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Abstract: Reconfigurable Intelligent Surface (RIS) technology relies on its reconfigurable electromag-
netic properties and offers an efficient solution for enhancing signal quality in coal mine communica-
tions. RIS technology significantly enhances signal coverage and transmission quality in complex,
confined environments. This paper proposes a channel propagation optimization scheme for coal
mine RIS communication systems, using the Deep Deterministic Policy Gradient (DDPG) algorithm.
By jointly optimizing base station power allocation and RIS phase shift, this paper comparatively
analyzes RIS reflection performance under ideal and non-ideal conditions, focusing on its impact on
system propagation rates. A comparison of system stability and convergence rates among the DDPG,
A3C, and DQN algorithms reveals that, under the DDPG optimization scheme, the average link rate
reaches 6.6 bps/Hz with ideal RIS reflection and 4.6 bps/Hz with non-ideal conditions when the base
station transmit power is defined as 38 dBm. Furthermore, increasing the number of RIS units from 8
to 32 results in a system link rate improvement from 5 bps/Hz to 6.8 bps/Hz. The research results
provide new design ideas for optimizing coal mine RIS communication systems and open up new
solutions for the use of artificial intelligence in complex coal mine tunnel environments.

Keywords: reconfigurable intelligent surface; coal mine tunnel; deep deterministic policy gradient;
link rate

1. Introduction

Reconfigurable Intelligent Surfaces (RISs) is a cutting-edge technology in 6G com-
munication systems [1,2]. It can optimize the wireless signal transmission path through
a large number of adjustable metamaterial reflective elements, enhance signal strength
and coverage, and is becoming a powerful means to solve coal mine communication
problems [3–5].

In recent years, research on RIS has mainly focused on the ground RIS structure design
and signal processing techniques [6–8], while research on RIS in coal mine environments is
relatively limited. A prototype of RIS was proposed and developed, which investigated RIS
channel models and conducted practical indoor signal coverage experiments [9]. Another
research utilized Ray-tracing simulation tools to obtain channel data in offices, conference
rooms, and laboratory scenarios, analyzing channel characteristics and performing channel
modeling [10]. Research has also explored guided frequency power allocation in channel
estimation for RIS-assisted communication systems and proposed corresponding channel
estimation and passive beamforming design schemes [11]. Furthermore, the RIS-assisted
system design method was introduced to optimize RIS reflection coefficients, maximizing
the weighted sum rate of the ground multi-user systems [12].

With the rapid development of coal mine intelligence, by combining deep learning
and Deep Reinforcement Learning (DRL) algorithms with the coal mine environment,
various communication problems can be more accurately identified and solved [13–17].
Traditional Q-value-based DRL algorithms, such as the Deep Q-Network (DQN), face
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significant challenges when dealing with continuous action spaces. These algorithms are
mainly designed for discrete action spaces and perform poorly when optimizing contin-
uous variables such as RIS phase offset and base station power control. In dynamic and
complex environments such as coal mine tunnels, they may encounter problems such as
slow convergence, poor stability, and poor system performance [18,19]. To address these
challenges, this paper proposes the use of the Deep Deterministic Policy Gradient (DDPG)
algorithm. DDPG is particularly suitable for processing continuous action spaces and can
effectively optimize the performance of RIS-assisted communication systems, especially
in dynamic and non-stationary coal mine tunnel environments [20–22]. One research
group applied the DDPG-based deep reinforcement learning algorithm to jointly optimize
downlink beamforming and RIS configurations in MU-MISO systems, achieving improved
system performance under perfect Channel State Information (CSI) conditions [23,24].
Another work further investigated system performance under hardware impairments and
imperfect CSI conditions [24]. An innovative joint beamforming strategy was proposed
based on the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm in deep
reinforcement learning, minimizing the total transmit power of the base station through
fine-tuning [25]. Additionally, the phase correlation amplitude was introduced, enabling
beamforming optimization under this practical phase model [26]. Research that is based on
the DDPG algorithm examined the performance of RIS-assisted communication under a
Rayleigh fading model for direct channels and a Rician fading model for cascaded chan-
nels [27]. Other research proposed a beamforming algorithm based on CSI to optimize the
RIS reflection coefficients using DRL techniques to maximize transmission efficiency [28].
Furthermore, a DDPG-based framework was designed for RIS-assisted non-orthogonal
multiple access (NOMA) downlink, establishing a long-term stochastic optimization prob-
lem involving phase-shift optimization to maximize the total rate of mobile users in the
NOMA downlink [29].

At present, there are still some deficiencies in the research of RIS technology in the field
of coal mine communication. Existing research mainly focuses on performance analysis
under ideal reflection conditions, usually assuming that RIS hardware can achieve precise
phase control while ignoring the phase error problem caused by hardware accuracy limita-
tions, which may have a significant impact on system performance in practical applications.

In view of these deficiencies, this paper uses the DDPG algorithm to conduct an
in-depth study on the performance of RIS-assisted coal mine tunnel signal transmission.
The DRL algorithm is applied to the coal mine RIS communication system for optimization
design, and the DDPG algorithm is used to jointly optimize the base station beamforming
matrix and the RIS phase shift matrix to maximize the system link rate. This article
also compares the performance of DDPG with other DRL algorithms. Under the same
conditions, the DDPG algorithm is superior to A3C and DQN in terms of convergence
speed and stability. In addition, the article explores the impact of the system link rate under
the two modes of RIS, ideal reflection and non-ideal reflection, as well as the impact of
neural network parameter settings on algorithm performance.

2. System Model
2.1. Coal Mine Channel Modeling and Reflection Characterization Analysis

Compared with the indoor space on the ground, the wireless channel in the mine
exhibits unique propagation characteristics due to its narrow and closed structure and
significant multipath effect. In this closed environment, signals undergo multiple reflections
and attenuations between tunnel walls, making the propagation path more complex and
uncertain. To thoroughly analyze these characteristics and optimize signal coverage and
communication quality, this paper selects a rectangular tunnel with a simple structure and
good geometric characteristics as the research model to facilitate the accurate construction
of a channel propagation model. In this model, a Cartesian coordinate system is established
at the center of the rectangular tunnel section, assuming that the tunnel width is 2a and
the height is 2b. The relative permittivity of the side walls, top, and bottom is εr. As
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shown in Figure 1, Figure 1a shows the structure of the rectangular straight tunnel model
assisted by the coal mine RIS. Figure 1b shows the system model under the corresponding
two-dimensional perspective. In addition, it is also worth noting that this paper only
investigates the Non-Line of Sight (NLoS) propagation system characteristics and does not
consider the effect of Line of Sight (LoS) on the system due to the complex long-distance
propagation in the confined space.

The model consists of a Base Station (BS) with M antennas, a RIS with N intelligent
reflection units, and K single-antenna users (User Equipment, UE). The RIS is deployed
on tunnel walls or the surface of large equipment and devices within the environment.
By dynamically adjusting the phase shift and amplitude of the RIS reflective element, the
propagation direction of the reflected signal can be precisely controlled, thereby construct-
ing an alternative reflection path to bypass obstacles in the tunnel. This enables RIS to
effectively redirect signals to users that are originally in an NLoS state, overcoming the
limitations of direct signal transmission. It is assumed that the BS-RIS and RIS-UE channels
are frequency-flat fading, and all the wireless channels remain unchanged in each transmis-
sion block. Hnm ∈ CN×M represents the channel from the BS to the RIS and Hru ∈ CN×K

represents the channel from the RIS to the user.
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Figure 1. (a) RIS-assisted coal mine communication system; (b) RIS-assisted coal mine communica-

tion system from a two-dimensional perspective. 
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Figure 1. (a) RIS-assisted coal mine communication system; (b) RIS-assisted coal mine communication
system from a two-dimensional perspective.

The cascaded channel of the system (BS-RIS-UE) can be expressed as follows [30]:

H = HH
nmΦHnu (1)

Φ = diag(ϕ1, ϕ2, · · · , ϕN)

=


β(θ1)ejθ1 0 · · · 0

0 β(θ2)ejθ2 · · · 0
...

...
...

0 0 · · · β(θN)ejθN


N×N

(2)

where ϕn = β(θn)ejθn ,θn ∈ [0, 2π) is the phase shift change caused by the nth reflection
element of the RIS, and β(θn) is an amplitude function based on the phase shift θn, which
reflects the amplitude change of the signal reflected from the RIS. β(θn) and θn satisfy the
following relationship:

β(θn) = (1− βmin) f (θn) + βmin (3)
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where βmin ∈ [0, 1] represents the minimum amplitude of the reflection coefficient. f (θn)

defined as fsin(θn) =
(

sin(θn−µ)+1
2

)α
; therefore,

β(θn) = (1− βmin)

(
sin(θn − µ) + 1

2

)α

+ βmin (4)

where µ represents the horizontal offset of the phase change, which determines the phase
difference between the function and the angle θn, and α controls the steepness of the
function curve; the larger α is, the steeper the curve is near µ, and vice versa, the flatter
it is. βmin, µ ≥ 0, α ≥ 0 depends on the hardware implementation constants of the RIS.
However, in actual situations, due to hardware limitations, the horizontal offset µ of the
phase change will produce errors, resulting in phase errors in the reflected signal, and
perfect phase control cannot be achieved. In addition, the limited number of RIS reflective
elements limits the accuracy of phase adjustment, making it impossible to achieve optimal
beamforming, ultimately reducing system gain. If the signal is ideally reflected on the RIS,
then |ϕn|2 = 1, i.e., βmin = 1 or α = 0.

Assuming the transmitted signal is S(t), with zero mean and unit variance, S =

[s1, s2, · · · , sK]
T ∈ CK×1, then the received signal after RIS is expressed as follows [5]:

y =
√

PHGS + W =
√

PHH
nmΦHnuGS + W (5)

where P is the transmit power, P = diag[p1, p2, · · · , pK] ∈ RK×K, and G is the beamforming
matrix applied at BS, G ∈ CM×K. W represents the total noise in the coal mine tunnel,
which includes the background noise wbg, i.e., continuous noise generated by mechani-
cal operation and the impulse interference noise wimp, i.e., some sudden noise (such as
equipment failure). The total noise can be expressed as follows:

W = wbg + wimp (6)

where the background noise is additive Gaussian white noise, expressed as wbg ∼ N
(
0, σ2).

The impulse interference noise is wimp = B · Ga, where B is a Bernoulli random process
with mean 0 and variance 1, taking the value of 0 or 1, indicating whether there is impulse
noise generated at a certain moment; Ga is a Gaussian random process related to B, which
represents the amplitude of the impulse and obeys N

(
0, σ2

imp

)
. Therefore, the coal mine

noise can be represented by an independent and identically distributed Bernoulli–Gaussian
process [5], that is:

W = wbg + B · Ga (7)

The received signal of the kth user can be expressed as follows:

yk =
√

PhH
nm,kΦHnuGS + Wk (8)

Further, it can be written as follows:

yk =
√

PkhH
nm,kΦHnugksk +

√
Pn

K

∑
n,n ̸=k

hH
nm,kΦHnugnsn+Wk (9)

where the first term is the expected signal of the kth user, the second term is the interference
caused by the signals of all other users (n ̸= k) to the kth user, i.e., Co-Channel Interference
(CCI), and gk is the kth column vector of the matrix G.
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The SINR of the kth user is represented as follows:

βk =

√
Pk

∣∣∣hH
nm,kΦHnugk

∣∣∣2
√

Pn
K
∑

n.n ̸=k

∣∣∣hH
nm,kΦHnugn

∣∣∣2 + σ2 + p · σ2
imp

(10)

where p is the probability that B equals to 1, assuming that each signal has the same
transmission power, i.e., Pt.

Therefore, the total link rate (in units of bps/Hz) in the system can be expressed
as follows:

C =
K

∑
k=1

log2(1 + βk) (11)

To more accurately describe the characteristics of the coal mine RIS channel, this
paper analyzes, in detail, the relationship between the number of reflections of the signal
between the tunnel walls and the path length based on the “second law of tent” in geometric
optics. As shown in Figure 2, by dividing the propagation path into horizontal and vertical
mapping planes, the propagation law of the signal under multiple reflections is clarified. In
the figure, the blue dotted line represents the horizontal mapping plane, the green dotted
line represents the vertical mapping plane, and the yellow curve represents the propagation
path of the signal from the base station to the user after being reflected by the RIS.
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Assuming that the number of reflections of the signal in the coal mine tunnel is L,
the total number of effective paths to the RIS formed by multiple reflections of the signal
through the coal mine tunnel walls is as follows:

R = 2L2 + 2L + 1 (12)

According to Fresnel’s law, the reflection coefficients of vertically polarized waves and
horizontally polarized waves can be expressed as follows:

R⊥ =
cos θi −

√
εr − sin2 θi

cos θi +
√

εr − sin2 θi

(13)
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R∥ =
εr cos θi −

√
εr − sin2 θi

εr cos θi +
√

εr − sin2 θi

(14)

where εr is the relative dielectric constant of the coal mine tunnel wall. Assuming that the
roughness distribution of the coal mine tunnel wall follows the Gaussian distribution with
a mean of 0 and a variance of h, then ρr represents the roughness loss factor. The roughness
loss coefficient caused by the rough surface of the coal mine wall is as follows:

ρ⊥ = ρrR⊥, ρ ∥= ρrR∥ (15)

where ρr = exp[−8(πh cos θi
λ )

2
]. Multiple reflections of the signal on the two side walls

and the top and bottom plates of the tunnel will cumulatively affect the total reflection
coefficient. Assuming that the ray is reflected m times at the two side walls and n times at
the top and bottom plates, the reflection coefficient at this point can be expressed as follows:

ωp = Rm
⊥Rn
∥ρ

m+n
r (16)

It can be expressed uniformly:

wp =
m+n

∏
k=1

Rkρk
r (17)

where Rk denotes the polarized reflection coefficient corresponding to each reflection.

2.2. Systematic Performance Optimization Problem

The power of the transmitted signal of a multi-antenna BS is constrained by the
maximum transmit power:

E
{

Tr(GGH)
}
≤ Pmax (18)

where Pmax is the maximum value of the transmitted power at the BS, E represents the
statistical expectation value, and Tr(·) represents the trace of the matrix.

To maximize the total system link rate by optimizing G and Φ, the corresponding
optimization problem is defined as follows:

max
G,Φ

K
∑

k=1
log2(1 + βk)

s.t. Tr(GGH) ≤ Pmax

|ϕn|2 = 1
0 ≤ θn < 2π, n = {1, 2, . . . , N}

(19)

The optimization problem in Equation (19) is non-convex due to the non-convexity of
the objective function and the complexity of the constraints. If the traditional method is
used to solve this problem, a large number of iterative calculations are required, resulting
in high computational complexity. Therefore, this paper adopts a DRL-based solution to
solve the optimization problem in Equation (19) to obtain a feasible G and Φ.
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3. Deep Reinforcement Learning Based Optimization
3.1. Overview of the DDPG Algorithm

To cope with the limitations of traditional reinforcement learning methods in con-
tinuous action spaces, the DDPG algorithm combines the expressive capabilities of deep
learning with the optimization strategies of policy gradient methods, achieving policy
optimization through the actor–critic structure. The framework of the DDPG algorithm is
shown in Figure 3. The actor and critic training networks are used to learn to select and
evaluate actions, respectively. The actor target network provides stable target strategies for
the actor training network, while the critic target network provides stable Q-value for the
critic training network and is updated synchronously regularly.
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The action value function Qπ evaluates the expected cumulative reward obtained by
taking action at in state st. The Bellman expectation equation for the Q-value under policy
π is expressed as follows:

Qπ(st, at) = E[Rt+1 + γ ·∑a′ π
(
a′|st+1

)
Qπ

(
st+1, a′

)
|St = st, At = at ] (20)

where Rt+1 is the reward obtained after taking action at in the state st, st+1 is the next state,
a′ is the possible action to be taken in the next action, and π(a′|st+1 ) is the probability of
the policy to take the action a′ in the next state.

The optimal policy is determined by maximizing the Q-value:

π∗ = argmax
π

Qπ(st, at) (21)

To directly evaluate the current state and action without considering the influence
of policy π, the optimal action value function Q∗(st, at) is introduced. For the optimal
Q-value function, the Bellman optimality equation is expressed as follows:

Q∗(st, at) = E[Rt+1 + γ ·maxa′Q
∗(st+1, a′

)
|St = st, At = at

]
(22)

The Q∗(st, at) function is updated as follows:

Q∗(st, at)← (1− α)Q∗(st, at) + α ·
(

Rt+1 + γ ·maxa′Q
(
st+1, a′

))
(23)

where α is the learning rate of the Q∗(st, at) function update.

3.2. Neural Network Structure and Training

The structure of the critic network and action network includes an input layer, two
hidden layers, a batch normalization layer (Batch Normalization, BN), and an output
layer. All layers of deep neural networks use the tanh activation function, and all network
optimizers use Adam. The learning rate of Adam will be adaptively adjusted according to
the gradient changes of each parameter, i.e., β

(t+1)
a = λaβ

(t)
a and β

(t+1)
c = λcβ

(t)
c , where λa

and λc are the decay rate of the critic network and action network, respectively.
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The parameters of the critic training network can be updated according to gradient descent:

wc = wc − βc · ∇wc l(wc) (24)

yt = Rt+1 + γ ·maxa′q
(
st+1, a′; wt

)
(25)

l(wc) =
1

W

W

∑
k=1

[yt − q(st, at; wc)]
2 (26)

where W is a mini-batch of size sampled from the experience replay buffer, yt is the Q-value
generated by the transfer tuple (st, at, Rt+1, st+1), βc is the learning rate of the critic training
network update, and ∇wc l(wc) represents the gradient of the loss function with respect
to wc.

The actor training network parameters are updated using the following equation:

wa = wa − βa · ∇aq(st, at; wc)∇aπ(st; wa) (27)

where βa is the learning of the actor training network update, at = π(st, wa).
To maintain the stability of learning, “soft update” is used to smoothly update the

parameters of the target network:

wa′ ← τwa + (1− τ)wa′ , 0 < τ ≪ 1
wc′ ← τwc + (1− τ)wc′ , 0 < τ ≪ 1

(28)

where τ represents the learning rate of the target network.

3.3. DDPG Algorithm Elements and Processes

To enhance the stability of training, DDPG incorporates an experience replay mecha-
nism. The experience replay buffer stores samples generated from interactions between
the agent and the environment, improving training efficiency by reducing data correlation
through random sampling. Each experience usually includes the current state, the action
taken, the reward received, the next state, and a termination flag indicating whether the
interaction has ended. The specific definitions of state st, action at, and reward rt are
as follows:

(1) State st: Represents the environment, comprising the transmit power Pt at time t, the
channel matrix Hnm from the BS to the RIS, and the signal matrix Hru from the RIS to
the user; the size of the state space is as follows:

Ni = 2K + 2K2 + 2MK + 2N + 2MN + 2NK (29)

(2) Action at: Comprises the beamforming matrix G and phase shift matrix Φ at time t.
The size of the action space is as follows:

No = 2MK + 2N (30)

(3) Reward rt: The reward at the time t corresponds to the value of the objective function
defined in Equation (19).

rt = log2(1 + βk) (31)

The flow of the DDPG algorithm proposed in this paper is as follows:
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Algorithm 1 DDPG Algorithm

Initialization: transmit beam forming matrix G, phase shift matrix Φ, experience replay
buffer E, parameters of critic training network wc, parameters of actor training network
wa, parameters of the target network wc′ , wa′

Inputs: channel matrix from BS to RIS Hnm, channel matrix from RIS to user Hnu
Outputs: Q-value function, optimal action a = {G, Φ}

1: Get the initial state s0 from the environment;
2: Calculate the action at at each moment in turn, at = π(st, wa);
3: Based on the action at, interact with the environment to get the next state st+1 and

instant reward Rt+1;
4: Store the transfer tuple (st, at, Rt+1, st+1) in the experience replay buffer E;
5: Randomly draw a mini-batch of size W from the experience replay buffer E;
6: Calculate the target Q-value according to Equation (25);
7: Update the parameters wc and wa of the critic and actor networks according to

Equations (24) and (27) and the target network parameters w c ′, w a ′ according to
Equation (28);

8: Update the state to the next state st = st+1.

4. Results and Discussions

The performance of the RIS-assisted coal mine communication system based on the
DDPG algorithm was evaluated, and it was divided into two scenarios: ideal reflection
and non-ideal reflection of RIS. In both scenarios, system performance was influenced by
factors such as the learning rate lr, fading rate dr, base station power, and the number of
RIS units. The key simulation parameters are shown in Table 1.

Table 1. Simulation parameters.

Parameter Value

Height of the tunnel 2b 6 m
Width of the tunnel 2a 5 m

Buffer size for experience replay E 106

The number of experiences in the mini-batch W 16
The number of episodes 5 · 103

The number of steps in each episode 2 · 104

Discounted rate for future reward γ 0.999
Learning rate of action/critic networks βa/βc 10–3

Targeted action/critic network learning rate λa/λc 10–3

Action/critic of network decaying rate τ 10–6

In the simulation, the randomly generated channel matrices Hnm and Hnu obey
Rayleigh distribution, with the total effective number of scattering paths being R = 128.
The gain of the receiving and transmitting antennas was 5dBm, the roughness variance of
the coal mine tunnel wall was h = 0.01, and the relative permittivity was εr = 5. In this
paper, we used the average reward as a measure of the performance of the system, which
was defined as follows:

Ravg =
∑T

t=1 reward(t)
t

, t = 1, 2, . . . , T (32)

4.1. Performance Comparison of Different DRL Algorithms

This paper selects three typical DRL algorithms—DDPG, DQN, and A3 C—to explore
their effects on link rate optimization in RIS-assisted coal mine tunnel communication
systems. The simulation conditions are defined as Pt = 38dBm, M = K = 8, N = 16, and
RIS ideal reflection.
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Figure 4 shows that the link rate optimization performance of the three algorithms
is DDPG > A3C > DQN. Specifically, DDPG achieves the highest average link rate (about
6.5 bps/Hz) with superior convergence speed and stability, followed by A3C with a link
rate of about 5.5 bps/Hz and DQN with the worst performance with a link rate of about
3.4 bps/Hz. The DDPG algorithm is superior to DQN and A3C, mainly because its “actor–
critic” structure is suitable for continuous action space and can more accurately optimize
the phase and gain of the RIS reflection unit, thereby increasing the link rate. At the same
time, DDPG introduces the target network and experience replay mechanism to enhance
the stability of convergence, making communication quality improvement even more
significant in complex coal mine environments.
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4.2. Effect of Neural Network Parameters on Average Reward
4.2.1. Effect of Learning Rate on Average Reward

The effect of different learning rates on the average reward as a function of the number
of steps is shown in Figure 5. When lr is 0.01, the average reward Ravg is 2 bps/Hz. For
lower values (e.g., 0.0001 and 0.00001), the final reward value is 3 bps/Hz, and when lr is
0.001, Ravg reaches 6.6 bps/Hz. It helps the model to achieve the best average reward.
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4.2.2. Effect of Decaying Rate on Average Reward

The effect of different decaying rates on the average reward as the number of steps
changes is shown in Figure 6. As can be seen from the figure, with the accumulation
of training steps, Ravg shows an upward trend at all decay rates. Specifically, when
dr = 0.000001, the performance is the best in the entire training process, with the most
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significant upward trend in Ravg, and finally reaches 6.6 bps/Hz. Then, when dr is 0.001 and
0.00001, the reward level is slightly lower than dr = 0.000001, which is about 5.7 bps/Hz.
Therefore, choosing an appropriate decay rate is crucial to improving the average reward
of the model.
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4.3. Effect of Base Station Transmit Power on Average Reward
4.3.1. Comparative Analysis of Average Reward at Different Power

The effect of different base station transmit powers on the average reward as the
number of steps changes is shown in Figure 7. The simulation conditions are set to
M = N = K = 8. The average reward under different powers is shown in Table 2. As the
transmission power increases from 36 dBm to 38 dBm, the link rate of the communication
system is improved regardless of ideal or non-ideal conditions. This shows that increasing
the transmit power can significantly enhance the communication capability of the system.
Under the ideal reflection condition with 38 dBm power, the rate increases from 2 bps/Hz
to 6.7 bps/Hz with an increase of 4.7 bps/Hz, while under the non-ideal condition, the rate
increases from 2 bps/Hz to 4.7 bps/Hz with an increase of only 2.7 bps/Hz. In short, RIS
technology can significantly improve the performance of communication systems under
appropriate transmit power, especially under ideal reflection conditions.
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Table 2. Average reward changes at different powers.

State Power
(dBm)

Initial Reward
(bps/Hz)

Final Reward
(bps/Hz)

Difference in
Value (bps/Hz)

RIS Ideal
Reflection

36 2 5 3
37 2 5.8 3.8
38 2 6.7 4.7

RIS Non-Ideal
Reflection

36 2 3.9 1.9
37 2 4.6 2.6
38 2 4.7 2.7

4.3.2. Comparative Analysis of Instant and Average Rewards

The effect of reward changes with the number of steps under different transmit
powers is shown in Figure 8. In terms of instant reward, when the power is 36 dBm,
Ravg is 8.2 bps/Hz, while when the power is 38 dBm, Ravg reaches 10.4 bps/Hz and its
fluctuation is also larger, indicating that the system’s reward varies more drastically at
higher power. The average reward curve is smoother. At a transmit power of 36 dBm, Ravg
reaches 5 bps/Hz, and at 38 dBm, Ravg increases to 6.5 bps/Hz, indicating that increasing
the transmission power helps to improve the system performance.
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4.4. Effect of the Number of RIS Units on Average Rewards

The effect of different numbers of RIS units on the average reward as the number of step
changes is shown in Figure 9. The simulation conditions are set to pt = 38dBm, µ = π, α = 1
with a non-ideal reflection of βmin = 0.5.
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The average rewards under different numbers of RIS units are shown in Table 3. Under
ideal and non-ideal reflection conditions, the average rate of the system increases with
the increase in the number of RIS units. When the number of RIS units is 32, the link
rate is significantly increased under ideal conditions, exhibiting a maximum increase
of 4.9 bps/Hz; under non-ideal conditions, the link rate increased from 2 bps/Hz to
5.8 bps/Hz. In addition, the performance gap between ideal and non-ideal conditions
increases with the number of RIS units. For example, the rate difference is 0.3 bps/Hz at
8 RIS units, and the difference widens to 1 bps/Hz at 32 RIS units, which is due to the
decrease in signal reflection efficiency under non-ideal conditions.

Table 3. Average reward changes under different numbers of RIS units.

State Number of RIS
units N

Initial Reward
(bps/Hz)

Final Reward
(bps/Hz)

Difference in
Value (bps/Hz)

RIS Ideal
Reflection

8 2 5 3
16 1.5 6.2 4.7
32 1.9 6.8 4.9

RIS Non-Ideal
Reflection

8 2 4.7 2.7
16 1.7 5.5 3.8
32 1.9 5.8 3.9

Increasing the number of RIS units can significantly increase the link rate, but the
performance gain gradually decreases. Specifically, under non-ideal reflection conditions,
the link rate increases by about 1.1 bps/Hz when the number of RIS units increases from
8 to 16; it only increases by 0.1 bps/Hz when the number increases from 16 to 32. In
addition, an increase in the number of RIS units will lead to an increase in hardware and
maintenance costs. Hardware costs increase linearly, and increased system complexity will
lead to increased maintenance costs. Therefore, when optimizing the system, performance
gains and costs should be balanced to ensure the best balance between overall performance
and economic benefits.

5. Conclusions

In this paper, the performance optimization of RIS-assisted wireless communication
systems in coal mine tunnels was investigated through simulation and algorithmic analysis.
The conclusions are as follows:

(1) Aiming at the complex environment of limited space in the coal mine tunnel, RIS
technology is introduced into the coal mine wireless communication system, and
combined with the DDPG optimization method, an effective signal enhancement
solution is provided;

(2) By jointly optimizing the base station power and RIS phase shift, the link rate is sig-
nificantly enhanced under both ideal and non-ideal reflection conditions. Simulation
results show that the link rate optimization effect of DDPG is better than that of A3C
and DQN under the same conditions. At a transmit power of 38 dBm, the DDPG
algorithm significantly optimizes the system performance, especially in the ideal
reflection condition; the average link rate of 2 bps/Hz is improved to 6.6 bps/Hz. In
addition, the specific impact of the number of RIS units on the system performance is
explored, and it is found that increasing the number of RIS units can further improve
the system performance;

(3) Future research will further explore the application and optimization of the DDPG
algorithm and other algorithms in more complex coal mine tunnel systems, especially
in coal mine tunnel environments with bends, different frequency bands, and multiple
modulation technologies.
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