Study on the Uncertainty of Input Variables in Seismic Fragility Curves Based on the Number of Ground Motions
Abstract
:1. Introduction
2. Types and Characteristics of Ground Motions
3. Seismic Fragility Theory
4. Analysis of the Relationship Between the Number of Input Ground Motions and Seismic Fragility
4.1. Example Facility: Six-Story Commercial Building
4.2. Example Facility: 13-Story Commercial Building
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- U.S. Geological Survey (USGS). Earthquake Hazards Program. Available online: https://www.usgs.gov/programs/earthquake-hazards (accessed on 20 June 2024).
- Kennedy, R.P.; Ravindra, M.K. Seismic fragilities for nuclear power plant risk studies. Nucl. Eng. Des. 1984, 79, 47–68. [Google Scholar] [CrossRef]
- EPRI. Methodology for Developing Seismic Fragilities; EPRI: Palo Alto, CA, USA, 1994. [Google Scholar]
- Shinozuka, M.; Feng, M.Q.; Lee, J.; Naganuma, T. Statistical analysis of fragility curves. J. Eng. Mech. 2000, 126, 1224–1231. [Google Scholar] [CrossRef]
- Porter, K.; Kennedy, R.; Bachman, R. Creating fragility functions for performance-based earthquake engineering. Earthq. Spectra 2007, 23, 471–489. [Google Scholar] [CrossRef]
- Baker, J.W.; Allin Cornell, C.A. Spectral shape, epsilon and record selection. Earthq. Eng. Struct. Dyn. 2006, 35, 1077–1095. [Google Scholar] [CrossRef]
- Baker, J.W. Efficient analytical fragility function fitting using dynamic structural analysis. Earthq. Spectra 2015, 31, 579–599. [Google Scholar] [CrossRef]
- Park, H.S.; Nguyen, D.-D.; Lee, T.-H. Seismic fragilities of bridges and transmission towers considering recorded ground motions in South Korea. J. Earthq. Eng. Soc. Korea 2016, 20, 435–441. [Google Scholar] [CrossRef]
- Jeon, S.-H.; Shin, D.-H.S.; Park, J.-H. Seismic fragility assessment for Korean high-rise non-seismic RC shear wall apartment buildings. J. Earthq. Eng. Soc. Korea 2020, 24, 293–303. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T. Seismic fragility function for existing low-rise piloti-type buildings reflecting damage from Pohang earthquake. J. Earthq. Eng. Soc. Korea 2021, 25, 251–259. [Google Scholar] [CrossRef]
- Aldea, S.; Bazaez, R.; Astroza, R.; Hernandez, F. Seismic fragility assessment of Chilean skewed highway bridges. Eng. Struct. 2021, 249, 113300. [Google Scholar] [CrossRef]
- Dumova-Jovanoska, E. Fragility curves for reinforced concrete structures in Skopje (Macedonia) region. Soil. Dyn. Earthq. Eng. 2000, 19, 455–466. [Google Scholar] [CrossRef]
- Kappos, A.J.; Panagopoulos, G. Fragility curves for reinforced concrete buildings in Greece. Struct. Infrastruct. Eng. 2010, 6, 39–53. [Google Scholar] [CrossRef]
- Su, L.; Li, X.; Jiang, Y. Comparison of Methodologies for Seismic Fragility Analysis of Unreinforced Masonry Buildings Considering Epistemic Uncertainty. Eng. Struct. 2020, 205, 110059. [Google Scholar] [CrossRef]
- Blasi, G.; Perrone, D.; Aiello, M.A. Fragility curves for reinforced concrete frames with retrofitted masonry infills. J. Build. Eng. 2023, 75, 106951. [Google Scholar] [CrossRef]
- Eads, L.; Miranda, E.; Krawinkler, H. An efficient method for estimating the collapse risk of structures in seismic regions. Earthq. Eng. Struct. Dyn. 2013, 42, 25–41. [Google Scholar] [CrossRef]
- Ruggieri, S.; Porco, F.; Uva, G.; Vamvatsikos, D. Two frugal options to assess class fragility and seismic safety for low-rise reinforced concrete school buildings in Southern Italy. Bull. Earthq. Eng. 2021, 19, 1415–1439. [Google Scholar] [CrossRef]
- Nettis, A.; Raffaele, D.; Uva, G. Seismic risk-informed prioritization of multi-span RC girder bridges considering knowledge-based uncertainty. Bull. Earthq. Eng. 2024, 22, 693–729. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Zhou, G.; Xu, L. Effects of various modeling uncertainty parameters on the seismic response and seismic fragility estimates of the aging highway bridges. Bull. Earthq. Eng. 2020, 18, 6337–6373. [Google Scholar] [CrossRef]
- Bovo, M.; Buratti, N. Evaluation of the variability contribution due to epistemic uncertainty on constitutive models in the definition of fragility curves of RC frames. Eng. Struct. 2019, 188, 700–716. [Google Scholar] [CrossRef]
- Roueche, D.B.; Prevatt, D.O.; Lombardo, F.T. Epistemic uncertainties in fragility functions derived from post-disaster damage assessments. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2018, 4, 04018015. [Google Scholar] [CrossRef]
- Vamvatsikos, D.; Cornell, C.A. Incremental dynamic analysis. Earthq. Eng. Struct. Dyn. 2002, 31, 491–514. [Google Scholar] [CrossRef]
- Vamvatsikos, D.; Cornell, C.A. Applied incremental dynamic analysis. Earthq. Spectra 2004, 20, 523–553. [Google Scholar] [CrossRef]
- Federal Emergency Management Agency (FEMA). Quantification of Building Seismic Performance Factors; Federal Emergency Management Agency: Washington, DC, USA, 2009.
- Nakamura, T.; Naganuma, T.; Shizuma, T.; Shinozuka, M. A study on failure probability of highway bridge by earthquake based on statistical method. In Proceedings of the 10th Japanese Earthquake Engineering Symposium, Tokyo, Japan, 25 November 1998. [Google Scholar]
- Yi, S.; Papaknstantinou, K.G.; Andriotis, C.P.; Song, J. Appraisal and mathematical properties of fragility analysis models. In Proceedings of the 13th International Conference on Structural Safety and Reliability (ICOSSAR 2021), Shanghai, China, 21–25 June 2021. [Google Scholar]
- Jalayer, F.; Cornell, C.A. Alternative non-linear demand estimation methods for probability-based seismic assessments. Earthq. Eng. Struct. Dyn. 2009, 38, 951–972. [Google Scholar] [CrossRef]
- Kunnath, S.K.; Nghiem, Q.; El-Tawil, S. Modeling and response prediction in performance-based seismic evaluation: Case studies of instrumented steel moment-frame buildings. Earthq. Spectra 2004, 20, 883–915. [Google Scholar] [CrossRef]
- Kalkan, E.; Kunnath, S.K. Effects of fling step and forward directivity on seismic response of buildings. Earthq. Spectra 2006, 22, 367–390. [Google Scholar] [CrossRef]
- Kalkan, E.; Chopra, A.K. Practical Guidelines to Select and Scale Earthquake Records for Nonlinear Response History Analysis of Structures; Open-File Report 2010-1068; United States Geological Survey: Asheville, NC, USA, 2010; ISBN 9781495381683.
- Anderson, J.C.; Bertero, V.V. Implications of the Landers and Big Bear Earthquakes on Earthquake Resistant Design of Structures [Report]; Earthquake Engineering Research Center, University of California at Berkeley: Berkeley, CA, USA, 1997. [Google Scholar]
- McKenna, F.T. Object-Oriented Finite Element Programming: Frameworks for Analysis, Algorithms and Parallel Computing. Ph.D. Thesis, University of California Berkeley, Berkeley, CA, USA, 1997. [Google Scholar]
- Rezaei, S.; Akbari Hamed, A.; Basim, M.C. Seismic performance evaluation of steel structures equipped with dissipative columns. J. Build. Eng. 2020, 29, 101227. [Google Scholar] [CrossRef]
- Dimov, I.T. Monte Carlo Methods for Applied Scientists; World Scientific: Singapore, 2007; ISBN 978-981-02-2329-8. [Google Scholar]
- Mckay, M.D.; Beckman, R.J.; Conover, W.J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979, 21, 239–245. [Google Scholar] [CrossRef]
- Helton, J.C.; Davis, F.J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 2003, 81, 23–69. [Google Scholar] [CrossRef]
- Uang, C.-M. Performance of a 13-Story Steel Moment-Resisting Frame Damaged in the 1994 Northridge Earthquake [Report]; Structural Systems Research Project; Structural Systems Research, University of California: San Diego, CA, USA, 1995. [Google Scholar]
Parameter | Min. Value | Max. Value | Avg. Value |
---|---|---|---|
Magnitude, Mw | 6.5 | 7.9 | 7.11 |
Peak Ground Acceleration, PGA (m/s) | 0.01 | 1.49 | 0.25 |
Arias Intensity, IA (m/s) | 0.1 | 26.10 | 2.33 |
Soil preferred shear-velocity, Vs30 (m/s) | 133.11 | 2016.13 | 408.30 |
Joyner-Boore distance to rupture plane, Rjb (km) | 0.07 | 349.57 | 70.13 |
Item | Type | Model | Parameter |
---|---|---|---|
Element | Beam | nonlinearBeamColumn | Node I & J, 4 integer points, Section ID |
Column | nonlinearBeamColumn | Node I & J, 4 integer points, Section ID | |
Section | Fiber Section | fiberSec | 3 patch quadr with no. of fibers and section properties |
Material | uniaxialMaterial | Steel01(Bilinear) | E(20GPa), fy(303MPa), b(0.03) |
Performance Level | Inter-Story Drift Ratio (%) | Value |
---|---|---|
1—Immediate Occupancy (IO) | 0.7 | 0.1760 m (6.93 inches) |
2—Life Safety (LS) | 2.5 | 0.6287 m (24.75 inches) |
3—Collapse Prevention (CP) | 5.0 | 1.2573 m (49.50 inches) |
Performance Level | Median (g) | STD | PGA at 16% Level (g) | PGA at 84% Level (g) |
---|---|---|---|---|
1—IO | 0.3000 | 0.7237 | 0.1461 | 0.6161 |
2—LS | 0.9638 | 0.7430 | 0.4603 | 2.0177 |
3—CP | 1.0148 | 0.7471 | 0.4828 | 2.1334 |
Performance Level | Median (g) | Difference (%) | |||
---|---|---|---|---|---|
Ref | Min | Max | Avg | ||
1—IO | 0.3000 | 0.1442 | 0.7947 | 0.3062 | 2.0638 |
2—LS | 0.9638 | 0.4782 | 2.4424 | 0.9850 | 2.2061 |
3—CP | 1.0148 | 0.4944 | 2.5765 | 1.0371 | 2.1951 |
Level | Log-standard deviation | Difference (%) | |||
Ref | Min | Max | Avg | ||
1—IO | 0.7237 | 0.1542 | 1.3016 | 0.6771 | 6.4377 |
2—LS | 0.7430 | 0.1387 | 1.4723 | 0.7059 | 4.9873 |
3—CP | 0.7471 | 0.1421 | 1.4444 | 0.7107 | 4.8720 |
Performance Level—1 | PGA (g) of Target Probability of Failure | Note | |||
---|---|---|---|---|---|
Median | STD | 16% | 50% | 84% | |
Minimum | Minimum | 0.1237 | 0.1442 | 0.1682 (min) | |
Average | 0.0736 | 0.1442 | 0.2828 | ||
Maximum | 0.0395 (min) | 0.1442 | 0.5263 | ||
Average | Minimum | 0.2626 | 0.3062 | 0.3569 | |
Average | 0.1561 | 0.3062 | 0.6003 | ||
Maximum | 0.0839 | 0.3062 | 1.1171 | ||
Maximum | Minimum | 0.6817 (max) | 0.7947 | 0.9264 | |
Average | 0.4053 | 0.7947 | 1.5582 | ||
Maximum | 0.2178 | 0.7947 | 2.8996 (max) |
Performance Level | Median (g) | Difference (%) | |||
---|---|---|---|---|---|
Ref | Min | Max | Avg | ||
1—IO | 0.3000 | 0.1745 | 0.5159 | 0.3027 | 0.9235 |
2—LS | 0.9638 | 0.5136 | 1.7285 | 0.9730 | 0.9577 |
3—CP | 1.0148 | 0.5544 | 1.7872 | 1.0245 | 0.9507 |
Performance Level | Log-standard deviation | Difference (%) | |||
Ref | Min | Max | Avg | ||
1—IO | 0.7237 | 0.2925 | 1.1117 | 0.7038 | 2.7410 |
2—LS | 0.7430 | 0.3365 | 1.2521 | 0.7282 | 1.9919 |
3—CP | 0.7471 | 0.3586 | 1.2527 | 0.7326 | 1.9378 |
Performance Level | Median (g) | Difference (%) | |||
---|---|---|---|---|---|
Ref | Min | Max | Avg | ||
1—IO | 0.3000 | 0.1946 | 0.4747 | 0.3015 | 0.4959 |
2—LS | 0.9638 | 0.6463 | 1.5458 | 0.9689 | 0.5290 |
3—CP | 1.0148 | 0.6802 | 1.5781 | 1.0201 | 0.5158 |
Performance Level | Log-standard deviation | Difference (%) | |||
Ref | Min | Max | Avg | ||
1—IO | 0.7237 | 0.3770 | 1.0909 | 0.7112 | 1.7229 |
2—LS | 0.7430 | 0.3989 | 1.1347 | 0.7338 | 1.2345 |
3—CP | 0.7471 | 0.4493 | 1.1461 | 0.7381 | 1.2081 |
Performance Level | Median (g) | Difference (%) | |||
---|---|---|---|---|---|
Ref | Min | Max | Avg | ||
1—IO | 0.3000 | 0.2265 | 0.4294 | 0.3007 | 0.2449 |
2—LS | 0.9638 | 0.7248 | 1.3300 | 0.9663 | 0.2605 |
3—CP | 1.0148 | 0.7718 | 1.3920 | 1.0175 | 0.2599 |
Performance Level | Log-standard deviation | Difference (%) | |||
Ref | Min | Max | Avg | ||
1—IO | 0.7237 | 0.4670 | 0.9978 | 0.7169 | 0.9379 |
2—LS | 0.7430 | 0.4886 | 1.0060 | 0.7383 | 0.6331 |
3—CP | 0.7471 | 0.4903 | 1.0074 | 0.7425 | 0.6123 |
Performance Level | Median (g) | STD | PGA at 16% Level (g) | PGA at 84% Level (g) |
---|---|---|---|---|
1—IO | 0.4137 | 0.9013 | 0.1688 | 1.0139 |
2—LS | 1.1322 | 0.8779 | 0.4729 | 2.7105 |
3—CP | 1.2440 | 0.8568 | 0.5306 | 2.9165 |
Performance Level | Median (g) | Difference (%) | |||
---|---|---|---|---|---|
Ref | Min | Max | Avg | ||
1—IO | 0.4137 | 0.1748 | 1.1572 | 0.4261 | 2.9804 |
2—LS | 1.1322 | 0.4623 | 3.2078 | 1.1667 | 3.0464 |
3—CP | 1.2440 | 0.5546 | 3.2694 | 1.2795 | 2.8568 |
Performance Level | Log-standard deviation | Difference (%) | |||
Ref | Min | Max | Avg | ||
1—IO | 0.9013 | 0.1535 | 1.5661 | 0.8506 | 5.6286 |
2—LS | 0.8779 | 0.2072 | 1.6951 | 0.8388 | 4.4511 |
3—CP | 0.8568 | 0.2292 | 1.5970 | 0.8186 | 4.4575 |
Performance Level | Median (g) | Difference (%) | |||
---|---|---|---|---|---|
Ref | Min | Max | Avg | ||
1—IO | 0.4137 | 0.2453 | 0.7232 | 0.4168 | 0.7312 |
2—LS | 1.1322 | 0.7013 | 2.0056 | 1.1405 | 0.7315 |
3—CP | 1.2440 | 0.7526 | 2.1098 | 1.2523 | 0.6734 |
Performance Level | Log-standard deviation | Difference (%) | |||
Ref | Min | Max | Avg | ||
1—IO | 0.9013 | 0.5263 | 1.2547 | 0.8878 | 1.4969 |
2—LS | 0.8779 | 0.5314 | 1.2453 | 0.8680 | 1.1231 |
3—CP | 0.8568 | 0.5294 | 1.2067 | 0.8475 | 1.0868 |
Performance Level | Median (g) | Difference (%) | |||
---|---|---|---|---|---|
Ref | Min | Max | Avg | ||
1—IO | 0.4137 | 0.2827 | 0.5855 | 0.4152 | 0.3517 |
2—LS | 1.1322 | 0.7984 | 1.5579 | 1.1363 | 0.3652 |
3—CP | 1.2440 | 0.8865 | 1.6866 | 1.2484 | 0.3537 |
Performance Level | Log-standard deviation | Difference (%) | |||
Ref | Min | Max | Avg | ||
1—IO | 0.9013 | 0.6315 | 1.1376 | 0.8949 | 0.7168 |
2—LS | 0.8779 | 0.6195 | 1.1253 | 0.8732 | 0.5263 |
3—CP | 0.8568 | 0.6032 | 1.1228 | 0.8524 | 0.5202 |
Performance Level | Median (g) | Difference (%) | |||
---|---|---|---|---|---|
Ref | Min | Max | Avg | ||
1—IO | 0.4137 | 0.3838 | 0.4451 | 0.4138 | 0.0168 |
2—LS | 1.1322 | 1.0597 | 1.2098 | 1.1324 | 0.0156 |
3—CP | 1.2440 | 1.1615 | 1.3226 | 1.2442 | 0.0156 |
Performance Level | Log-standard deviation | Difference (%) | |||
Ref | Min | Max | Avg | ||
1—IO | 0.9013 | 0.8460 | 0.9562 | 0.9011 | 0.0272 |
2—LS | 0.8779 | 0.8208 | 0.9311 | 0.8776 | 0.0238 |
3—CP | 0.8568 | 0.8058 | 0.9060 | 0.8567 | 0.0197 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Seo, D.; Jung, K.; Kim, J. Study on the Uncertainty of Input Variables in Seismic Fragility Curves Based on the Number of Ground Motions. Appl. Sci. 2024, 14, 11787. https://doi.org/10.3390/app142411787
Park S, Seo D, Jung K, Kim J. Study on the Uncertainty of Input Variables in Seismic Fragility Curves Based on the Number of Ground Motions. Applied Sciences. 2024; 14(24):11787. https://doi.org/10.3390/app142411787
Chicago/Turabian StylePark, Sangki, Dongwoo Seo, Kyusan Jung, and Jaehwan Kim. 2024. "Study on the Uncertainty of Input Variables in Seismic Fragility Curves Based on the Number of Ground Motions" Applied Sciences 14, no. 24: 11787. https://doi.org/10.3390/app142411787
APA StylePark, S., Seo, D., Jung, K., & Kim, J. (2024). Study on the Uncertainty of Input Variables in Seismic Fragility Curves Based on the Number of Ground Motions. Applied Sciences, 14(24), 11787. https://doi.org/10.3390/app142411787