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Abstract: After significant progress in stereo matching, the pursuit of robust and efficient ill-posed-
region disparity refinement methods remains challenging. To further improve the performance of
disparity refinement, in this paper, we propose the matchability and uncertainty-aware iterative
disparity refinement neural network. Firstly, a new matchability and uncertainty decoder (MUD) is
proposed to decode the matchability mask and disparity uncertainties, which are used to evaluate
the reliability of feature matching and estimated disparity, thereby reducing the susceptibility to
mismatched pixels. Then, based on the proposed MUD, we present two modules: the uncertainty-
preferred disparity field initialization (UFI) and the masked hidden state global aggregation (MGA)
modules. In the UFI, a multi-disparity window scan-and-select method is employed to provide a
further initialized disparity field and more accurate initial disparity. In the MGA, the adaptive masked
disparity field hidden state is globally aggregated to extend the propagation range per iteration,
improving the refinement efficiency. Finally, the experimental results on public datasets show that the
proposed model achieves a reduction up to 17.9% in disparity average error and 16.9% in occluded
outlier proportion, respectively, demonstrating its more practical handling of ill-posed regions.

Keywords: stereo matching; disparity refinement; convolutional neural networks; deep learning

1. Introduction

Stereo matching is one of the most important topics in the field of photogrammetry and
computer vision, with broad applications in 3D scene reconstruction, augmented reality,
and automated driving. In stereo matching, the pixel disparities are obtained by dense
pixel-wise matching between two rectified images along the epipolar line. Traditional stereo
matching methods [1,2] have been developed over time and form a four-step framework [3]:
cost computation, cost aggregation, disparity computation and disparity refinement. Most
of the deep learning-based stereo matching methods [4–7], which have rapidly evolved
in recent years, also adhere to this framework [8]. Disparity refinement, as the final step
of stereo matching, is mainly used to improve the disparity accuracy in matched regions,
handle the mismatched pixels, and determine the model’s final output disparity.

Disparity refinement methods for stereo matching have been the subject of extensive
and sustained research [9–11]. However, it remains challenging to explore refinement meth-
ods capable of identifying and handling ill-posed regions. These regions, present between
the reference and target images, fail to meet the one-to-one pixel matching conditions due to
various factors such as occlusion, poor exposure, and texturelessness. Traditional disparity
refinement for stereo matching is usually based on the assumption of local color-disparity
consistency [3], using the pre-calculated disparity from other sources [9,11] with 2D image
texture or 3D spatial geometric guidance to detect and handle the mismatched pixels. With
the advancements of stereo-matching neural networks, this processing has evolved into
end-to-end implementations. Recent studies [12–14] combine implicit cost aggregation with
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disparity refinement, enabling iterative disparity refinement starting from zero without
reliance on pre-computed disparity. These approaches not only achieve high accuracy, but
also offer flexibility in balancing output delay and accuracy by simply adjusting the number
of iterations. However, existing iteration-based methods lack an explicit construction of
the matching cost volume and are difficult to follow [15,16], leading to susceptibility to
mismatched regions.

To mitigate the above problems without explicitly modeling the matching cost volume,
based on the RAFT-Stereo [12], we propose a new model that can estimate the feature
matchability and the disparity uncertainty concurrently. This model is capable of dis-
cerning mismatched pixels for more appropriate processing without additional explicit
supervision, thus enhancing the model’s robustness. In this paper, pixel matchability
is defined as an appraisal of the reliability in feature matching, regarded as an intrinsic
attribute of input image pixel pairs. Disparity uncertainty, on the other hand, is defined
as an assessment of the predicted disparity’s reliability, capturing the margin of error in
disparity estimation [17]. Uncertainty can be utilized to filter out disparities that exceed a
specified error threshold. In regions of low matchability, pixels that are properly refined
exhibit lower uncertainty, whereas those lacking reliable matches in their vicinity show
higher uncertainty. The model’s susceptibility to mismatched pixels can be reduced by
incorporating an awareness of feature matchability and disparity uncertainty.

The proposed model, termed the matchability and uncertainty-aware iterative dispar-
ity refinement (MUIR) neural network, integrates a novel matchability mask and disparity
uncertainty decoder (MUD) into the iterative disparity refinement framework. The MUD
is trained to decode the feature matchability mask and disparity uncertainty jointly from
the disparity field hidden state, enhancing the model’s ability to detect and handle ill-
posed regions. Following the introduction of the MUD module, we further present the
uncertainty-preferred disparity field initialization (UFI) and the masked hidden state global
aggregation (MGA) modules. The UFI module employs a multi-disparity window scan-
and-select method to expand the perceptual range of the initial disparity field, and improve
the initial disparity accuracy. The MGA module propagates the adaptive masked reliable
hidden state globally, thus introducing long-range dependencies to enhance the disparity
refinement efficiency. The advantages of proposed MUIR are as follows:

1. The proposed MUIR requires no additional mask supervision or dedicated training
for uncertainty prediction. It can jointly predict disparity, matchability mask, and
disparity uncertainty using only the disparity ground truth for single-stage joint
training, without compromising disparity accuracy.

2. The MUD module is integrated into the iterative framework to decode the matchability
mask and disparity uncertainty from hidden state at any iteration, ensuring the
model’s scaling flexibility.

3. The model with the UFI and MGA modules achieves more efficient disparity refinement
per iteration, which is more important for refinement in regions with large disparity.

2. Related Works

In the task of stereo matching for rectified image pairs, deep-learning-based methods
have been intensively studied since the MC-CNN proposed by Zbontar and LeCun [18].
Most of the end-to-end methods [4–7,19–22], that focus on improving the cost aggrega-
tion process, can be considered as neural network approximations and improvements of
the classical methods [1]. Among these methods, most of them have outperformed the
classical ones [1,2] on the commonly used datasets [23–26]. There are also works [7,27,28]
that attempt to exploit lightweight feature-guided disparity refinement to achieve higher
accuracies. Recently, methods [12,14] based on the recurrent all-pairs transforms [29] in
optical flow task have brought disparity refinement to a higher plateau.
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2.1. Disparity Refinement Neural Networks Based on the RAFT

The RAFT-Stereo [12] is a variant of RAFT [29] for stereo matching using only 2D
convolutional neural networks (2D CNNs), where the sampled slices of the image correla-
tion volume and the image contextual feature are fused to iteratively update the disparity
field’s hidden state via a multi-scale iterator constructed with ConvGRUs [30]. This iter-
ative framework can be considered as a combination of implicit cost aggregation with a
monocular depth estimation pipeline, which avoids the explicit modeling and aggregation
of the matching cost volumes, thus achieving higher disparity refinement efficiency and
generalization performance compared to 3D CNN-based methods [4,20]. In addition, this
RNN-like framework is theoretically capable of predicting arbitrary disparities within
the co-visible regions of image pairs. Recently, some RAFT-based works [13,14,16,31,32]
have been reported with further improvements. Incorporating the vision transformer
techniques [28,33], information interaction between feature map pairs is introduced [13,16]
before the iterative refinement process to augment the matching features, thus improving
the accuracy of the initial disparity, optical flow or the handling of occluded regions. On
the other hand, a lightweight cost aggregation using 3D CNNs is reintroduced by [32],
where the cost volume with limited disparity range is used as an additional look-up table
as well as to compute more accurate initial disparity, thus improving the geometric aware-
ness of the model. Furthermore, [14,31] achieve gains in generalization and accuracy by
replacing the iterator with ConvLSTMs [14] and using additional disparity adjustments
after upsampling. In contrast, the MUIR proposed in this paper is trained to evaluate the
reliability of feature matching and estimated disparity, which enhances the detection and
handling of ill-posed regions, thus improving accuracy and efficiency. Our model takes
RAFT-Stereo [12] as the baseline to ensure that the improvements can be applied to most
RAFT-based models.

2.2. Matchability and Uncertainty

Some works train the occlusion prediction subnetwork using occlusion labels as
explicit supervision [28]. While this approach easily models occluded pixels, it still fails
to model mismatched pixels due to abnormal exposures, texturelessness, etc., and is
difficult to train on sparse stereo datasets such as KITTI [23,24], which lack occlusion labels.
Differently, the training of the proposed MUIR does not rely on occlusion labels. The
predicted matchability mask models most of the mismatched pixels and is a by-product of
the supervised training using only disparity ground truth.

Confidence or uncertainty is used to assess disparity reliability in learning-based
methods. In confidence-based methods, the disparity confidence is predicted with patch-
wise [34–36] or image-wise [37,38] input to a CNN-based subnetwork trained with binary
cross-entropy loss (BCE loss). Unlike confidence ∈ [0, 1], uncertainty ∈ [0,+∞], based
on [17], is used in multiple regression tasks [39,40] to model the error in the predicted
values. In [41], uncertainty-guided refinement is performed after cost aggregation to
improve disparity accuracy. The CVA-Net by [42] uses matching cost volume to predict
aleatoric uncertainty. It is then combined with modified GC-Net [20,43] to improve disparity
accuracy. Ref. [44] exploits the intermediate multi-scale disparity maps from [5] to predict
the disparity uncertainty. In addition, the KL divergence loss is proposed to match the
distribution of uncertainty with disparity error, thus improving the uncertainty accuracy.
Differently, the proposed MUIR prioritizes the accuracy of disparity over uncertainty. It
aims to improve the robustness by enabling the model to become aware of the uncertainty.
Furthermore, the disparity uncertainty of each iteration is predictable, which ensures the
scaling flexibility of the model.

3. Methods

The architecture of the MUIR proposed in this paper is shown in Figure 1, which
employs the recurrent disparity refinement framework based on the RAFT-Stereo [12]. The
stereo image pairs Il, Ir ∈ [0, 255]3×hup×wup

are scaled to [−1, 1] and then fed to the matching
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feature Extractormtc and the contextual feature Extractorctx to encode the matching features
Fmtc

l , Fmtc
r ∈ Rcmtc×h×w and the contextual feature map Fctx ∈ Rcctx×h×w, where cmtc, cctx are

the number of channels for the matching features and the contextual feature, respectively,
and hup, wup and h, w are the size of the input images and feature maps, respectively. The
measure of visual similarity between matching features Fmtc

l and Fmtc
r is obtained using

dot product to construct the matching correlation volume:

Cmtc =
1√
cmtc

〈
Fmtc

l (j), Fmtc
r (j − d)

〉
∈ Rh×w×w, (1)

where d is disparity, j ∈ {1, 2, . . . , w} is the horizontal index of a matching feature, and
⟨·, ·⟩ denotes the inner product. The correlation volume slice Cmtc(D̂t) ∈ R(2r+1)×h×w is
obtained by bilinear sampling along the scanline dimension (last dimension) of Cmtc with a
sampling window D̂t =

{
dt | dt ∈

[
d̂t − r, d̂t + r

]}
centered on the estimated disparity d̂t,

where t ∈ {1, 2, . . . , T} is the index of current iteration, T is the total number of refinement
iterations, and r ∈ Z+ is the sampling window radius.
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Figure 1. The architecture of the proposed matchability and uncertainty-aware iterative disparity
refinement (MUIR) neural network, including feature extraction, disparity field initialization, iterative
disparity refinement and upsampling.

During initialization, the initial disparity field’s hidden state H1 and disparity d̂1
are obtained through the simplified disparity field feature encoder Encoderinit and the
Initializer in the UFI module (see Section 3.2.1). In each iteration, the matchability mask
m̂t−1 ∈ [0, 1]h×w is decoded by the MUD module from the hidden state (see Section 3.1.1).
Next, the m̂t−1 is fed to the disparity field feature Encoderdf and MGA modules to filter
out the matching ambiguity noise and the unreliable hidden state (see Section 3.2.2),
respectively. The hidden state Ht updated by the Iterator is fed to the residual Decoderdisp

to refine the estimated disparity: d̂t = d̂t−1 + ∆d̂t. The Ht and d̂t are then utilized by the
MUD to decode the next mask m̂t and uncertainty ût. At the end of each iteration, the Ht,
d̂t and ût can optionally be fed to the joint upsampling block Upsamplerd,u to obtain the
upsampled disparity d̂up

t and uncertainty ûup
t . The proposed iterative disparity refinement

is completed after T iterations of the above process.

3.1. The Matchability and Uncertainty Decoder

To reduce the susceptibility of the model to mismatched pixels, we propose to integrate
a new MUD module into the iterative disparity refinement framework, which is trained to
decode the matchability mask m̂t and the disparity uncertainty ût from the disparity field
hidden state, thus enabling the model to be aware of the reliability of feature matching and
estimated disparity. Notably, our method requires neither additional mask supervision nor
additional dedicated training for the uncertainty prediction module.



Appl. Sci. 2024, 14, 8457 5 of 16

3.1.1. Prediction of Matchability Mask

We observed that in RAFT-based models, even when apparent matching ambiguity
noise is carried in the correlation volume slice sampled from ill-posed regions, the accuracy
of estimated disparity is only slightly affected. This implies that the model may have an
implicit matchability awareness. To verify this insight, the disparity field feature encoding
in the baseline model [12] is modified as:

m̂t= σ( f m
θm(Ht, Cmtc(D̂t), d̂t))

Fcorr
t = f corr

θcorr(Cmtc(D̂t), m̂t) = Conv( JCmtc(D̂t), Cmtc(D̂t)⊙ m̂t, m̂t K; θcorr)
, (2)

where f m
θm and f corr

θcorr denote convolutional networks with parameters θm and θcorr, respec-
tively, J· K denotes the concatenation operation, ⊙ denotes element-wise multiplication and
σ(·) denotes the sigmoid function. The volume slice Cmtc(D̂t) is multiplied by matchability
mask m̂t to filter the matching ambiguity noise. From preliminary pre-training experiments
we find that the modified model is enabled to decode the matchability mask from the
disparity field’s hidden state in each iteration, as shown in Figure 2b,c.
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It is challenging to verify this hypothesis directly through network parameters, our 
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Figure 2. The matchability masks decoded from disparity field’s hidden state. (a) The input left
image; (b,c) the matchability mask from the models run at 1/8 and 1/4 resolution, respectively;
(d) the matchability mask from the model with our modified pooling method runs at 1/4 resolution.
The details are visible in the zoomed-in red box.

As depicted in Figure 2b,c, the obtained matchability mask identifies ill-posed regions.
However, it exhibits distinct strip-like textures with a periodicity that correlates with the
resolution of the image.

Specifically, as illustrated in Figure 3a, the offset varies between the disparity d̂t and
the center of the multi-scale pooling (illustrated as blue dots) within the correlation volume
Cmtc along the scanline direction. For two adjacent points pi,j and pi,j+1 with the same
disparity d̂t, their offsets are denoted as offseti,j < 0 and offseti,j+1 > 0, respectively.
This offset is related to the horizontal pixel coordinate j and the disparity d̂t. Consistent
with our experimental observations, this varying offset introduces a periodic modulation
of the disparity field Fdf

t , causing the model to misinterpret certain horizontal features
as unmatchable. This results in strip-like artifacts appearing in the matchability mask.
Although these artifacts are gradually attenuated during training, the risk of decreasing
accuracy is not negligible.
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Figure 3. Illustrations for correlation volume pooling methods. (a) The pooling method used in the
baseline [12]. (b) The proposed post-pooling method. The pooling center is kept at d̂t.

It is challenging to verify this hypothesis directly through network parameters, our
proposed post-pooling method, which centers on d̂t (as shown in Figure 3b), effectively
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eliminates the offset. As a result, the artifacts in the matchability mask are removed, as
evidenced in Figure 2d. This experimental outcome provides indirect confirmation of our
hypothesis regarding the cause of the strip-like artifacts.

The above preliminary experiments demonstrate the latent implicit matchability aware-
ness in the baseline can be extracted in the form of matchability mask. Notably, the mask
is a byproduct obtained from the training of the disparity refinement task, without any
additional explicit supervision. We randomly binarize the mask like a drop block [45] to
avoid the Cmtc(D̂t) being unnecessary numerically scaled by the mask m̂t:

m̂bnr
t =

{
m̂t if τbnr > 0.5
[m̂t] otherwise

, (3)

where τbnr ∼ B(1, 0.5) and [·] denotes binary rounding operation.

3.1.2. Prediction of Disparity Uncertainty

The disparity estimation in ill-posed regions relies heavily on geometric priors rather
than feature matching, limiting the accuracy. The more stable and practical way for down-
stream tasks is to filter out less reliable predictions. However, uncertainty or confidence
estimation that rely on cost volume [19,43] is not directly applicable to RAFT-based meth-
ods. Therefore, we follow [17,39] in capturing aleatoric uncertainty to indicate disparity
error. Unlike methods that use a dedicated uncertainty subnetwork, our method integrates
the uncertainty decoder into the iterative disparity refinement framework for joint training.

In stereo matching, the disparity error is assumed to be Laplacian-distributed [41].
The probability density and the joint-training negative maximum likelihood loss function
are as follows:

p(d̂|Il, Ir; θ) = 1
2β e−

∥d̂−dgt∥1
β

Ld,u
1 = − log p(d̂|Il, Ir; θ) = log 2 + log β +

∥d̂−dgt∥1
β

, (4)

where dgt is disparity ground truth, β is the scale parameter of Laplacian distribution,
θ denotes the model parameters, and ∥·∥1 denotes the L1 norm. To ensure numerical
stability during training [17], the uncertainty is defined as û = log β2, and the constant
term is omitted:

Ld,u
1 =

û
2
+ e−

û
2

∥∥∥d̂ − dgt

∥∥∥
1
. (5)

Equation (5) can be simply applied to the loss in the baseline [12]:

Ld,u
2 =

T

∑
t=1

γT−t(
ût

2
+ e

−
ût

2
∥∥∥d̂t − dgt

∥∥∥
1
), (6)

where γ is a weighting parameter (usually set to 0.9). Preliminary experiments are per-
formed by adding the uncertainty prediction network to the baseline as the loss function
replaced by Equation (6). The endpoint error (EPE) curves in Figure 4 show the decrease in
disparity accuracy due to the simple design of the joint training.

To avoid an unnecessary decrease in disparity accuracy, the uncertainty is constrained
as ût ∈ [umin, umax], resulting in a modified joint-training loss function:

Lu = û
2 + e−

û
2 min(max(

∥∥∥d̂t − dgt

∥∥∥
1
, εmin), εmax))

Ld,u =
T
∑

t=1
γT−t(

∥∥∥d̂t − dgt

∥∥∥
1
+ Lu)

, (7)

where [εmin, εmax] denotes the range of disparity errors perceived by the model, corre-
sponding to the effective uncertainty range [umin = log ε2

min, umax = log ε2
max]. The range
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constraint is used to avoid model degradation caused by errors that are too small or too
large [17]. The constrained uncertainty is computed as:

v̂t = f u
θu(Ht, Cmtc(D̂t), d̂t)

ût = log(ε2
min + (ε2

max − ε2
min)σ(v̂t))

, (8)

where f u
θu denotes a simple convolutional network with parameter θu. In addition, to keep

the pixel-wise correspondence between disparity and uncertainty after upsampling, the
d̂up

t and ûup
t are computed together via the joint disparity–uncertainty upsampler. It is

shown in Figure 4 that the proposed method greatly alleviates the decrease in disparity
accuracy introduced by the joint training.
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The above matchability mask decoding network f m
θm and uncertainty decoding net-

work f u
θu are merged, shown in Figure 5, to construct the proposed MUD module:

(m̂t, ût) = MUD(Ht, Cmtc(D̂t), d̂t; θm, θu) (9)
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Figure 5. The structure of the matchability and uncertainty decoder (MUD). The disparity field’s
hidden state is decoded via several convolution layers to obtain matchability mask m̂t and disparity
uncertainty ût.

3.2. The Disparity Field Initialization and Aggregation Build upon the MUD

The baseline is restricted by the range-limited disparity field initialization and the
slowly increasing range of aggregation, which particularly hinders disparity refinement in
regions with large parallaxes (requiring too many iterations). To alleviate the above problem,
based on the proposed MUD module, we further propose the uncertainty-preferred disparity
field initialization (UFI) and the masked hidden state global aggregation (MGA) modules.
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3.2.1. The UFI Module

In the RAFT-based methods, [16,32] use additional processes to obtain the initial
disparity, while [12–14,31] use the first iteration to obtain the initial disparity. The initial
disparity of these methods is limited by the radius of the disparity window or the number
of disparities in the cost volume, and they are unable to model regions with disparities
exceeding the limit. In contrast, the proposed UFI module uses multi-disparity proposals
dinit

k ∈ [0, dinit
1 , dinit

2 , dinit
3 ] to initialize the disparity field, where dinit

k denotes the top three
candidates with highest correlation score. They are parallel encoded by Encoderinit to
obtain the disparity field features Fdf

k , which are then fed to the Initializer to initialize the
hidden state:

qk= τ( f q
θq(Fdf

k , Fctx))

zk= σ( f z
θz(Hinit

k−1, qk))

Hinit
k = Hinit

k−1 + (qk − Hinit
k−1)⊙ zk

, (10)

where τ(·) denotes the tanh function, f q
θq and f z

θz are the reset gate and update gate networks
with parameters θq and θz, respectively. The initial disparity candidates d̂init

k and uncertainty
ûinit

k are decoded from the initial hidden state H1 = Hinit
3 . The initial disparity is selected

as d̂1 = argmin
d̂init

k

(ûinit
k ). Notably, the entire UFI module, with the exception of the reset

gate f z
θz , is computed in parallel between sampling windows. The preliminary experiment

shown in Figure 6 indicates an apparent improvement in initial disparity accuracy with
the UFI module. It validates the effectiveness of multi-disparity window scan-and-select
initialization.
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3.2.2. The MGA Module

Attention weights in vision transformers [46,47] are used to aggregate features by
assigning higher importance to those with relatively high dot-product scores. This process
involves computing the dot product between different features. The dot-product scores are
then normalized using the SoftMax function to produce attention weights. In GMA [48],

attention weights Actx ∈ [0, 1]h
2×w2

guided by contextual feature are reused during iteration
for the global aggregation of flow field feature, thus improving the occlusion handling in
optical flow task. Inspired by GMA, we propose a new MGA module, where the disparity
field’s hidden state is globally aggregated to introduce long-range dependencies of the
hidden state. The attention weights are computed using the contextual feature encoded
with 2D rotary positional embedding (RoPE) [49] to inject relative positional information:

Actx = ζ(rope( f qry
θqry(Fctx))⊗ rope( f key

θkey(Fctx))), (11)
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where f qry
θqry , f key

θkey denote convolutional networks with parameters θqry and θkey, and ζ(·)
denotes the SoftMax function. The iterative update of disparity field with the MGA module
is denoted as:

m̂hm
t = f hm

θhm(Ht−1, Cmtc(D̂1), d̂t−1, m̂t−1)

Hglb
t = MGA(Actx, Ht−1, m̂hm

t ) = Actx ⊗ ( f vel
θvel(Ht−1)⊙ m̂hm

t )

Ht= ConvGRU(Ht−1, Hglb
t , Fdf

t , Fctx)

, (12)

where f hm
θhm , f vel

θvel denote the convolutional network with parameters θhm and θvel. The adap-
tive mask m̂hm

t is used to dynamically adjust the attention weights during iteration, thus
suppressing the propagation of unreliable hidden states, thus ensuring the effectiveness of
aggregation.

4. Experiments

In this section, the proposed MUIR is pre-trained on the synthetic Scene Flow [21]
dataset and ablation experiments are performed on the proposed MUD, UFI and MGA
modules to evaluate the contribution of each improvement (in Section 4.3). The generaliza-
tion experiments on KITTI [23,24], Middlebury [25], ETH3D [26] and New Tsukuba [50]
are then performed to evaluate the generalization performance of the pre-trained MUIR (in
Section 4.4).

4.1. Datasets and Evaluation Metrics

• The Scene Flow dataset [21] is a large synthetic dataset commonly used for pre-training
models. The finalpass version of the stereo image pairs, synthesized using Blender,
contains motion and defocus blur effects that simulate the real scenes. It provides
35,454 training image pairs and 4370 test image pairs with disparity ground truth at a
resolution of 960 × 540. It should be noted that other existing synthetic datasets, such
as Fallingthings [51], CREStereo [13], TartanAir [52], etc., are not used to ensure a fair
comparison with existing work.

• The KITTI [23,24] provides datasets of real outdoor scenes captured by on-board cali-
brated cameras and LIDAR on the road, where the KITTI2012 [23] and the KITTI2015 [24]
contain 194 pairs and 200 pairs of training data with sparse disparity ground truth at a
resolution of about 1220 × 370.

• The Middlebury [25] provides datasets of real indoor scenes obtained using dense
structured light, containing stereo image pairs with multiple asymmetric exposure
combinations of multiple scenes. The Middlebury 2014 and Middlebury 2021 contain
23 and 24 sets of semi-dense disparity ground truth with maximum resolutions of
3052 × 1968 and 1920 × 1080, respectively.

• The ETH3D [26] provides a dataset of real indoor and outdoor scenes captured by a
high-precision laser scanner. It provides 27 training grayscale stereo image pairs with
corresponding semi-dense disparity ground truth at a resolution about 950 × 500.

• The New Tsukuba [50] dataset provides a realistic computer-generated stereo dataset
that includes four different illumination conditions. It provides 1800 stereo image
pairs, each with 256 levels of disparity ground truth, at a resolution of 640 × 480.

For quantitative evaluation and comparison, we mainly use endpoint error EPE, the
50th percentile error A50, and the percentage of bad pixels Bad1.0 and D1 to evaluate the
disparity accuracy. The EPE is also called “avgerr” in the Middlebury benchmark and
“Average error“ in ETH3D. The Bad1.0 is the percentage of pixels with an error greater than
one pixel. The D1 is the percentage of pixels with an absolute error greater than three pixels
or relative error greater than 5% of the ground truth.
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4.2. Implementation Details

The MUIR proposed in this paper is implemented using PyTorch [53] and trained from
scratch on NVIDIA RTX2080Ti and RTX TITAN GPUs. During pre-training, we use the
AdamW [54] optimizer (β1 = 0.9, β2 = 0.999, weight decay 1 × 10−5) and the one-cycle
scheduler [55] to adjust the learning rate with maximum value of 2 × 10−4 The training
image pairs are cropped to a size of 320 × 704. The models are pre-trained for 2 × 105

steps on the Scene Flow training set with the batch size set to eight. The data augmentation
strategy aligns with [12]. To ensure the practicality and portability, the proposed MUIR fast
model is run at 1/8 resolution and with seven iterations. The performance of the MUIR fast
model is primarily evaluated and compared with the baseline, which is the fast version of
RAFT-Stereo [12] with the Slow-Fast bi-level GRUs and seven iterations. The performance
of MUIR with 15 iterations at 1/4 resolution is also reported where necessary.

4.3. Ablation Study

Ablation experiments are performed on the proposed MUIR pre-trained model to
discuss the effectiveness of the proposed MUD, UFI and MGA modules. The detailed
quantitative evaluation results are reported in Table 1. It should be noted that due to the
absence of ill-posed region labels, the model performance in occluded regions is evaluated
as an approximation. The occlusion labels are obtained from the warping error between
left and right view disparities. The warping error occurs when sampling the right view’s
disparity based on the left view’s disparity, resulting in a warped disparity. A point is
marked as occluded when this warping error exceeds a certain threshold. The EPE and
Bad1.0 metrics are divided into all pixels (All), non-occluded pixels (Noc) and occluded
pixels (Occ). The absolute prediction error (APE) and the area under the sparsification error
curve (AUSE) are calculated to quantitatively evaluate the numerical and distributional
accuracy of the estimated uncertainty.

Table 1. Ablation study on the proposed MUIR. The evaluation is conducted on the held-out Scene
Flow [21] test set 1. Rows (1–7) and rows (8–11) contain models performed at 1/8 and 1/4 resolution,
respectively. The best results in each category are bolded.

Models 1 Param
(M)

Time
(s)

EPE (px) A50
(px)

Bad1.0 (%) APE
(px)

AUSE
(%)All Noc Occ All Noc Occ

(1) Baseline fast [12] 9.86 0.052 0.866 0.544 2.523 0.180 9.573 6.142 28.890 - -
(2) +Simple uncertainty [17] 10.17 0.041 1.077 0.557 3.325 0.161 9.910 6.339 30.010 0.820 5.113
(3) +Ours uncertainty 10.32 0.040 0.911 0.544 2.646 0.207 9.354 5.935 28.618 0.482 5.598
(4) +MUD 10.30 0.050 0.797 0.494 2.378 0.127 8.390 5.287 25.728 0.433 5.042
(5) +MUD+UFI 12.89 0.059 0.766 0.456 2.328 0.131 8.010 4.963 24.927 0.423 4.872
(6) +MUD+UFI+GMA [48] 13.64 0.065 0.731 0.436 2.215 0.124 7.779 4.794 24.339 0.405 4.768

(7) MUIR fast
(+MUD+UFI+MGA) 14.00 0.066 0.711 0.461 2.144 0.099 7.769 4.853 24.002 0.405 4.977

(8) Baseline [12] 11.11 0.215 0.690 0.406 2.075 0.155 7.255 4.304 23.366 - -
(9) +MUD 12.92 0.222 0.643 0.367 1.956 0.135 6.197 3.554 20.705 0.253 3.497

(10) +MUD+UFI 15.95 0.268 0.617 0.351 1.917 0.120 5.957 3.389 20.063 0.248 3.289

(11) MUIR
(+MUD+UFI+MGA) 17.15 0.295 0.570 0.325 1.767 0.102 5.819 3.302 19.618 0.236 3.493

1 These results were measured with maximum disparity set to 192 pixels following [12].

The proposed MUIR fast and MUIR pre-trained models are evaluated in rows 7 and
11 of Table 1. Compared to the baseline (rows 1, 8), the disparity EPE is reduced by about
17.9% and 17.4%, respectively, and the A50 is reduced by about 45% and 34.2%, respectively,
indicating a lower and more concentrated distributed disparity error. In addition, the
Bad1.0 in occluded regions is reduced by about 16.9% and 16%, indicating the improved
robustness of MUIR for ill-posed regions.
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4.3.1. Ablation of the MUD Module

The MUD module is proposed in Section 3.1 and is designed to reduce the suscep-
tibility to mismatched pixels. The matchability mask and disparity uncertainty of each
iteration can be decoded from the hidden state using the MUD. In row 3 of Table 1, the
modified joint disparity–uncertainty estimation proposed in Section 3.1.2 is evaluated.
Compared to the original method [17] (row 2), our method reduces the disparity EPE by
about 15.4% and the uncertainty APE by 41.2%. It alleviates the unnecessary decrease in
disparity accuracy during joint training. Following this, in rows 4 and 9 of Table 1, the
MUD module is evaluated. Compared to the uncertainty-aware only method (row 3), the
disparity EPE and uncertainty APE is reduced by about 12.5% and 11.3%, respectively.
Compared to the baseline (row 1, 8), the EPE and Bad1.0 Occ are reduced by about 8% and
10.9%, respectively. This demonstrates the improved robustness in ill-posed regions.

Notably, the contribution of the MUD module is not only for the improvements
in quantitative evaluation results, but also for enhancing the interpretability of models
through the estimated matchability mask and disparity uncertainty shown in Figure 7d,f.
Both the occluded and textureless regions are masked out in the matchability mask. The
disparity error converted from the estimated uncertainty keeps highly consistent with
the error map. With a specified error threshold (1px in Figure 7f), flying pixels at depth
discontinuity boundaries can be easily filtered out, as shown in Figure 7g,h.
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The MGA module, proposed in Section 3.2.2, is a hidden state aggregation module 

that introduces long-range dependencies into the hidden state for enhancing the 

Figure 7. Illustration of the output of the MUIR and the alternative output filtering. (a) The input
left image; (b) the estimated disparity map; (c) the disparity error map; (d) the error map converted
from the estimated uncertainty; (e) the estimated matchability mask; (f) the error-filtering ratio curve
(the original EPE is 0.223 px); (g,h) the point cloud converted from the estimated disparity map w/o
filtering (g) and with filtering threshold set to 1 px (h). The results are best viewed when zoomed in.

4.3.2. Ablation of UFI Module

The UFI module, proposed in Section 3.2.1, is an initialization module that employs
the multi-disparity window scan-and-select method to provide more appropriate initialized
hidden state and more accurate initial disparity for the following refinement process. The
UFI module is evaluated in rows 5 and 10 of Table 1. Compared to the method without UFI
(rows 4 and 9), the disparity EPE is reduced by 3.9%. This is attributed to the fact that the
UFI module decouples the initialization from the iterative refinement process, thus easing
the parameter optimization burden on the iterator. The disparity accuracy of models at each
iteration are shown in Table 2. The UFI module is evaluated in rows 3 and 6. Compared
to the baseline (rows 1 and 5), the initial disparity EPE and Bad1.0 are reduced by about
27.5% and 31.8%, respectively, showing that the main contribution of UFI is in improving
the initial disparity accuracy.
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Table 2. Ablation study for models with different iterations on the Scene Flow test set. Rows (1–4)
and rows (5–8) shows models’ performance at 1/8 and 1/4 resolution, respectively. The best results
in each category are bolded.

Models
EPE (px) Bad1.0 (%)

Init 1 3rd itr 2 5th itr 7th itr 10th itr 15th itr Init 1 3rd itr2 5th itr 7th itr 10th itr 15th itr

(1) Baseline fast [12] 1.576 0.957 0.882 0.866 - - 21.054 11.025 9.847 9.573 - -
(2) +MUD 1.558 0.891 0.817 0.797 - - 20.920 9.890 8.678 8.390 - -
(3) +MUD+UFI 1.142 0.853 0.783 0.766 - - 14.362 9.307 8.267 8.010 - -
(4) MUIR fast 1.156 0.817 0.736 0.711 - - 14.541 9.032 8.028 7.769 - -

(5) Baseline [12] 2.159 0.924 0.786 0.743 0.706 0.690 25.844 10.641 8.347 7.668 7.344 7.225
(6) +MUD 2.218 0.873 0.723 0.678 0.655 0.643 27.393 9.481 7.260 6.614 6.319 6.197
(7) +MUD+UFI 1.182 0.801 0.699 0.658 0.631 0.617 15.851 8.480 6.811 6.294 6.060 5.957
(8) MUIR 1.239 0.758 0.636 0.593 0.573 0.570 16.746 8.599 6.710 6.149 5.893 5.819

1 “Init” is short for initialization; it is also treated as 1st iteration in other works [14,32]. 2 “itr” is short for iteration.

4.3.3. Ablation of MGA Module

The MGA module, proposed in Section 3.2.2, is a hidden state aggregation module that
introduces long-range dependencies into the hidden state for enhancing the propagation of
matching information. Unlike GMA [48], the MGA performs global aggregation directly
on the adaptively masked hidden state. The MGA is evaluated in rows 7 and 11 of Table 1.
Compared to the models without hidden state aggregation (rows 5 and 10), the disparity
EPE is reduced by about 7.2%. In contrast, the EPE of the model with GMA (row 6) is
reduced by only 4.6%. This indicates that the adaptive masked aggregation of MGA is
more effective. In addition, according to rows 4 and 7 of Table 2, compared to the models
without MGA (rows 3 and 6), the average EPE reduction ratio is improved by about 33.7%,
which shows the improvement of disparity refinement efficiency.

4.4. Generalization Evaluations

To further evaluate the cross-domain generalization performance of the proposed
MUIR, the zero-shot generalization evaluation is conducted on the KITTI2015, Middlebury
Stereo Evaluation 3 and ETH3d training sets. The results are shown in Table 3.

Table 3. Quantitative zero-shot generalization evaluation on the KITTI 2015 [24], Middlebury Eval
3 [25] and ETH3D [26] training sets. Rows (1–6) and rows (7 and 8) show models’ performance at 1/8
and 1/4 resolution, respectively. The best results in each category are bolded.

Models
Param

(M)

Scene Flow KITTI 2015 Middlebury Eval 3 1 ETH3D

Bad1.0
(%)

EPE
(px)

D1-all
(%)

EPE
(px)

APE
(px)

Bad2.0
(%)

EPE
(px)

APE
(px)

Bad1.0
(%)

EPE
(px)

APE
(px)

(1) Baseline fast [12] 9.86 9.573 0.866 5.887 1.217 - 15.153 1.943 - 6.270 0.523 -
(2) IGEV fast [32] 2 12.38 8.283 0.676 5.880 1.218 - 12.448 1.665 - 6.629 0.568 -
(3) EAI fast [14] 14.13 8.595 0.808 5.834 1.246 - 14.979 2.198 - 6.022 0.416 -
(4) MUIR fast 14.00 7.769 0.711 6.291 1.244 0.812 12.235 1.688 1.087 3.801 0.312 0.174
(5) MUIR-IGEV fast 2 13.39 7.101 0.625 6.439 1.292 0.833 11.496 1.611 0.966 5.980 0.587 0.281
(6) MUIR-EAI fast 18.05 7.200 0.675 6.442 1.271 0.848 11.155 1.394 0.813 3.694 0.324 0.197

(7) Baseline [12] 11.11 7.225 0.690 5.843 1.402 - 10.099 1.286 - 2.922 0.295 -
(8) MUIR 17.15 5.819 0.570 5.719 1.214 0.760 8.323 1.081 0.578 3.889 0.275 0.174

1 The evaluation in Middlebury Eval 3 is conducted on the half resolution. 2 The results of IGEV fast and
MUIR-IGEV fast are measured with the maximum disparity set to 192 pixels, following [32].

In Table 3, rows 2 and 6 show that, compared to the baseline, the disparity EPE of
MUIR fast is reduced by about 19.2% in Middlebury Eval 3 and 39.4% in ETH3D. To further
study the applicability of MUIR to other RAFT-based variants, the baseline is replaced with
IGEV-Stereo fast (row 5) and EAI-Stereo fast (row 6), fast versions of [14,32] running at 1/8
resolution with seven iterations. The modified models are denoted MUIR-IGEV fast (row 5)
and MUIR-EAI fast (row 6). Compared to each baseline, the MUIR-IGEV fast achieves 7.6%
and 9.8% outlier proportion reduction in Middlebury Eval 3 and ETH3D, respectively, and
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the MUIR-EAI fast also achieves 25.5% and 38.7% outlier proportion reduction. It should
be noted that, compared to the corresponding baselines, the D1-all of MUIR, MUIR-IGEV
and MUIR-EAI are increased by 6.9%, 9.5% and 10.4%, respectively, due to the excessive
domain gap in KITTI datasets.

The visualization of partial experimental results is shown in Figure 8. The generaliza-
tion experimental results show that the proposed MUIR can be applied to multiple RAFT-
based models and provide performance improvements especially in some ill-posed regions.
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5. Conclusions

The MUIR proposed in this paper utilizes the novel MUD module to improve the
performance of RAFT-based models. The MUD module learns to decode the feature
matchability mask and the disparity uncertainty concurrently from the disparity field’s
hidden state. This innovative approach reduces the model’s susceptibility to mismatched
pixels and alleviates the unnecessary reduction in disparity accuracy that occurs during
joint training. Furthermore, building on the MUD module, we introduce the UFI and
MGA modules to improve refinement efficiency. Comprehensive experimental evaluations
on synthetic and real-world datasets show that our method reduces disparity error and
occluded outlier proportion by up to 17.9% and 16.9%, respectively, compared to the
baseline, demonstrating the improvement in disparity accuracy and robustness of MUIR.
Future research may focus on incorporating global image features and scalable disparity
encoding techniques to further optimize scale generalization.
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