Method of Predicting Dynamic Deformation of Mining Areas Based on Synthetic Aperture Radar Interferometry (InSAR) Time Series Boltzmann Function
Abstract
:1. Introduction
2. Methods
2.1. IB Prediction Model
2.2. Construction of the DIB Prediction Model
2.3. InSAR-DIB Dynamic Prediction Model and Parameter Solution
3. Simulation Experiment
3.1. Simulated Working Face Overview
3.2. Experimental Design and Results Analysis
4. Project Cases
4.1. Overview of the Study Area
4.2. Data Processing and Results Analysis
5. Discussion
5.1. Boundary Convergence Performance Analysis of the IB Model
5.2. Analysis of the Main Controlling Factors of the IB Prediction Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Symbol | Symbol Meaning |
ds, dt | Length and width of unit mining; |
W(x) | subsidence prediction of the main section of the surface movement basin; |
W0 | maximum surface subsidence value; |
R1, R2 | important influencing radius; |
P | proportional coefficient; |
q | subsidence factor; |
m | thickness of the coal seam; |
α | dip angle of coal seam; |
dW(x,y) | surface subsidence value caused by mining at any point unit; |
We1 and We2 | subsidence values caused by two different important influence radius; |
W(x,y) | subsidence value at any point on the surface; |
W0(x) | subsidence value of the main section along the strike; |
W0(y) | subsidence value of the main section along the inclination; |
D3 | length of strike; |
D1 | length of inclination; |
l3 | calculated length of the working face strike; |
l1 | calculated length of the working face inclination; |
θ0 | mining impact propagation angle; |
U(x) | horizontal movement value of the main section of the surface movement basin; |
b | horizontal movement coefficient; |
φ | angle between and the positive direction of the x-axis; |
U0(x) | horizontal movement value of the main section along the strike; |
U0(y) | horizontal movement value of the main section along the inclination; |
U(x,y,φ) | horizontal displacement value of any point on the surface along the φ direction; |
i(x,y,φ) | inclination value of any point on the surface along the φ direction; |
k(x,y,φ) | curvature value of any point on the surface along the φ direction; |
ℇ(x,y,φ) | horizontal deformation of any point on the surface along the φ direction; |
S1, S2, S3, and S4 | offset distances of the downhill turning point, the uphill turning point, the open-mining turning point, and the stop-mining line turning point; |
H0 | seam mining depth; |
tanβ1, tanβ2 | main influence angle tangents; |
q′ | subsidence rate; |
fc(D3/H0) | correction function of the subsidence factor; |
C0 | the model parameter related to the geological mining conditions; |
W0 | corrected maximum subsidence value; |
riLOS | cumulative LOS value of any pixel i; |
r′ iLOS | predicted LOS value of any pixel i; |
UiSN | horizontal movement in the north direction of any pixel i; |
UiEW | horizontal movement in the east direction of any pixel i; |
θi | incidence angle of the radar; |
αi | heading angle of the satellites; |
φSN | angle between the working face direction and the north direction in a counterclockwise direction; |
φEW | angle between the working face direction and the east–west direction in a counterclockwise direction; |
Bgtj | mining characteristic parameters at time tj; |
Bgtj+1 | mining characteristic parameters at time tj+1; |
ΔdLOS | LOS between the two periods; |
Δd′LOS | cumulative LOS deformation expected between the two periods; |
X | optimal parameter PDIB; |
References
- He, M.; Wang, Q.; Wu, Q. Innovation and future of mining rock mechanics. J. Rock Mech. Geotech. Eng. 2021, 13, 1–21. [Google Scholar] [CrossRef]
- Hosseini, A.N.; Mozafari, A.; Mirzaee, M.; Faghihi, A.; Tolouei, K. Fuzzy evaluation method for the identification of subsidence susceptibility in an underground mine (case study in Tabas coal mine of Iran). Nat. Hazards 2019, 99, 797–806. [Google Scholar] [CrossRef]
- Cieślik, K.; Milczarek, W.; Warchala, E.; Kosydor, P.; Rożek, R. Identifying Factors Influencing Surface Deformations from Underground Mining Using SAR Data, Machine Learning, and the SHAP Method. Remote Sens. 2024, 16, 2428. [Google Scholar] [CrossRef]
- Chai, H.; Xu, H.; Hu, J.; Geng, S.; Guan, P.; Ding, Y.; Zhao, Y.; Xu, M.; Chen, L. Application of a Variable Weight Time Function Combined Model in Surface Subsidence Prediction in Goaf Area: A Case Study in China. Appl. Sci. 2024, 14, 1748. [Google Scholar] [CrossRef]
- Lei, M.; Zhang, T.; Shi, J.; Yu, J. InSAR-CTPIM-Based 3D Deformation Prediction in Coal Mining Areas of the Baisha Reservoir, China. Appl. Sci. 2024, 14, 5199. [Google Scholar] [CrossRef]
- Zhu, M.; Yu, X.; Tan, H.; Xie, S.; Yang, X.; Han, Y. Prediction Parameters for Mining Subsidence Based on Interferometric Synthetic Aperture Radar and Unmanned Aerial Vehicle Collaborative Monitoring. Appl. Sci. 2023, 13, 11128. [Google Scholar] [CrossRef]
- Xie, Y.; Bagan, H.; Tan, L.; Te, T.; Damdinsuren, A.; Wang, Q. Time-Series Analysis of Mining-Induced Subsidence in the Arid Region of Mongolia Based on SBAS-InSAR. Remote Sens. 2024, 16, 2166. [Google Scholar] [CrossRef]
- Jahanmiri, S.; Noorian, M. Land subsidence prediction in coal mining using machine learning models and optimization techniques. Environ. Sci. Pollut. Res. 2024, 31, 31942–31966. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Q.; Chen, M.; Jing, H.W.; Chen, K.F.; Meng, B. A case study on large deformation failure mechanism of deep soft rock roadway in Xin’An coal mine, China. Eng. Geol. 2017, 217, 89–101. [Google Scholar] [CrossRef]
- Dong, S.C.; Samsonov, S.; Yin, H.W.; Yao, S.P.; Xu, C. Spatio-temporal analysis of ground subsidence due to underground coal mining in Huainan coalfield, China. Environ. Earth Sci. 2015, 73, 5523–5534. [Google Scholar] [CrossRef]
- Tajdus, K.; Sroka, A.; Misa, R.; Hager, S.; Rusek, J.; Dudek, M.; Wollnik, F. Analysis of Mining-Induced Delayed Surface Subsidence. Minerals 2021, 11, 1187. [Google Scholar] [CrossRef]
- Zhou, D.W.; Wu, K.; Chen, R.L.; Li, L. GPS/terrestrial 3D laser scanner combined monitoring technology for coal mining subsidence: A case study of a coal mining area in Hebei, China. Nat. Hazards 2014, 70, 1197–1208. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. J. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Huang, X.; Li, X.; Li, H.; Duan, S.; Yang, Y.; Du, H.; Xiao, W. Study on the Movement of Overlying Rock Strata and Surface Movement in Mine Goaf under Different Treatment Methods Based on PS-InSAR Technology. Appl. Sci. 2024, 14, 2651. [Google Scholar] [CrossRef]
- Modeste, G.; Doubre, C. Time evolution of mining-related residual subsidence monitored over a 24-year period using InSAR in southern Alsace, France. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102392. [Google Scholar] [CrossRef]
- Fan, H.D.; Cheng, D.; Deng, K.Z.; Chen, B.Q.; Zhu, C.G. Subsidence monitoring using D-InSAR and probability integral prediction modelling in deep mining areas. Surv. Rev. 2015, 47, 438–445. [Google Scholar] [CrossRef]
- Knothe, S. Effect of time on formation of basin subsidence. Arch. Min. Steel Ind. 1953, 1, 51–62. [Google Scholar]
- Ilieva, M.; Polanin, P.; Borkowski, A.; Gruchlik, P.; Smolak, K.; Kowalski, A.; Rohm, W. Mining Deformation Life Cycle in the Light of InSAR and Deformation Models. Remote Sens. 2019, 11, 745. [Google Scholar] [CrossRef]
- Hu, Q.F.; Deng, X.B.; Feng, R.M.; Li, C.Y.; Wang, X.J.; Jiang, T. Model for calculating the parameter of the Knothe time function based on angle of full subsidence. Int. J. Rock Mech. Min. Sci. 2015, 78, 19–26. [Google Scholar] [CrossRef]
- Chi, S.S.; Wang, L.; Yu, X.X.; Lv, W.C.; Fang, X.J. Research on dynamic prediction model of surface subsidence in mining areas with thick unconsolidated layers. Energy Explor. Exploit. 2021, 39, 927–943. [Google Scholar] [CrossRef]
- Zhang, L.L.; Cheng, H.; Yao, Z.S.; Wang, X.J. Application of the improved Knothe time function model in the prediction of ground mining subsidence: A case study from Heze City, Shandong Province, China. Appl. Sci. 2020, 10, 3147. [Google Scholar] [CrossRef]
- Schober, F.; Sroka, A. The calculation of ground movements over caverns taking into account the temporal convergence and rock mass behaviour. Kali und Steinsalz 1983, 8, 352–358. [Google Scholar]
- Ding, X.M.; Yang, K.M.; Zhang, C.; Wang, S.; Hou, Z.X.; Zhao, H.Q. Dynamic prediction of displacement and deformation of any point on mining surface based on B-normal model. Environ. Sci. Pollut. Res. 2023, 30, 78569–78597. [Google Scholar] [CrossRef]
- Liu, Y.C. Dynamic surface subsidence curve model based on Weibull time function. Rock Soil Mech. 2013, 34, 2409–2413. [Google Scholar]
- Zhang, S.; Zhang, J. Ground subsidence monitoring in a mining area based on mountainous time function and EnKF methods using GPS data. Remote Sens. 2022, 14, 6359. [Google Scholar] [CrossRef]
- Bo, H.Z.; Lu, G.H.; Li, H.Z.; Guo, G.L.; Li, Y.W. Development of a Dynamic Prediction Model for Underground Coal-Mining-Induced Ground Subsidence Based on the Hook Function. Remote Sens. 2024, 16, 377. [Google Scholar] [CrossRef]
- Wang, J.; Yang, K.M.; Wei, X.P.; Shi, X.Y.; Yao, S.Y. Prediction of longwall progressive subsidence basin using the Gompertz time function. Rock Mech. Rock Eng. 2022, 55, 379–398. [Google Scholar] [CrossRef]
- Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Yi, H.W.; Hu, J.; Feng, G.C. Deriving dynamic subsidence of coal mining areas using InSAR and logistic model. Remote Sens. 2017, 9, 125. [Google Scholar] [CrossRef]
- Apanowicz, B.; Milczarek, W.; Kowalski, A. Novel method for determining the time coefficient c in Knothe’s function and disappearance time of deformation increase using SAR data. Measurement 2024, 235, 114898. [Google Scholar] [CrossRef]
- Li, H.; Zheng, J.; Xue, L.; Zhao, X.; Lei, X.Q.; Gong, X. Inversion of Subsidence Parameters and Prediction of Surface Dynamics under Insufficient Mining. J. Min. Sci. 2023, 59, 693–704. [Google Scholar] [CrossRef]
- Hou, Z.X.; Yang, K.M.; Li, Y.R.; Gao, W.; Wang, S.; Ding, X.M.; Li, Y.X. Dynamic prediction model of mining subsidence combined with D-InSAR technical parameter inversion. Environ. Earth Sci. 2022, 81, 307. [Google Scholar] [CrossRef]
- Wang, J.; Yan, L.; Yang, K.M.; Tang, W.; Xie, H.; Yao, S.Y.; Xu, Z.H.; Yang, J.B. Deriving mining-induced 3-D deformations at any moment and assessing building damage by integrating single InSAR interferogram and gompertz probability integral model (SII-GPIM). IEEE Trans. Geosci. Remote Sens. 2022, 60, 4709817. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Zhou, X.; Wu, L.S. Study on surface movement law of coal mining under thick unconsolidated Layer. J. China Coal Soc. 1997, 22, 20–23. [Google Scholar]
- Chen, J.; Zou, Y.; Guo, W. Study on the Relationship Between Subsidence Coefficient and Mining Degree Under a Thick Alluvium Stratum. J. Min. Saf. Eng. 2012, 29, 250–254. [Google Scholar]
- Wang, N.; Wu, K.; Liu, J.; An, S. Model for mining subsidence prediction based on Boltzmann function. J. China Coal Soc. 2013, 38, 1352–1356. [Google Scholar]
- Chi, S.S.; Wang, L.; Yu, X.X.; Fang, X.J.; Jiang, C. Research on Prediction Model of Mining Subsidence in Thick Unconsolidated Layer Mining Area. IEEE Access 2021, 9, 23996–24010. [Google Scholar] [CrossRef]
Parameter | q | P | b | θ | S1 | S2 | S3 | S4 | tanβ1 | tanβ2 | C0 |
---|---|---|---|---|---|---|---|---|---|---|---|
Design value | 0.9 | 0.4 | 0.3 | 89 | 10 | 10 | 10 | 10 | 1.1 | 4.1 | 3 |
Fitted value | 0.883 | 0.396 | 0.296 | 87.29 | 10.07 | 9.247 | 10.32 | 10.52 | 1.099 | 3.933 | 3.080 |
Absolute error | 0.017 | 0.004 | 0.004 | 1.707 | 0.078 | 0.753 | 0.320 | 0.525 | 0.001 | 0.167 | 0.080 |
Relative error | 1.936 | 0.968 | 1.301 | 1.918 | 0.784 | 7.533 | 3.203 | 5.251 | 0.135 | 4.080 | 2.671 |
Interference Pair | Master Image | Auxiliary Image | Spatial Baseline/m | Incidence Angle/° | Orbit Type | Path |
---|---|---|---|---|---|---|
1 | 4 November 2017 | 16 November 2017 | −22.290 | 39.617 | Ascending | 142/142 |
2 | 16 November 2017 | 28 November 2017 | −66.940 | 39.616 | Ascending | 142/142 |
3 | 10 December 2017 | 22 December 2017 | 88.316 | 39.615 | Ascending | 142/142 |
4 | 22 December 2017 | 3 January 2018 | 15.096 | 39.615 | Ascending | 142/142 |
Parameters | m (m) | H0 (m) | α (°) | D3 (m) | D1 (m) |
---|---|---|---|---|---|
4 November 2017 | 2.9 | 668 | 3 | 1230 | 251 |
28 November 2017 | 2.9 | 668 | 3 | 1363 | 251 |
10 December 2017 | 2.9 | 668 | 3 | 1427 | 251 |
3 January 2018 | 2.9 | 668 | 3 | 1528 | 251 |
Time/d | q | P | θ | S1 | S2 | S3 | S4 | tanβ1 | tanβ2 |
---|---|---|---|---|---|---|---|---|---|
0.047 | 0.05 | 0.45 | 86.4 | −30.8 | −12.0 | 0.2 | 0.9 | 1.51 | 3.31 |
0.079 | 0.17 | 0.46 | 88.7 | −1.6 | −32.6 | 0.1 | 0.1 | 1.59 | 3.31 |
0.250 | 0.65 | 0.57 | 86.9 | −33.9 | −30.5 | 18.4 | 45.1 | 1.58 | 3.38 |
0.347 | 0.72 | 0.55 | 87.9 | −38.3 | −39.9 | 35.3 | 23.8 | 1.59 | 3.23 |
0.539 | 0.72 | 0.52 | 87.0 | −39.9 | −21.7 | 37.8 | 23.6 | 1.57 | 3.50 |
0.805 | 0.85 | 0.43 | 88.6 | −47.7 | −49.9 | 30.9 | 36.1 | 1.43 | 3.29 |
1 | 0.89 | 0.45 | 88.2 | −77.7 | −38.7 | 69.7 | 52.4 | 1.47 | 3.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, S.; Yu, X.; Wang, L. Method of Predicting Dynamic Deformation of Mining Areas Based on Synthetic Aperture Radar Interferometry (InSAR) Time Series Boltzmann Function. Appl. Sci. 2024, 14, 7917. https://doi.org/10.3390/app14177917
Chi S, Yu X, Wang L. Method of Predicting Dynamic Deformation of Mining Areas Based on Synthetic Aperture Radar Interferometry (InSAR) Time Series Boltzmann Function. Applied Sciences. 2024; 14(17):7917. https://doi.org/10.3390/app14177917
Chicago/Turabian StyleChi, Shenshen, Xuexiang Yu, and Lei Wang. 2024. "Method of Predicting Dynamic Deformation of Mining Areas Based on Synthetic Aperture Radar Interferometry (InSAR) Time Series Boltzmann Function" Applied Sciences 14, no. 17: 7917. https://doi.org/10.3390/app14177917
APA StyleChi, S., Yu, X., & Wang, L. (2024). Method of Predicting Dynamic Deformation of Mining Areas Based on Synthetic Aperture Radar Interferometry (InSAR) Time Series Boltzmann Function. Applied Sciences, 14(17), 7917. https://doi.org/10.3390/app14177917