Mechanical Characterization of Basalt Fabric-Reinforced Alkali-Activated Matrix Composite: A Preliminary Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Matrix Raw Materials
2.1.1. Ultra-Fine Fly Ash (FA)
2.1.2. Ground Granulated Blast Furnace Slag (GGBFS)
2.1.3. Forest Biomass Ash (FBA)
2.1.4. Alkaline Activators and Additives
2.1.5. Sand
2.2. Methods
2.2.1. Matrix Mix Design and Preparation
2.2.2. Matrix Characterization
2.2.3. Reinforcement Characterization
- teq is the equivalent design thickness of the fabric,
- beff is the nominal specimen width,
- by is the mid-yarn spacing (normal to the load application direction)
- ny is the number of longitudinal yarns.
2.2.4. Strengthening System Characterization: Tensile Test
2.2.5. Strengthening System Characterization: Direct Shear Test
3. Results and Discussion
3.1. Matrix
3.2. FRAAM Composite: Mechanical Behavior
- σu = composite ultimate tensile strength
- σf = textile tensile strength
- σmax = peak stress
- σf = textile tensile strength
- σu = average composite ultimate tensile strength
4. Conclusions
- An inorganic matrix based on an alkali-activated ternary blend of industrial by products was designed based on the one-pot philosophy. The main crystalline reaction product was an aluminum-modified calcium silicate hydrate gel (C–A–S–H) characterized by a wide distribution of the SiQn(mAl) units. The addition of an expansive agent (CaO) reduced the free shrinkage of about 35%, to ≈1800 με, whereas higher dimensional stability is reported for commercial mortars. Capillary absorption of around ≈0.27 kg/(m2∙min0.5) was measured, which is close to values reported for commercial mortars.
- The tensile test of basalt FRAAM systems displayed three characteristic response stages (I) un-cracked, (II) crack development and (III) cracked. The response curves highlight that the behavior of the composite mainly relies on crack development and widening. The average ultimate stress (434 MPa) and the tensile modulus of elasticity in region III (39 GPa) were lower than those of the dry textile, with an average exploitation ratio of 0.46. The composites failed by sequential tensile failure of the fiber bundles. The waviness of the warp yarns caused the large extent of region II. Matrix microcracks not visible to the naked-eye can form, in some specimens, during the curing as a consequence of mortar shrinkage. They cause in the region I of the response curve a linear branch followed by a non-linear response up to the onset of the first crack. Matrix pre-existing microcracks are responsible of the increase of the εI scattering with respect to the commercial system used as reference.
- Shear bond tests, performed on masonry substrates, displayed response curves characterized by the formation and development of an interfacial longitudinal crack and transversal cracks with corresponding load drops. Average peak load around 1148 N and an average exploitation ratio (vs. textile) of 0.4 were measured. The observed failure modes were the debonding at the textile-to-matrix interface in some cases associated with the tensile rupture of the textile. The commercial system used as reference showed a slightly higher average peak stress value than the FRAAM composite, which can be ascribed to the different shrinkage behavior of the two mortars.
Author Contributions
Funding
Conflicts of Interest
References
- Garbin, E.; Valluzzi, M.R.; Panizza, M. Experimental Assessment of Bond Behaviour of Fibre-Reinforced Polymers on Brick Masonry. Struct. Eng. Int. 2010, 20, 392–399. [Google Scholar] [CrossRef]
- Foraboschi, P. Strengthening of Masonry Arches with Fiber-Reinforced Polymer Strips. J. Compos. Constr. 2004, 8, 191–202. [Google Scholar] [CrossRef]
- Donnini, J.; Corinaldesi, V.; Nanni, A. Mechanical properties of FRCM using carbon fabrics with different coating treatments. Compos. Part B Eng. 2016, 88, 220–228. [Google Scholar] [CrossRef]
- Papanicolaou, C.G.; Triantafillou, T.; Karlos, K.; Papathanasiou, M. Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls: In-plane cyclic loading. Mater. Struct. 2006, 40, 1081–1097. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Modena, C.; De Felice, G. Current practice and open issues in strengthening historical buildings with composites. Mater. Struct. 2014, 47, 1971–1985. [Google Scholar] [CrossRef]
- Caggegi, C.; Lanoye, E.; Djama, K.; Bassil, A.; Gabor, A. Tensile behaviour of a basalt TRM strengthening system: Influence of mortar and reinforcing textile ratios. Compos. Part B Eng. 2017, 130, 90–102. [Google Scholar] [CrossRef]
- D’Ambrisi, A.; Focacci, F.; Caporale, A. Strengthening of masonry–unreinforced concrete railway bridges with PBO-FRCM materials. Compos. Struct. 2013, 102, 193–204. [Google Scholar] [CrossRef]
- D’Antino, T.; Carloni, C.; Sneed, L.; Pellegrino, C. Matrix–fiber bond behavior in PBO FRCM composites: A fracture mechanics approach. Eng. Fract. Mech. 2014, 117, 94–111. [Google Scholar] [CrossRef]
- Balsamo, A.; Di Ludovico, M.; Prota, A.; Manfredi, G. Masonry walls strengthened with innovative composites. Spec. Publ. 2011, 275, 1–18. [Google Scholar] [CrossRef]
- De Santis, S.; De Felice, G. Steel reinforced grout systems for the strengthening of masonry structures. Compos. Struct. 2015, 134, 533–548. [Google Scholar] [CrossRef]
- Leone, M.; Aiello, M.A.; Balsamo, A.; Carozzi, F.G.; Ceroni, F.; Corradi, M.; Gams, M.; Garbin, E.; Gattesco, N.; Krajewski, P.; et al. Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on masonry substrate. Compos. Part B Eng. 2017, 127, 196–214. [Google Scholar] [CrossRef] [Green Version]
- Carozzi, F.G.; Bellini, A.; D’Antino, T.; De Felice, G.; Focacci, F.; Hojdys, Ł.; Laghi, L.; Lanoye, E.; Micelli, F.; Panizza, M.; et al. Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements. Compos. Part B Eng. 2017, 128, 100–119. [Google Scholar] [CrossRef]
- Lignola, G.P.; Caggegi, C.; Ceroni, F.; De Santis, S.; Krajewski, P.; Lourenço, P.; Morganti, M.; Papanicolaou, C. (Corina); Pellegrino, C.; Prota, A.; et al. Performance assessment of basalt FRCM for retrofit applications on masonry. Compos. Part B Eng. 2017, 128, 1–18. [Google Scholar] [CrossRef]
- Iorfida, A.; Verre, S.; Candamano, S.; Ombres, L. Tensile and Direct Shear Responses of Basalt-Fibre Reinforced Mortar Based Materials. In Strain-Hardening Cement-Based Composites. SHCC 2017; RILEM Bookseries; Mechtcherine, V., Slowik, V., Kabele, P., Eds.; Springer: Dordrecht, The Netherlands, 2018; Volume 15, pp. 544–552. [Google Scholar] [CrossRef]
- Purdon, A.O. The action of alkalis on blast-furnace slag. J. Soc. Chem. Ind. 1940, 59, 191–202. [Google Scholar]
- Pacheco-Torgal, F. Introduction to Handbook of Alkali-activated Cements, Mortars and Concretes; Woodhead Publishing: Cambridge, UK, 2015; pp. 1–16. [Google Scholar] [CrossRef]
- Provis, J. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Coppola, L.; Coffetti, D.; Crotti, E.; Marini, A.; Passoni, C.; Pastore, T. Lightweight cement-free alkali-activated slag plaster for the structural retrofit and energy upgrading of poor quality masonry walls. Cem. Concr. Compos. 2019, 104, 103341. [Google Scholar] [CrossRef]
- Coppola, L.; Bellezze, T.; Belli, A.; Bignozzi, M.; Bolzoni, F.M.; Brenna, A.; Cabrini, M.; Candamano, S.; Cappai, M.; Caputo, D.; et al. Binders alternative to Portland cement and waste management for sustainable construction—Part 1. J. Appl. Biomater. Funct. Mater. 2018, 16, 186–202. [Google Scholar] [CrossRef] [Green Version]
- Coppola, L.; Bellezze, T.; Belli, A.; Bignozzi, M.C.; Bolzoni, F.M.; Brenna, A.; Cabrini, M.; Candamano, S.; Cappai, M.; Caputo, D.; et al. Binders alternative to Portland cement and waste management for sustainable construction—Part 2. J. Appl. Biomater. Funct. Mater. 2018, 16, 207–221. [Google Scholar] [CrossRef] [Green Version]
- Candamano, S.; Sgambitterra, E.; Lamuta, C.; Pagnotta, L.; Chakraborty, S.; Crea, F. Graphene nanoplatelets in geopolymeric systems: A new dimension of nanocomposites. Mater. Lett. 2019, 236, 550–553. [Google Scholar] [CrossRef]
- Sgambitterra, E.; Lamuta, C.; Candamano, S.; Pagnotta, L. Brazilian disk test and digital image correlation: A methodology for the mechanical characterization of brittle materials. Mater. Struct. 2018, 51, 19. [Google Scholar] [CrossRef]
- Candamano, S.; De Luca, P.; Frontera, P.; Crea, F. Production of Geopolymeric Mortars Containing Forest Biomass Ash as Partial Replacement of Metakaolin. Environments 2017, 4, 74. [Google Scholar] [CrossRef] [Green Version]
- Burciaga-Díaz, O.; Magallanes-Rivera, R.X.; Escalante-García, J.I. Alkali-activated slag-metakaolin pastes: Strength, structural, and microstructural characterization. J. Sustain. Cem. Mater. 2013, 2, 111–127. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.; Rose, V.; De Gutiérrez, R.M. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 2011, 33, 46–54. [Google Scholar] [CrossRef]
- Carabba, L.; Santandrea, M.; Carloni, C.; Manzi, S.; Bignozzi, M. Steel fiber reinforced geopolymer matrix (S-FRGM) composites applied to reinforced concrete structures for strengthening applications: A preliminary study. Compos. Part B Eng. 2017, 128, 83–90. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.; Cheng, Y.-B. Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 2002, 32, 211–216. [Google Scholar] [CrossRef]
- Bakharev, T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem. Concr. Res. 2005, 35, 1233–1246. [Google Scholar] [CrossRef]
- Ye, H.; Chen, Z.; Huang, L. Mechanism of sulfate attack on alkali-activated slag: The role of activator composition. Cem. Concr. Res. 2019, 125, 105868. [Google Scholar] [CrossRef]
- De Luca, P.; De Luca, P.; Candamano, S.; Macario, A.; Crea, F.; Nagy, J.B. Preparation and Characterization of Plasters with Photodegradative Action. Buildings 2018, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Gong, K.; White, C.E. Nanoscale Chemical Degradation Mechanisms of Sulfate Attack in Alkali-activated Slag. J. Phys. Chem. C 2018, 122, 5992–6004. [Google Scholar] [CrossRef]
- Bhutta, M.A.R.; Hussin, W.M.; Azreen, M.; Tahir, M.M. Sulphate Resistance of Geopolymer Concrete Prepared from Blended Waste Fuel Ash. J. Mater. Civ. Eng. 2014, 26, 04014080. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.; Hamdan, S.; Van Deventer, J.S.J. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater. Struct. 2012, 46, 361–373. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-part alkali-activated materials: A review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- Coppola, L.; Coffetti, D.; Crotti, E.; Candamano, S.; Crea, F.; Gazzaniga, G.; Pastore, T. The combined use of admixtures for shrinkage reduction in one-part alkali activated slag-based mortars and pastes. Constr. Build. Mater. 2020, 248, 118682. [Google Scholar] [CrossRef]
- García, J.I.E.; Fuentes, A.F.; Gorokhovsky, A.; Fraire-Luna, P.E.; Mendoza-Suarez, G. Hydration Products and Reactivity of Blast-Furnace Slag Activated by Various Alkalis. J. Am. Ceram. Soc. 2003, 86, 2148–2153. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.L.; Li, H.H.; Xu, D.L. Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag. J. Mater. Sci. 2008, 43, 7141–7147. [Google Scholar] [CrossRef]
- Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: Effect of MgO. Cem. Concr. Res. 2011, 41, 955–963. [Google Scholar] [CrossRef]
- Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: Effect of Al2O3. Cem. Concr. Res. 2012, 42, 74–83. [Google Scholar] [CrossRef]
- Bellotto, M.; Rebours, B.; Clause, O.; Lynch, J.; Bazin, D.; Elkaïm, E. Hydrotalcite Decomposition Mechanism: A Clue to the Structure and Reactivity of Spinel-like Mixed Oxides. J. Phys. Chem. 1996, 100, 8535–8542. [Google Scholar] [CrossRef]
- Cartwright, C.; Rajabipour, F.; Radlińska, A. Shrinkage Characteristics of Alkali-Activated Slag Cements. J. Mater. Civ. Eng. 2015, 27, B4014007. [Google Scholar] [CrossRef]
- Chen, J.J.; Sorelli, L.; Vandamme, M.; Chanvillard, G.; Ulm, F.-J. A Coupled Nanoindentation/SEM-EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C-S-H/Ca(OH)2Nanocomposites. J. Am. Ceram. Soc. 2010, 93, 1484–1493. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Radlińska, A. Shrinkage mechanisms of alkali-activated slag. Cem. Concr. Res. 2016, 88, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Fib fib Model Code for Concrete Structures 2010. In Fib Model Code for Concrete Structures 2010; Ernst & Sohn: Berlin, Germany, 2013.
- D’Antino, T.; Papanicolaou, C. Mechanical characterization of textile reinforced inorganic-matrix composites. Compos. Part B Eng. 2017, 127, 78–91. [Google Scholar] [CrossRef]
- Arboleda, D.; Carozzi, F.G.; Nanni, A.; Poggi, C. Testing Procedures for the Uniaxial Tensile Characterization of Fabric-Reinforced Cementitious Matrix Composites. J. Compos. Constr. 2016, 20, 04015063. [Google Scholar] [CrossRef]
- Hartig, J.; Jesse, F.; Häußler-Combe, U. Influence of different mechanisms on the constitutive behaviour of textile reinforced concrete. In Proceedings of the 4th Colloquium on Textile Reinforced Structures (CTRS4), Technische Universitat Dresden, Dresden, Germany, 3–5 June 2009; pp. S157–S168. [Google Scholar]
- Tekieli, M.; De Santis, S.; De Felice, G.; Kwiecień, A.; Roscini, F. Application of Digital Image Correlation to composite reinforcements testing. Compos. Struct. 2017, 160, 670–688. [Google Scholar] [CrossRef]
- De Santis, S.; Carozzi, F.; De Felice, G.; Poggi, C. Test methods for Textile Reinforced Mortar systems. Compos. Part B: Eng. 2017, 127, 121–132. [Google Scholar] [CrossRef]
- D’Antino, T.; Sneed, L.H.; Carloni, C.; Pellegrino, C. Influence of the substrate characteristics on the bond behavior of PBO FRCM-concrete joints. Constr. Build. Mater. 2015, 101, 838–850. [Google Scholar] [CrossRef]
Mix Name | Reactive Powders | Alkaline Activators | Additive | |||
---|---|---|---|---|---|---|
S2KS7F2A1 C2 | GGBFS (%wt) | FA (%wt) | FBA (%wt) | KOH * (%wt) | Na2O·3SiO2 (%wt) | CaO * (%wt) |
70 | 20 | 10 | 7.4 | 4.5 | 2 |
Textile | Basalt (B4) |
---|---|
Mass (g/m2) | 400 |
Mesh size (mm) | 8 × 8 |
Equivalent design thickness (mm) | 0.064 |
Tensile strength (MPa) * | 935 (2.83%) |
Ultimate strain (%) * | 1.43 (10.66%) |
Elastic modulus (GPa) * | 70 (7.49%) |
Matrix Type | Capillary Absorption (EN 1015-18) (kg/(m2∙min0.5)) | Compressive Strength (EN 1015-11) (MPa) | Shrinkage (EN 12617-4) (%) | Flexural Strength (EN 1015-11) (MPa) | Tensile Strength (MPa) |
---|---|---|---|---|---|
Alkali-activated binder. Maximum dimension of aggregate: 1 mm. (present paper) | ≈0.27 a | ≈33 a | ≈0.18 a | ≈5.5 a | ≈2.4 e |
Mineral-Natural Hydraulic Lime (NHL) binder. Maximum dimension of aggregate: 1.4 mm. | ≈0.30 b | ≈15 a | - c | ≈4.1 a | ≈1.8 e |
Hydraulic binder with reactive pozzolanic components. Fiber reinforced. Maximum dimension of aggregate: 1.4 mm. | ≈0.20 b | ≈22 b | - d | ≈6 b | ≈2.7 e |
Region I Uncracked Stage | Region II Crack Development Stage | Region III Post-Cracking Stage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Specimen ID | σI | εI | EI | σII | εII | EII | σu | εu | EIII | Exploitation Ratio (vs. Textile) |
(MPa) | (%) | (GPa) | (MPa) | (%) | (GPa) | (MPa) | (%) | (GPa) | ||
DT B4 AAM 1 | 158 | 0.020 | 1618 | 290 | 1.721 | 4.51 | 514 | 2.257 | 44 | 0.55 |
DT B4 AAM 2 | 166 | 0.050 | 1621 | 303 | 1.802 | 6.06 | 483 | 2.281 | 43 | 0.52 |
DT B4 AAM 3 | 194 | 0.007 | 2737 | 288 | 1.794 | 2.57 | 372 | 2.055 | 36 | 0.40 |
DT B4 AAM 4 | 185 | 0.034 | 1441 | 233 | 1.518 | 1.95 | 406 | 2.155 | 37 | 0.43 |
DT B4 AAM 5 | 167 | 0.010 | 2031 | 262 | 1.607 | 2.31 | 394 | 2.212 | 34 | 0.42 |
Avg | 174 | 0.024 | 1890 | 275 | 1.689 | 3.48 | 434 | 2.192 | 39 | 0.46 |
CoV | 8.7% | 73.8% | 27.6% | 10.2% | 7.3% | 50.3% | 14.2% | 4.1% | 11.3% | 14.2% |
Textile Properties | σI | εI | EI | σu | εu | EIII | σI,m | Exploitation Ratio (vs. Textile) | ||
---|---|---|---|---|---|---|---|---|---|---|
Mesh Size (mm) | Mass (g/m2) | (MPa) | (%) | (GPa) | (MPa) | (%) | (GPa) | (MPa) | ||
Present paper | 8 × 8 | 400 (coated) | 174 (8.7%) | 0.024 (73.8%) | 1890 (27.6%) | 434 (14.2%) | 2.192 (4.1%) | 39 (11.3%) | 1.07 (8.7%) | 0.46 (14.2%) |
[14] | 8 × 8 | 400 (coated) | 171 (35.9%) | 0.0114% (34.2%) | 1457 (19.1%) | 413 (13.0%) | 2.037 (3.7%) | 33 (6.3%) | 1.02 (35.9%) | 0.44 (13.0%) |
Specimen ID | Peak Load | Peak Stress σmax | Exploitation Ratio (vs. Textile) | Exploitation Ratio (vs. Tensile) | Failure Mode |
---|---|---|---|---|---|
(N) | (MPa) | ||||
DS B4 AAM 1 | 1481 | 482 | 0.52 | 1.11 | C/E |
DS B4 AAM 2 | 990 | 322 | 0.34 | 0.74 | C |
DS B4 AAM 3 | 1095 | 357 | 0.38 | 0.82 | C |
DS B4 AAM 4 | 751 | 244 | 0.26 | 0.56 | C |
DS B4 AAM 5 | 1370 | 446 | 0.48 | 1.03 | C/E |
DS B4 AAM 6 | 1201 | 391 | 0.42 | 0.90 | C |
Avg | 1148 | 374 | 0.40 | 0.86 | |
CoV | 23.0% | 23.0% | 23.0% | 23.0% |
Textile Properties | Peak Stress | Exploitation Ratio (vs. Textile) | Failure Mode | ||
---|---|---|---|---|---|
Mesh Size (mm) | Mass (g/m2) | (MPa) | |||
Present paper | 8 × 8 | 400 (coated) | 374 (23.0%) | 0.40 (23.0%) | C\E * and C ** |
[14] | 8 × 8 | 400 (coated) | 422 (24.4%) | 0.45 (24.4%) | C ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candamano, S.; Crea, F.; Iorfida, A. Mechanical Characterization of Basalt Fabric-Reinforced Alkali-Activated Matrix Composite: A Preliminary Investigation. Appl. Sci. 2020, 10, 2865. https://doi.org/10.3390/app10082865
Candamano S, Crea F, Iorfida A. Mechanical Characterization of Basalt Fabric-Reinforced Alkali-Activated Matrix Composite: A Preliminary Investigation. Applied Sciences. 2020; 10(8):2865. https://doi.org/10.3390/app10082865
Chicago/Turabian StyleCandamano, Sebastiano, Fortunato Crea, and Antonio Iorfida. 2020. "Mechanical Characterization of Basalt Fabric-Reinforced Alkali-Activated Matrix Composite: A Preliminary Investigation" Applied Sciences 10, no. 8: 2865. https://doi.org/10.3390/app10082865
APA StyleCandamano, S., Crea, F., & Iorfida, A. (2020). Mechanical Characterization of Basalt Fabric-Reinforced Alkali-Activated Matrix Composite: A Preliminary Investigation. Applied Sciences, 10(8), 2865. https://doi.org/10.3390/app10082865