Can Geotech. J. 2007, 44, 1019–1052. [Google Scholar] [CrossRef]
- Yilmaz, E.; Benzaazoua, M.; Bussière, B.; Pouliot, S. Influence of disposal configurations on hydrogeological behaviour of sulphidic paste tailings: A field experimental study. Int. J. Miner. Process. 2014, 131, 12–25. [Google Scholar] [CrossRef]
- Aubertin, M.; Pabst, T.; Bussière, B.; James, M.; Mbonimpa, M.; Benzaazoua, M.; Maqsoud, A. Revue technique des meilleures pratiques de restauration des sites d’entreposage de rejets miniers générateurs de DMA. In Proceedings of the Symposium 2015 sur L’environnement et Les Mines, Rouyn-Noranda, QC, Canada, 14–17 June 2015. [Google Scholar]
- Lemos, M.; Valente, T.; Reis, P.M.; Fonseca, R.; Delbem, I.; Ventura, J.; Magalhães, M. Mineralogical and Geochemical Characterization of Gold Mining Tailings and Their Potential to Generate Acid Mine Drainage (Minas Gerais, Brazil). Minerals 2021, 11, 39. [Google Scholar] [CrossRef]
- Valente, T. Editorial for Special Issue “Pollutants in Acid Mine Drainage”. Minerals 2023, 13, 931. [Google Scholar] [CrossRef]
- DeSisto, S.; Jamieson, H.; Parsons, M. Influence of hardpan layers on arsenic mobility in historical gold mine tailings. Appl. Geochem. 2011, 26, 2004–2018. [Google Scholar] [CrossRef]
- Dold, B. Acid rock drainage prediction: A critical review. J. Geochem. Explor. 2016, 172, 120–132. [Google Scholar] [CrossRef]
- Stantec Consulting Ltd. Review of Water Quality Issues in Neutral pH Drainage: Examples and Emerging Priorities for the Mining Industry in Canada (Novembre 2004); Technical Report, Mine Environnement Neutral Drainage (MEND). Report 10.1; Secretariat CANMET: Ottawa, ON, Canada, 2004. [Google Scholar]
- Plante, B.; Benzaazoua, M.; Bussière, B. Kinetic Testing and Sorption Studies by Modified Weathering Cells to Characterize the Potential to Generate Contaminated Neutral Drainage. Mine Water Environ. 2011, 30, 22–37. [Google Scholar] [CrossRef]
- Sracek, O.; Kříbek, B.; Mihaljević, M.; Majer, V.; Veselovský, F.; Vencelides, Z.; Nyambe, I. Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: An example of a high neutralization capacity system. J. Geochem. Explor. 2012, 112, 174–188. [Google Scholar] [CrossRef]
- Redwan, M.; Rammlmair, D.; Meima, J. Application of mineral liberation analysis in studying micro-sedimentological structures within sulfide mine tailings and their effect on hardpan formation. Sci. Total Environ. 2011, 414, 480–493. [Google Scholar] [CrossRef]
- Blowes, D.W.; Ptacek, C.J.; Frind, E.O.; Johnson, R.H.; Robertson, W.D.; Molson, J.W. Acid-Neutralization Reactions in Inactive Mine Tailings Impoundments and Their Effect on the Transport of Dissolved Metals. J. Am. Soc. Min. Reclam. 1994, 1994, 429–438. [Google Scholar] [CrossRef]
- McGregor, R.; Blowes, D. The physical, chemical and mineralogical properties of three cemented layers within sulfide-bearing mine tailings. J. Geochem. Explor. 2002, 76, 195–207. [Google Scholar] [CrossRef]
- Courtin-Nomade, A.; Bril, H.; Néel, C.; Lenain, J.F. Arsenic in iron cements developed within tailings of a former metalliferous mine—Enguiales, Aveyron, France. Appl. Geochem. 2003, 18, 395–408. [Google Scholar] [CrossRef]
- Lottermoser, B.; Ashley, P. Mobility and retention of trace elements in hardpan-cemented cassiterite tailings, north Queensland, Australia. Environ. Geol. 2006, 50, 835–846. [Google Scholar] [CrossRef]
- Alakangas, L.; Öhlander, B. Formation and composition of cemented layers in low-sulphide mine tailings, Laver, northern Sweden. Environ. Geol. 2006, 50, 809–819. [Google Scholar] [CrossRef]
- Graupner, T.; Kassahun, A.; Rammlmair, D.; Meima, J.; Kock, D.; Furche, M.; Fiege, A.; Schippers, A.; Melcher, F. Formation of sequences of cemented layers and hardpans within sulfide-bearing mine tailings (mine district Freiberg, Germany). Appl. Geochem. 2007, 22, 2486–2508. [Google Scholar] [CrossRef]
- Quispe, D.; Pérez-López, R.; Acero, P.; Ayora, C.; Nieto, J. The role of mineralogy on element mobility in two sulfide mine tailings from the Iberian Pyrite Belt (SW Spain). Chem. Geol. 2013, 345, 119–129. [Google Scholar] [CrossRef]
- Gieré, R.; Sidenko, N.; Lazareva, E. The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Appl. Geochem. 2003, 18, 1347–1359. [Google Scholar] [CrossRef]
- Gilbert, S.; Cooke, D.; Hollings, P. The effects of hardpan layers on the water chemistry from the leaching of pyrrhotite-rich tailings material. Environ. Geol. 2003, 44, 687–697. [Google Scholar] [CrossRef]
- Moncur, M.; Ptacek, C.; Blowes, D.; Jambor, J. Release, transport and attenuation of metals from an old tailings impoundment. Appl. Geochem. 2005, 639–659. [Google Scholar] [CrossRef]
- Gunsinger, M.; Ptacek, C.; Blowes, D.; Jambor, J. Evaluation of long-term sulfide oxidation processes within pyrrhotite-rich tailings, Lynn Lake, Manitoba. J. Contam. Hydrol. 2006, 83, 149–170. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, S.; Nguyen, T.A.; Southam, G.; Chan, T.S.; Lu, Y.R.; Huang, L. Microstructural characteristics of naturally formed hardpan capping sulfidic copper-lead-zinc tailings. Environ. Pollut. 2018, 242, 1500–1509. [Google Scholar] [CrossRef]
- Kohfahl, C.; Graupner, T.; Fetzer, C.; Pekdeger, A. The impact of cemented layers and hardpans on oxygen diffusivity in mining waste heaps A field study of the Halsbrucke lead-zinc mine tailings (Germany). Sci. Total Environ. 2010, 408, 5932–5939. [Google Scholar] [CrossRef]
- Murciego, A.; Álvarez Ayuso, E.; Aldana-Martínez, S.; Sanz-Arranz, A.; Medina-García, J.; Rull-Pérez, F.; Villar-Alonso, P. Characterization of secondary products in arsenopyrite-bearing mine wastes: Influence of cementation on arsenic attenuation. J. Hazard. Mater. 2019, 373, 425–436. [Google Scholar] [CrossRef]
- Pi-Puig, T.; Solé, J.; Gómez Cruz, A. Mineralogical Study and Genetic Model of Efflorescent Salts and Crusts from Two Abandoned Tailings in the Taxco Mining District, Guerrero (Mexico). Minerals 2020, 10, 871. [Google Scholar] [CrossRef]
- Hitzman, M.; Oreskes, N.; Einaudi, M.T. Geological characteristics and tectonic setting of proterozoic iron oxide (CuUAuREE) deposits. Precambrian Res. 1992, 58, 241–287. [Google Scholar] [CrossRef]
- Murakami, H.; Watanabe, Y.; Marutani, M.; Higashihara, M. Geology and mineralization of the Guelb Moghrein Fe-oxide Cu-Au (IOCG) deposit, Mauritania. In Proceedings of the Abstracts with Programs, 55th Annual Meeting Society of Resource Geology, Japan, 2005; 22p. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1751-3928.2007.00041.x (accessed on 14 November 2023).
- Williams, P.J.; Barton, M.D.; Johnson, D.A.; Fontboté, L.; de Haller, A.; Mark, G.; Oliver, N.H.S.; Marschik, R. Iron Oxide Copper-Gold Deposits: Geology, Space-Time Distribution, and Possible Modes of Origin; GSW Publisher: Virginia, VA, USA, 2005. [Google Scholar]
- Kirschbaum, M. Geology of the Guelb Moghrein Iron Oxide-Copper-Gold Deposit. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2011. [Google Scholar]
- Kirschbaum, M. Guelb Moghrein Iron Oxide-Copper-Gold Deposit, Mauritania: Denver Regional Exploration Geologists; Technical Report; Colorado School of Mines: Golden, CO, USA, 2011. [Google Scholar]
- Pouclet, A.; Guillot, P.; Ba Gatta, A. Nouvelles données lithostructurales, pétrographiques, minéralogiques et geochimiques sur le gisement de cuivre d’Akjoujt etson environnement géologique (République Islamique de Mauritanie) (New lithostructural, petrographic, mineralogical and geochemical data on the Akjoujt copper deposit and its geological environment (Islamic Republic of Mauritania). Proc. Afr. Earth Sci. 1987, 6, 29–43. [Google Scholar]
- Martyn, J.; Strickland, C. Stratigraphy, structure and mineralisation of the Akjoujt area, Mauritania. J. Afr. Earth Sci. 2004, 38, 489–503. [Google Scholar] [CrossRef]
- Sakellaris, G.A. Petrology, Geochemistry, Stable and Radiogenic Isotopy of the Guelb Moghrein Iron Oxide-Copper-Gold-Cobalt Deposit, Mauritania. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2007. [Google Scholar]
- Ramdohr, H. Recherches Microscopiques sur les Minerais du Gisement du Guelb Moghrein (Akjoujt). Technical Report, Bull. Dir. féd. Mines Géol. A.O.F. Dakar, 20, 195-255, 1957. Available online: https://www.sciencedirect.com/science/article/abs/pii/0899536287901059 (accessed on 14 November 2023).
- Ba Gatta, A. Contribution à L’étude Géologique et Minéralogique du Gisement D’Akjoujt, Mauritanie (Contribution to The Geological And Mineralogical Study of The Akjoujt Deposit, Mauritania). Ph.D. Thesis, University of Orleans, Orléans, France, 1982. [Google Scholar]
- Taviche, I.K. Caractéres Pétrographiques; Minéralogiques, Géochimiques et Géotechniques du Minerai Sulfuré Cupro-Aurifére D’Akjoujt (Mauritanie): Implications Minieres Et Minéralurgiques. Ph.D. Thesis, Universite Cheick Anta Diop, Dakar, Senegal, 1998. [Google Scholar]
- Plante, B.; Bussière, B.; Bouzahzah, H.; Benzaazoua, M.; Demers, I.; Kandji, E.-H.B. Revue de Littérature en Vue de la Mise à Jour du Guide de Caractérisation des Résidus Miniers et du Minerai; Technical Report, -PU-2013-05-806—Rapport; Institut de Recherche en Mines et Environnement: Montreal, QC, Canada, 2015. [Google Scholar]
- Kwong, Y.; Ferguson, K. Mineralogical changes during NP determinations and their implications. In Proceedings of the 4th International Conference on Acid Rock Drainage, Vancouver, BC, Canada, 31 May–6 June 1997; Volume 1, pp. 435–447. [Google Scholar]
- Lawrence, R.W.; Wang, Y. Determination of Neutralization Potential in the Prediction of Acid Rock Drainage. In Proceedings of the 4th International Conference on Acid Rock Drainage, Vancouver, BC, Canada, 31 May–6 June 1997; pp. 449–464. [Google Scholar]
- Frostad, S.; Price, W.; Bent, H. Operational NP Determination—Accounting for Iron Manganese Carbonates and Developing a Site-Specific Fizz Rating. Min. Environ. Sudbury 2003, 231–237. [Google Scholar]
- Sobek, A.A.; Schuller, W.; Freeman, J.; Smith, R. Field And Laboratory Methods Applicable to Overburdens And Minesoils; EPA-600/2-78-054; U.S. Gov. Print. Office: Washington, DC, USA, 1978. [Google Scholar]
- Miller, S.; Jeffery, J.; Wong, J. Use and misuse of the acid base account for “AMD” prediction. In Proceedings of the Proc. of the Second International Conference on the Abatement of Acidic Drainage, Montreal, QC, Canada, 16–18 September 1991; Volume 3, pp. 489–506. [Google Scholar]
- Adam, K.; Kourtis, A.; Gazea, B.; Kontopoulos, A. Evaluation of static tests used to predict the potential for acid drainage generation at sulphide mine sites. Min. Technol. IMM Trans. Sect. A 1997, 106, A1–A8. [Google Scholar]
- Bouzahzah, H. Modification Et Amélioration Des Tests Statiques Et Cinétiques Pour Une Prédiction Fiable Et Sécuritaire Du Drainage Minier Acide. Ph.D. Thesis, Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC, Canada, 2013. [Google Scholar]
- Jönsson, J.; Jönsson, J.; Lövgren, L. Precipitation of secondary Fe(III) minerals from acid mine drainage. Appl. Geochem. 2006, 21, 437–445. [Google Scholar] [CrossRef]
- Theriault, J.; Frostiak, J.; Welch, D. Surface disposal of paste tailings at the Bulyanhulu mine. In Proceedings of the 2nd Mining Environment Conference, Sudbury, ON, Canada, 25–28 May 2003; pp. 1–8. [Google Scholar]
- Simms, P.; Dunmola, A.; Fisseha, B. Generic Predictions of Drying Time in Surface Deposited Thickened Tailings in a “Wet” Climate. Proceeding of the Thirteenth International Conference on Tailings and Mine Waste, Banff, AB, Canada, 1–4 November 2009. [Google Scholar]
- Bereket, F. Evaporation and Unsaturated Flow in Multilayer Deposits of Gold Paste Tailings. Master’s Thesis, Carleton University, Ottawa, ON, Canada, 2008. [Google Scholar]
- Dunmola, A. Geotechnical and Geo-environmental Implications of Evaporation from Sulphidic Surface-deposited Thickened Mine Tailings. Electron. J. Geotech. Eng. 2012, 17. [Google Scholar]
- Newson, T.; Fahey, M. Measurement of evaporation from saline tailings storages. Eng. Geol. 2003, 70, 217–233. [Google Scholar] [CrossRef]
- Kaswalder, F.; Cavalli, D.; Paglianti, A. Tailings Dewatering by Pressure Filtration: Process Optimisation and Design Criteria; Australian Centre for Geomechanics: Crawley, WA, Australia, 2018; pp. 427–438. [Google Scholar] [CrossRef]
- Mcphail, G.; Ugaz, R.; Araujo, F. Practical Tailings Slurry Dewatering and Tailings Management Strategies for Small and Medium Mines; Australian Centre for Geomechanics: Crawley, WA, Australia, 2019; pp. 235–243. [Google Scholar] [CrossRef]
- Fujiyasu, Y.; Fahey, M. Experimental Study of Evaporation from Saline Tailings. J. Geotech. Geoenviron. Eng. 2000, 126, 18–27. [Google Scholar] [CrossRef]
- Saleh-Mbemba, F. Evaluation de la Dessiccation, du Retrait et de la Fissuration de Matériaux Silteux peu Plastiques. Evaluation of the Desiccation, Shrinkage and Cracking of Low Plastic Silty Materials. Master’s Thesis, École Polytechnique, Montréal, QC, Canada, 2010. [Google Scholar]
- Saleh-Mbemba, F.; Aubertin, M.; Mbonimpa, M. Desiccation and Shrinkage of Low Plasticity Tailings: Testing and Preliminary Modeling. In Proceedings of the 63rd Canadian Geotechnical Conference and 6th Canadian Permafrost Conference Geo2010, Calgary, AB, Canada, 1 January 2010. [Google Scholar]
- Molson, J.; Aubertin, M.; Martin, V.; Bussière, B. Conceptual and numerical models of oxygen diffusion, sulphide oxidation and acid mine drainage within discretely fractured porous media. In Proceedings of the Sea to Sky Geotechnique 2006: Proceedings of the 59th Canadian Geotechnical Conference and 7th Joint CGS/IAH Groundwater Specialty Conference, Vancouver, BC, Canada, 1–4 October 2006. [Google Scholar]
- Fujiyasu, Y.; Fahey, M.; Newson, T. Field Investigation of Evaporation from Freshwater Tailings. J. Geotech. Geoenviron. Eng. 2000, 126, 556–567. [Google Scholar] [CrossRef]
- Chang, N.; Heymann, G.; Clayton, C. The effect of fabric on the behaviour of gold tailings. Géotechnique 2011, 61, 187–197. [Google Scholar] [CrossRef]
- Coop, M.; Carrera, A.; Lancellotta, R. Influence of grading on the mechanical behaviour of Stava tailings. Géotechnique 2011, 61, 935–946. [Google Scholar] [CrossRef]
- Bedin, J.; Schnaid, F.; Costa Filho, L.D.M. Gold tailings liquefaction under critical state soil mechanics. Géotechnique 2012, 62, 263–267. [Google Scholar] [CrossRef]
- Li, W.; Coop, M.; Senetakis, K.; Schnaid, F. The mechanics of a silt-sized gold tailing. Eng. Geol. 2018, 241, 97–108. [Google Scholar] [CrossRef]
- Li, W. The Mechanical Bihaviour of Tailings. Ph.D. Thesis, City University of Hong Kong, Hong Kong, China, 2017. [Google Scholar]
- USDA; Soil Survey Division Staff. Soil Conservation Service Volume Handbook 1; Technical Report; U.S. Department of Agriculture: Washington, DC, USA, 2017. [Google Scholar]
- Aubertin, M.; Bussière, B.; Chapuis, R. Hydraulic conductivity of homogenized tailings from hard rock mines. Can. Geotech. J. 2011, 33, 470–482. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution. xvi 312 pp. Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne: Blackwell Scientific. Price £16.80 (paperback). ISBN 0 632 01148 3. Geol. Mag. 1985, 122, 673–674. [Google Scholar] [CrossRef]
- Di Pietro, S.A.; Emerson, H.P.; Katsenovich, Y.; Qafoku, N.P.; Szecsody, J.E. Phyllosilicate mineral dissolution upon alkaline treatment under aerobic and anaerobic conditions. Appl. Clay Sci. 2020, 189, 105520. [Google Scholar] [CrossRef]
- Gruber, C.; Kutuzov, I.; Ganor, J. The combined effect of temperature and pH on albite dissolution rate under far-from-equilibrium conditions. Geochim. Cosmochim. Acta 2016, 186. [Google Scholar] [CrossRef]
- Sverdrup, H.U. The Kinetics Of Base Cation Release Due to Chemical Weathering; Lund University Press: Lund, Sweden, 1990. [Google Scholar]
- Kwong, Y.J. Prediction and Prevention of Acid Rock Drainage from a Geological and Mineralogical Perspective; Technical Report; CANMET: Ottawa, AB, Canada, 1993. [Google Scholar]
- Tabelin, C.B.; Silwamba, M.; Paglinawan, F.C.; Mondejar, A.J.S.; Duc, H.G.; Resabal, V.J.; Opiso, E.M.; Igarashi, T.; Tomiyama, S.; Ito, M.; et al. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities. Chemosphere 2020, 260, 127574. [Google Scholar] [CrossRef] [PubMed]
Parameters | TSF1 | TSF2 | TSF3 |
---|---|---|---|
D90 (μm) | 306.24 | 213.57 | 59.49 |
D60 (μm) | 56.15 | 49.22 | 27.31 |
D50 (μm) | 36.91 | 35.31 | 17.59 |
D30 (μm) | 12.54 | 12.52 | 8.08 |
D10 (μm) | 2.46 | 2.45 | 1.92 |
Coefficient of uniformity | 22.79 | 20.02 | 14.19 |
Coefficient of curvature | 1.24 | 1.29 | 1.14 |
Passing 80 μm (%) | 66.76 | 73.49 | 100 |
Sand sized > 63 μm | 37.71 | 32.24 | 5.72 |
Silt sized 2–63 μm | 54.82 | 59.92 | 85.05 |
Clay sized < 2 μm | 7.47 | 7.47 | 9.23 |
Specific surface area (m2/g) | 3 | 3 | 3 |
Liquid limit wL (%) | 20.10 | 18.09 | 20.59 |
Plastic limit wP (%) | 14.99 | 12.76 | 13.51 |
Plasticity index PI (%) | 5.11 | 5.33 | 7.08 |
Content (%) | Mine Tailings | Salt Precipitates | ||||
---|---|---|---|---|---|---|
TSF1 | TSF2 | TSF3 | TSF2S | TSF23 | UCC | |
CaO | 1.22 | 1.84 | 2.2 | 2.99 | 1.9 | |
MgO | 12.57 | 12.78 | 13.55 | 15.45 | 18.55 | |
SiO2 | 8.86 | 11.66 | 15.58 | 17.1 | 9.37 | |
Fe2O3 | 52.36 | 48.4 | 39.57 | 25.62 | 27.5 | |
Al2O3 | 0.41 | 2.37 | 4.57 | 4.99 | 1.99 | |
Na2O | 0.11 | 0.32 | 0.69 | 1.69 | 1.13 | |
K2O | 0.06 | 0.13 | 0.24 | 0.67 | 0.27 | |
MnO | 1.11 | 1.22 | 1 | 0.51 | 0.69 | |
TiO2 | 0.05 | 0.07 | 0.1 | 0.17 | 0.05 | |
P2O5 | 0.1 | 0.15 | 0.12 | <0.005 | <0.005 | |
LOI | 23.15 | 21.05 | 22.38 | 30.78 | 38.53 | |
Total | 100 | 99.99 | 100 | 99.97 | 99.98 | |
S | 1.01 | 1 | 0.42 | NA | NA | |
Elements (mg.kg−1) | ||||||
Au | 1.02 | 0.41 | 0.28 | NA | NA | |
As | 1407 | 1577 | 1210 | 2114 | 2453 | 1.5 |
Cu | 2600 | 1400 | 900 | 896 | 700 | 25 |
Th | 410 | 724 | 570 | 407 | 328 | 10.7 |
V | 400 | 647 | 561 | 695 | 216 | 60 |
Ni | 380 | 493 | 459 | 267 | 577 | 20 |
Co | 270 | 270 | 240 | 400 | 450 | 10 |
Se | 123 | 148 | 141 | 131 | 98 | 0.05 |
Zn | 140 | 124 | 103 | 73 | 72 | 71 |
Pb | 100 | 86 | 72 | 47 | 41 | 20 |
Sb | 35 | 35 | 29 | 17 | 16 | 0.2 |
Cd | 18 | 14 | 16 | 9 | 12 | 0.1 |
Zr | 10 | 9 | 15 | 16 | 13 | 190 |
Sr | 25 | 34 | 62 | 88 | 86 | 350 |
Ba | 200 | 190 | 170 | NA | NA | 550 |
Cr | 30 | 10 | <5 | <5 | <5 | 35 |
Li | <5 | 2 | 3 | 3 | 3 | 20 |
Mo | <5 | <5 | 25 | <5 | 2 | 1.5 |
B | <5 | <5 | <5 | <5 | <5 | 15 |
Be | <5 | <5 | <5 | <5 | <5 | 3 |
Composition (%) | TSF1 | TSF2 | TSF3 |
---|---|---|---|
Fe | 36.62 | 33.85 | 27.68 |
FeO | 47.11 | 43.55 | 35.61 |
Fe2O3 | 52.36 | 48.4 | 39.57 |
Fe3O4 | 25.6 | 20.36 | 3.97 |
Carbonates | 5 | 6 | 8 |
Active limestone | 2 | 2 | 3 |
Mine Tailings | Contact Time Liquid/Solid 24 h | Contact Time Liquid/Solid 48 h | ||||
---|---|---|---|---|---|---|
pH | Conductivity (mS/cm) | NaOH (mL) | pH | Conductivity (mS/cm) | NaOH (mL) | |
TSF1 | 3.46 | 68.9 | 5.601 | 5.12 | 58.7 | 0.613 |
TSF2 | 3.48 | 67.7 | 5.566 | 5.32 | 54.4 | 0.530 |
TSF3 | 3.94 | 57.3 | 5.101 | 5.64 | 37.4 | 0.242 |
Contact Time Liquid/Solid 24 h | Contact Time Liquid/Solid 48 h | |||||
---|---|---|---|---|---|---|
TSF1 | TSF2 | TSF3 | TSF1 | TSF2 | TSF3 | |
S (%) | 1.01 | 1 | 0.42 | 1.01 | 1 | 0.42 |
Paste pH | 7.77 | 7.92 | 8.25 | |||
NP (Kg CaCO3/t) | 48.49 | 48.58 | 49.75 | 60.96 | 61.175 | 61.89 |
AP (Kg CaCO3/t) | 31.56 | 31.25 | 13.12 | 31.56 | 31.25 | 13.12 |
NNP (Kg CaCO3/t) | 16.93 | 17.33 | 36.63 | 29.4 | 29.93 | 48.77 |
NP/AP | 1.53 | 1.55 | 3.79 | 1.93 | 1.96 | 4.72 |
Environmental classification of mine drainage | Uncertain | Uncertain | Non-acid generator | Uncertain | Uncertain | Non-acid generator |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ba, N.B.; Souissi, R.; Manai, F.; Taviche, I.K.; Bejaoui, B.; Bagga, M.A.; Souissi, F. Mineralurgical and Environmental Characterization of the Mine Tailings of the IOCG Mine of Guelb Moghrein, Akjoujt, Mauritania. Appl. Sci. 2024, 14, 1591. https://doi.org/10.3390/app14041591
Ba NB, Souissi R, Manai F, Taviche IK, Bejaoui B, Bagga MA, Souissi F. Mineralurgical and Environmental Characterization of the Mine Tailings of the IOCG Mine of Guelb Moghrein, Akjoujt, Mauritania. Applied Sciences. 2024; 14(4):1591. https://doi.org/10.3390/app14041591
Chicago/Turabian StyleBa, NDiarel Baidy, Radhia Souissi, Faouzi Manai, Imad Khalil Taviche, Bochra Bejaoui, Mohamed Abdallahi Bagga, and Fouad Souissi. 2024. "Mineralurgical and Environmental Characterization of the Mine Tailings of the IOCG Mine of Guelb Moghrein, Akjoujt, Mauritania" Applied Sciences 14, no. 4: 1591. https://doi.org/10.3390/app14041591
APA StyleBa, N. B., Souissi, R., Manai, F., Taviche, I. K., Bejaoui, B., Bagga, M. A., & Souissi, F. (2024). Mineralurgical and Environmental Characterization of the Mine Tailings of the IOCG Mine of Guelb Moghrein, Akjoujt, Mauritania. Applied Sciences, 14(4), 1591. https://doi.org/10.3390/app14041591