Health Effects Associated with Inhalation of Airborne Arsenic Arising from Mining Operations
Abstract
:1. Introduction
2. Mining Operations as a Source of Airborne Arsenic
2.1. Generation of Dust and Aerosol: An Overview
2.2. Origin, Production and Release of Particulate Arsenic
2.2.1. Smelting Operations
2.2.2. Coal Combustion
2.2.3. Mine Tailings
2.3. A Global Issue
3. Monitoring and Assessment
3.1. Smelting
3.2. Coal Combustion
3.3. Mine Tailings
3.4. Arsenic Speciation in Particulate Matter
Source | Location | Size Fraction (Time Period) | Distance (km) | TAs (Min–Max) | As(III) (Min–Max) | As(V) (Min–Max) | Ref. |
---|---|---|---|---|---|---|---|
Pb-Cu smelter | Belgium | TSP (May–September 1978) | <1 | 330 | [4] | ||
2.5 | 75 | ||||||
Cu smelter | Tacoma, WA, USA | PM2.5–10 (January 1985–Febrary 1986) | 0.8 | 153.9 ± 269.4 | [78] | ||
PM2.5 (January 1985–Febrary 1986) | 90.2 ± 170.7 | ||||||
PM2.5–10 (January 1985–Febrary 1986) | 10 | 3.7 ± 9.6 | |||||
PM2.5 (January 1985–Febrary 1986) | 4.4 ± 3.6 | ||||||
Cu smelter | Walsall, UK | TSP | <1 | 93.9 ± 89.7 (10.6–572.3) | [26] | ||
Cu smelter | Quillota, Central Chile | PM10 (December 1999–November 2000) | ≤40 | 32.5 ± 33.7 (1.7–196) | [102] | ||
Cu smelter | Huelva, southwest Spain | TSP (January–December 2000) | 2 | 12.3 ± 1.6 (3.0–33.8) | 1.2 ± 0.3 (0.3–1.8) | 10.4 ± 1.8 (2.1–30.6) | [83] |
Cu smelter | Huelva, southwest Spain | PM10 (2001) | 2 | 7.7 (1.6–29.4) | 1.2 (0.6–2.2) | 6.5 (0.01–25.7) | [75] |
PM10 (2002) | 9.9 (1.3–79.8) | 2.1 (0.4–3.4) | 7.8 (0.01–56.2) | ||||
Cu smelter | Huelva, southwest Spain | PM2.5 (2001) | 2 | 6.4 (0.8–30.2) | 0.9 (0.01–1.6) | 5.0 (0.01–25.3) | [74] |
PM2.5 (2002) | 7.9 (1.0–56.6) | 1.4 (0.1–2.7) | 6.6 (0.01–56.2) | ||||
Cu smelter | Huelva, southwest Spain | PM10 (2004) | 3.5 | 4.67 (max: 22.4) | [77] | ||
PM2.5 (2004) | 3.5 | 3.04 (max: 19.0) | |||||
PM10 (2005) | 3.5 | 10.6 (max: 62.1) | |||||
PM2.5 (2005) | 3.5 | 9.18 (max: 60.3) | |||||
Cu mining and smelter complex | Bor, eastern Serbia | PM10 (15–year average; 1994–2008) | 0.8 | 131.4 (<2–669) | [81] | ||
1.9 | 51.3 (<2–356) | ||||||
2.5 | 93.7 (<2–670) | ||||||
Cu mining and smelter complex | Bor, eastern Serbia | PM10 (24 March–1 April 2009) | 0.65 | 32.97 ± 53.63 (2.4–149) | [38] | ||
Ferromanganese plant | Dunkirk, France | PM10 (January 2003–March 2005) | 2 | 5.1 ± 5.4 (0.5–35.1) | [103] | ||
Cu smelter | Huelva, southwest Spain | PM2.5 (16–22 October 2009) | 5 | 2.1 ± 4.2 (0–20) | [82] | ||
Complex Cu smelter | Tsumeb, Namibia | PM10 (2010–2011) | Smelter boundary | 310 | [80] | ||
Low exposure site | 190 | ||||||
Coal combustion | Beijing, China | PM10 (2001 and 2006) | 12 sites across city | 58.3 ± 60 | [86] | ||
Coal combustion | Beijing, China | TSP (February 2009–March 2011) | n.a. | 130 ± 60 (30–310) | 4.7 ± 3.6 (0.73–20) | 67 ± 35 (14–250) | [9] |
Coal combustion | Beijing, China | PM2.5 (December 2012–January 2013) | n.a. | 23.08 | [85] | ||
Coal combustion | Taiyuan, China | PM10 (2–16 March 2004) | n.a. | 43.36 ± 27.61 (11.98–82.55) | [87] | ||
Coal combustion | Ji’nan, eastern China | PM2.5 (17–28 September 2010) | 5 | 40 ± 40 | [88] | ||
Coal mine (raw coal) | Southwest Virginia, USA | PM10 (7 August 2008) | 0.3 | 0.958 | [12] | ||
1.6 | 0.735 | ||||||
Gold mine tailings | Rodalquilar, southeastern Spain | PM10 | n.a. | 1581 ppm | [19] | ||
Mechanically re-suspended in lab, n=2 | 1368 ppm | ||||||
Pb-Zn mine | Rosh Pinah, Namibia | TSP | 0 | 4970 (2800–9140) | [89] | ||
Tailings dam | 0 | 280 (130–920) | |||||
Ore treatment plant | 1.5 | 30 (30–70) | |||||
2.5 | 60 (20–80) | ||||||
Cu-Pb-Zn mine tailings | Aznalcazar, South Spain | TSP (20 May–27 December 1998) | 0 | 221 (4.9–2681) | [54] | ||
0.5 | 69 (2–921) | ||||||
Historical Ag-Pb mine tailings | City of Lavrion, Greece | PM10 Overall average | 1 | 520 (1–3031) | [90] | ||
Winter | 115 (1–791) | ||||||
Summer | 909 (121–3031) | ||||||
Abandoned Au mine tailings | Nova Scotia, Canada | >16 µm (2004) | 0 | 8200 | Present but not quantified | [18] | |
16–8 µm (2004) | 2020 | ||||||
8–4 µm (2004) | 631 | ||||||
4–2 µm (2004) | 337 | ||||||
2–1 µm (2004) | 58.3 | ||||||
1–0.5 µm (2004) | 13.3 | ||||||
Former Au mine tailings | Yellowknife, Canada | TSP (July–September 2004) | <1 | 19 (1–76) | [104] | ||
PM10 (July–September 2004) | 6 (1–15) | ||||||
Different mine waste types | Butte, Montana, USA | PM10 Mine waste type 1 | n.a. | 406 ppm | [57] | ||
PM10 Mine waste type 2 | 467 ppm | ||||||
PM10 Mine waste type 3 | 469 ppm | ||||||
PM10 Mine waste type 4 | 769 ppm | ||||||
Ag-Au mine tailings | Descarga mine tailings site, USA | >2830 µm | n.a. | 203 ppm | [21] | ||
2830–1700 µm | 452 ppm | ||||||
1700–1000 µm | 976 ppm | ||||||
1000–500 µm | 1870 ppm | ||||||
500–250 µm | 2650 ppm | ||||||
250–125 µm | 3790 ppm | ||||||
125–75 µm | 3650 ppm | ||||||
75–45 µm | 4720 ppm | ||||||
45–32 µm | 7060 ppm | ||||||
32–20 µm | 8210 ppm | ||||||
Pb-Zn mine waste | Oklahoma, USA | PM2.5 (July–September 2005) | <1 | 0.64 ± 0.48 | [11] | ||
5 | 0.62 ± 0.32 | ||||||
18 | 0.56 ± 0.33 | ||||||
Cu-Au-Ag mine waste | Rio Tinto mines, Spain | Total bulk deposition (March 2009–February 2010/March 2010–February 2011) | 0 | 4.4/2.1 mg·m−2 | [17] | ||
0.5 | 0.7/0.5 mg·m−2 | ||||||
1.5 | 0.7/1.0 mg·m−2 | ||||||
Smelter & coal combustion | China (various localities) | Average of PM10, PM2.5 TSP and dust | 51.0 ± 67 | [84] | |||
Smelter & other industries | Aspropyrgyros Greece | TSP (December 2004–June 2006) | n.a. | 3.4 ± 0.3 | <0.2 | 3.2 ± 0.4 | [76] |
PM10–PM2.5 (December 2004–June 2006) | 1.9 ± 0.3 | <0.2 | 1.7 ± 0.4 | ||||
PM2.5 (December 2004–June 2006) | 1.1 ± 0.3 | <0.2 | 1.0 ± 0.4 |
4. Human Exposure
4.1. Deposition Location and Particle Clearance from the Respiratory Tract (RT)
Anatomical Region (Corresponding Particulate Size Fraction) | PM Size (µm) | Deposition Location | Retention Time |
---|---|---|---|
Extra–thoracic (Inhalable) | 7–10 | Nasal passage | 1 day; small fraction may be retained for longer |
5–7 | Pharynx | Few minutes | |
Tracheobronchial (Thoracic) | 3–5 | Trachea | Few minutes |
2–3 | Bronchi | Hours to weeks | |
1.0–2.5 | Terminal bronchioles | Hours to weeks | |
Alveolar (Respirable) | 0.5–1.0 | Alveoli | 50 to 7000 days |
4.1.1. Extra-Thoracic Region (Inhalable Particulate Fraction)
4.1.2. Tracheobronchial Region (Thoracic Particulate Fraction)
4.1.3. Alveolar Region (Respirable Particulate Fraction)
4.2. Effects of Exposure Duration and Solubility
4.3. Pulmonary Bioavailability of Inhaled Arsenic
4.4. Summary
5. Importance of Metabolic Transformation in Arsenic Toxicity
5.1. Arsenic Biomethylation
5.2. Oxidative Stress as a Mode of Action for Arsenic Carcinogenesis
5.3. The Human Lung as a Target Organ for Arsenic Toxicity
5.4. Direct Effects of Arsenic on Pulmonary Cells
5.4.1. Pulmonary Cytotoxicity of Arsenic
5.4.2. Effects of Arsenic-Induced Reactive Oxygen Species (ROS) Production on Human Bronchial Epithelial (HBE) Cells and Human Fibroblast (HF) Cells
5.4.3. Arsenic-Induced Suppression of Alveolar Macrophage (AM) Function
5.4.4. Arsenic-Induced Inhibition of the Wound Healing Response in Human Bronchial Epithelial (HBE) Cells
As Compound | Dose | Cell Line | Pathological Effects | Potential Human Effects | Ref. |
---|---|---|---|---|---|
Human bronchial (or alveolar epithelial) cells | |||||
Na-arsenite | 0.5–10 µM for 24 and 120 h | NHBE | Dose-dependent reduction in cell survival; chromosomal aberrations suggestive of DNA double strand breaks | Lung cancer | [189] |
Na-arsenite, MMAIII, DMAIII | Variable for 3 days | HBE | MMAIII & DMAIII were more cytotoxic; dose-dependent alteration of inflammatory response at low concentrations; alterations in oxidative stress and DNA damage repair at increasing concentrations | Pulmonary diseases linked with inflammation and increased bronchial cell proliferation | [165] |
Na-arsenite | 0–4 µM for 2 weeks | HBEp | Concentration-dependent increase in cellular lactate production; lactate produced via aerobic glycolysis (the Warburg effect) | Growth, proliferation and invasion of cancer cells | [201] |
As-trioxide | 2.5 µM for 6 months | BEAS-2B | Time-dependent cell proliferation; cells exhibited a cancer-like phenotype | Lung cancer | [195] |
In vivo (Nu/nu mice) | Tumour formation; time-dependent increase in tumour volume; cells exhibited a malignant and metastatic phenotype | ||||
In silico Signalling pathway analysis | ROS generation; DNA damage; chronic inflammation; dysregulation of pro- and anti-cancer gene signalling, anti-apoptosis and invasive signalling | ||||
Na-arsenite | 130 and 330 nM for 4–5 weeks and 0.8 and 3.9 for 24 h | 16HBE14o-cells (wounded) | Dose-dependent reduction in the wound healing response (Ca2+ signalling), leading to inhibition of wound repair | Chronic lung disease, e.g., bronchiectasis | [216,217] |
Na-arsenite MMAIII, DMAIII, MMAV, DMAV, DMTAV | Various (µM) for 24 h | A549 | DMAIII and MMAIII showed pronounced cellular uptake; differential cellular endpoints related to DNA repair | Arsenic-induced diseases | [187,188] |
Na-arsenite | 0.25–5 µM for 26 weeks | BEAS-2B | ROS-induced cell proliferation and colony formation; constitutive generation of ROS (probably H2O2); degree of effects were concentration-dependent | Primary lung tumour formation | [193] |
Na-arsenite | 20 nM, 200 nM, 2 µM and 20 µM for 12, 24 and 48 h | BEAS-2B | Enhanced cell growth and proliferation; up-regulation of protein, Cyclin D1, is commonly over-expressed in cancer cells | Development/progression of lung carcinogenesis | [196] |
Arsenite, MMAIII, DMAIII, DMTAV | Variable concentrations for 24 h | BEAS-2B | Arsenite was least cytotoxic; methylated forms shared similar cytotoxicities; dose-dependent increase in number of differentially expressed genes linked to carcinogenicity; minimally cytotoxic arsenic levels induced oxidative stress | Lung cancer | [168] |
Na-arsenite | 30, 60, 290 ppb for 24 h | 16HBE14o- (wounded) | Dose-dependent inhibition of the wound healing response | Compromised lung function | [212] |
Na-arsenite | 5–40 µM for 6–48 h | BEAS-2B | Overexpression of COX-2; apoptotic disruption; cell proliferation | Accumulation of genetically damaged cells leading to malignancy | [197] |
Human pulmonary fibroblast cells | |||||
Na-arsenite | 0.5–10 µM for 24 and 120 h | HPF | Dose-dependent reduction in cell survival; concentration-dependent increase in chromosome damage such as DNA double strand breaks. | Lung cancer | [189] |
As-trioxide | 1–50 µM for 24 h | HPF | Dose-dependent reduction in cell survival between 10 and 50 µM As-trioxide | [190] | |
As-trioxide | 1–50 µM for 0–180 h | NHBF | Dose-dependent increase in ROS (O2−) levels; cell growth inhibition and cell death | [191] | |
Alveolar macrophage cells (harvested from animals) | |||||
Na-arsenite | 1.25–10 µM for 24–96 h | Mouse AM | Dose-dependent reduction in macrophage viability and volume; time-dependent increase in apoptotic cell at higher arsenic concentrations; decrease in ROS (O2−) generation at low concentrations | Immunological disorders; decreased capacity to respond to toxicants | [185] |
As-trioxide & Ca-arsenate (slightly soluble) | 0.1–300 µg/mL for 24 h | Rat AM | Dose-dependent reduction of ROS (O2−) after 24 h; similar pattern for both arsenicals (around 10 µg/mL) | Alteration in AM function; compromised host defence | [128] |
Na-arsenite & Na-arsenate (soluble forms) | 0.1–300 µg/mL for 24 h | Rat AM | Dose-dependent reduction of ROS (O2−) after 24 h; AsIII more potent than AsV; differential immune response between the two species | Compromised defence against infection and altered immune surveillance | [208] |
Arsenic (fly ash) | 50–230 ppm for 24 h | Rabbit AM | Concentration-dependent inhibition of ROS (H2O2 and O2−) production | Suppression of AM function | [206] |
As-trioxide | 0.1–1000 µM for 24 h | Rabbit AM | Concentration-dependent inhibition of ROS (H2O2 and O2−) production | Increased susceptibility to bacterial infections | [207] |
As-trioxide (fly ash) | Industrially-relevant levels for 24 h | Rabbit AM | Suppressed ROS (O2−) production | Suppression of AM function | [205] |
6. Epidemiological and Exposure Monitoring
6.1. Known Occupational Exposures
6.2. Inadvertent Environmental Exposures
6.3. Impacts of Climate Change
7. Conclusions and Research Priorities
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans, Vol 100 C, Arsenic, Metals, Fibers and Dusts; IARC: Lyon, France, 2012. [Google Scholar]
- Matschullat, J. Arsenic in the geosphere—A review. Sci. Total Environ. 2000, 249, 297–312. [Google Scholar] [CrossRef]
- Buchet, J.P.; Roels, H.; Lauwerys, R.; Braux, P.; Claeys-Thoreau, F.; Lafontaine, A.; Verduyn, G. Repeated surveillance of exposure to cadmium, manganese, and arsenic in school-age children living in rural, urban, and nonferrous smelter areas in Belgium. Environ. Res. 1980, 22, 95–108. [Google Scholar] [CrossRef]
- Carrizales, L.; Razo, I.; Tellez-Hernandez, J.I.; Torres-Nerio, R.; Torres, A.; Batres, L.E.; Cubillas, A.; Diaz-Barriga, F. Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children. Environ. Res. 2006, 101, 1–10. [Google Scholar] [CrossRef]
- Frost, F.; Harter, L.; Milham, S.; Royce, R.; Smith, A.H.; Hartley, J.; Enterline, P. Lung cancer among women residing close to an arsenic emitting copper smelter. Arch. Environ. Health 1987, 42, 148–153. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Baker, E.L. Exposure of children to heavy metals from smelters: Epidemiology and toxic consequences. Environ. Res. 1981, 25, 204–224. [Google Scholar] [CrossRef]
- Newhook, R.; Hirtle, H.; Byrne, K.; Meek, M.E. Releases from copper smelters and refineries and zinc plants in Canada: Human health exposure and risk characterization. Sci. Total Environ. 2003, 301, 23–41. [Google Scholar] [CrossRef]
- Yang, G.; Ma, L.; Xu, D.; Li, J.; He, T.; Liu, L.; Jia, H.; Zhang, Y.; Chen, Y.; Chai, Z. Levels and speciation of arsenic in the atmosphere in Beijing, China. Chemosphere 2012, 87, 845–850. [Google Scholar] [CrossRef]
- Csavina, J.; Field, J.; Taylor, M.P.; Gao, S.; Landazuri, A.; Betterton, E.A.; Saez, A.E. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci. Total Environ. 2012, 433, 58–73. [Google Scholar] [CrossRef]
- Zota, A.R.; Willis, R.; Jim, R.; Norris, G.A.; Shine, J.P.; Duvall, R.M.; Schaider, L.A.; Spengler, J.D. Impact of mine waste on airborne respirable particulates in northeastern Oklahoma, United States. J. Air Waste Manag. Assoc. 2009, 59, 1347–1357. [Google Scholar] [CrossRef]
- Aneja, V.P.; Isherwood, A.; Morgan, P. Characterisation of particulate matter (PM10) related to surface coal mining operations in Appalachia. Atmos. Environ. 2012, 54, 496–501. [Google Scholar] [CrossRef]
- Ghose, M.K.; Majee, S.R. Characteristics of hazardous airborne dust around an Indian surface coal mining area. Environ. Monit. Assess. 2007, 130, 17–25. [Google Scholar] [CrossRef]
- Soukup, J.M.; Becker, S. Human alveolar macrophage responses to air pollution particulates are associated with insoluble components of coarse material, including particulate endotoxin. Toxicol. Appl. Pharmacol. 2001, 171, 20–26. [Google Scholar] [CrossRef]
- Thompson, R.J.; Visser, A.T. Mine Haul Fugitive Dust Emission and Exposure Characterisation. In Proceedings of the 2nd International Conference on the Impact of Environmental Factors on Health, Catania, Sicily, Italy, 17–19 September 2003; pp. 117–141.
- Ghose, M.K.; Majee, S.R. Assessment of dust generation due to opencast coal mining—An Indian case study. Environ. Monit. Assess. 2000, 61, 255–263. [Google Scholar]
- Castillo, S.; de la Rosa, J.D.; de la Campa, A.M.S.; Gonzalez-Castanedo, Y.; Fernandez-Caliani, J.C.; Gonzalez, I.; Romero, A. Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). Sci. Total Environ. 2013, 449, 363–372. [Google Scholar]
- Corriveau, M.C.; Jamieson, H.E.; Parsons, M.B.; Campbell, J.L.; Lanzirotti, A. Direct characterization of airborne particles associated with arsenic-rich mine tailings: Particle size, mineralogy and texture. Appl. Geochem. 2011, 26, 1639–1648. [Google Scholar] [CrossRef]
- Moreno, T.; Oldroyd, A.; McDonald, I.; Gibbons, W. Preferential fractionation of trace metals-metalloids into PM10 resuspended from contaminated gold mine tailings at Rodalquilar, Spain. Water Air Soil Pollut. 2007, 179, 93–105. [Google Scholar] [CrossRef]
- Meza-Figueroa, D.; Maier, R.M.; de la O-Villanueva, M.; Gomez-Alvarez, A.; Moreno-Zazueta, A.; Rivera, J.; Campillo, A.; Grandlic, C.J.; Anaya, R.; Palafox-Reyes, J. The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere 2009, 77, 140–147. [Google Scholar] [CrossRef]
- Kim, C.S.; Wilson, K.M.; Rytuba, J.J. Particle-size dependence on metal(loid) distributions in mine wastes: Implications for water contamination and human exposure. Appl. Geochem. 2011, 26, 484–495. [Google Scholar] [CrossRef]
- Ragaini, R.C.; Ralston, H.R.; Roberts, N. Environmental trace metal contamination in Kellogg, Idaho, near a lead smelting complex. Environ. Sci. Technol. 1977, 11, 773–781. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Rahn, K.A. The Chemical Composition of the Atmospheric Aerosol; Technical Report; University of Rhode Island: Kingston, RI, USA, 1976. [Google Scholar]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Arsenic. Available online: http://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=22&tid=3 (accessed on 5 July 2013).
- Lee, D.S.; Garland, J.A.; Fox, A.A. Atmospheric concentrations of trace elements in urban areas of the United Kingdom. Atmos. Environ. 1994, 28, 2691–2713. [Google Scholar] [CrossRef]
- Garcia-Aleix, J.R.; Delgado-Saborit, J.M.; Verdu-Martin, G.; Amigo-Descarrega, J.M.; Esteve-Cano, V. Trends in arsenic levels in PM10 and PM2.5 aerosol fractions in an industrialized area. Environ. Sci. Pollut. Res. 2014, 21, 695–703. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Morman, S.A. Mine wastes and human health. Elements 2011, 7, 399–404. [Google Scholar] [CrossRef]
- Schaider, L.A.; Senn, D.B.; Brabander, D.J.; McCarthy, K.D.; Shine, J.P. Characterization of zinc, lead, and cadmium in mine waste: Implications for transport, exposure, and bioavailability. Environ. Sci. Technol. 2007, 41, 4164–4171. [Google Scholar] [CrossRef]
- Andrade, C.F.; Jamieson, H.E.; Kyser, T.K.; Praharaj, T.; Fortin, D. Biogeochemical redox cycling of arsenic in mine-impacted lake sediments and co-existing pore waters near Giant Mine, Yellowknife Bay, Canada. Appl. Geochem. 2010, 25, 199–211. [Google Scholar] [CrossRef]
- Helsen, L. Sampling technologies and air pollution control devices for gaseous and particulate arsenic: A review. Environ. Pollut. 2005, 137, 305–315. [Google Scholar] [CrossRef]
- Shibayama, A.; Takasaki, Y.; William, T.; Yamatodani, A.; Higuchi, Y.; Sunagawa, S.; Ono, E. Treatment of smelting residue for arsenic removal and recovery of copper using pyro-hydrometallurgical process. J. Hazard. Mater. 2010, 181, 1016–1023. [Google Scholar] [CrossRef]
- Cullen, W.R.; Reimer, K.J. Arsenic speciation in the environment. Chem. Rev. 1989, 89, 713–764. [Google Scholar] [CrossRef]
- Wang, S.; Mulligan, C.N. Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Sci. Total Environ. 2006, 366, 701–721. [Google Scholar] [CrossRef]
- Maggs, R. A Review of Arsenic in Ambient Air in the UK. Available online: http://uk-air.defra.gov.uk/reports/empire/arsenic00/arsenic_97v.pdf (accessed on 12 November 2013).
- Twidwell, L.G.; Mehta, A.K. Disposal of arsenic bearing copper smelter flue dust. Nucl. Chem. Waste Manag. 1985, 5, 297–303. [Google Scholar]
- Rieuwerts, J.; Farago, M. Heavy metal pollution in the vicinity of a secondary lead smelter in the Czech Republic. Appl. Geochem. 1996, 11, 17–23. [Google Scholar]
- Kovacevic, R.; Jovasevic-Stojanovic, M.; Tasic, V.; Milosevic, N.; Petrovic, N.; Stankovic, S.; Matic-Besarabic, S. Preliminary analysis of levels of arsenic and other metallic elements in PM10 sampled near copper smelter Bor, (Serbia). Chem. Ind. Chem. Eng. Q. 2010, 16, 269–279. [Google Scholar]
- Montenegro, V.; Sano, H.; Fujisawa, T. Recirculation of high arsenic content copper smelting dust to smelting and converting processes. Miner. Eng. 2013, 49, 184–189. [Google Scholar] [CrossRef]
- Finkelman, R.B. Trace elements in coal: Environmental and health significance. Biol. Trace Elem. Res. 1999, 67, 197–204. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Gross, P.M.K. The types of data needed for assessing the environmental and human health impacts of coal. Int. J. Coal Geol. 1999, 40, 91–101. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, G.; Chou, C.; Wong, M.H.; Zheng, L.; Ding, R. Arsenic in Chinese coals: Distribution, modes of occurrence, and environmental effects. Sci. Total Environ. 2011, 412–413, 1–13. [Google Scholar] [CrossRef]
- Sia, S.; Abdullah, W.H. Enrichment of arsenic, lead, and antimony in Balingian coal from Sarawak, Malaysia: Modes of occurrence, origin, and partitioning behaviour during coal combustion. Int. J. Coal Geol. 2012, 101, 1–14. [Google Scholar] [CrossRef]
- Huggins, F.E.; Helble, J.J.; Shah, N.; Zhao, J.; Srinivasachar, S.; Morency, J.R.; Lu, F.; Huffman, G.P. Forms of occurrence of arsenic in coal and their behavior during coal combustion. Abstr. Pap. Am. Chem. Soc. 1993, 38, 265–271. [Google Scholar]
- Nelson, P.F.; Shah, P.; Strezov, V.; Halliburton, B.; Carras, J.N. Environmental impacts of coal combustion: A risk approach to assessment of emissions. Fuel 2010, 89, 810–816. [Google Scholar] [CrossRef]
- Bolanz, R.M.; Majzlan, J.; Jurkovic, L.; Gottlicher, J. Mineralogy, geochemistry, and arsenic speciation in coal combustion waste from Novaky, Slovakia. Fuel 2012, 94, 125–136. [Google Scholar] [CrossRef]
- Furimsky, E. Characterization of trace element emissions from coal combustion by equilibrium calculations. Fuel Process. Technol. 2000, 63, 29–44. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Huang, W.; Wang, Z.; Li, Y.; Song, D.; Zhao, F.; Zheng, C. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China. Energy Convers. Manag. 2008, 49, 615–624. [Google Scholar] [CrossRef]
- Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; O’Connor, J.T.; Brownfield, I.K. Characterization of feed coal and coal combustion products from power plants in Indiana and Kentucky. In Proceedings of the 24th International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, Florida, FL, USA, 8–11 March 1999; pp. 989–1000.
- Yudovich, Y.E.; Ketris, M.P. Arsenic in coal: A review. Int. J. Coal Geol. 2005, 61, 141–196. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Y.; Xue, Z.; Qu, Y.; Chai, F.; Hao, J. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007. Sci. Total Environ. 2011, 409, 3078–3081. [Google Scholar] [CrossRef]
- Ondov, J.M.; Ragaini, R.C.; Bierman, A.H. Elemental emissions from a coal-fired power plant. Comparison of a venturi wet scrubber system with a cold-side electrostatic precipitator. Environ. Sci. Technol. 1979, 13, 588–601. [Google Scholar] [CrossRef]
- Hamilton, E.I. Environmental variables in a holistic evaluation of land contaminated by historic mine wastes: A study of multi-element mine wastes in West Devon, England using arsenic as an element of potential concern to human health. Sci. Total Environ. 2000, 249, 171–221. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Lopez-Soler, A.; Plana, F. Levels and chemistry of atmospheric particulates induced by a spill of heavy metal mining wastes in the Donana area, Southwest Spain. Atmos. Environ. 2000, 34, 239–253. [Google Scholar] [CrossRef]
- Mendez, M.; Armienta, M.A. Arsenic phase distribution in Zimapan mine tailings, Mexico. Geofis. Int. 2003, 42, 131–140. [Google Scholar]
- Smith, E.; Smith, J.; Smith, L.; Biswas, T.; Correll, R.; Naidu, R. Arsenic in Australian environment: An overview. J. Environ. Sci. Health Part. A 2003, A38, 223–239. [Google Scholar]
- Mullins, M.J.P.; Norman, J.B. Solubility of metals in windblown dust from mine waste dump sites. Appl. Occup. Environ. Hyg. 1994, 9, 218–223. [Google Scholar] [CrossRef]
- Northey, S.; Mohr, S.; Mudd, G.M.; Weng, Z.; Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 2014, 83, 190–201. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (EIA). Annual Energy Outlook 2014 with Projections to 2040; U.S. EIA: Washington, DC, USA, 2014. [Google Scholar]
- U.S. Energy Information Administration (EIA). International Energy Outlook 2013. Available online: http://www.eia.gov/forecasts/ieo/more_highlights.cfm (accessed on 18 August 2013).
- Pandey, V.C.; Singh, J.S.; Singh, R.P.; Singh, N.; Yunus, M. Arsenic hazards in coal fly ash and its fate in Indian scenario. Resour. Conserv. Recycl. 2011, 55, 819–835. [Google Scholar] [CrossRef]
- European Commission. Abandoned Mines Can Be Used as Geothermal Energy Source. Available online: http://ec.europa.eu/environment/integration/research/newsalert/pdf/230na6.pdf (accessed on 18 December 2013).
- Bureau of Land Management, U.S. Department of the Interior. Abandoned Mine Lands. Available online: http://www.blm.gov/wo/st/en/prog/more/Abandoned_Mine_Lands.html (accessed on 17 May 2013).
- Ministerial Council on Mineral and Petroleum Resources/Minerals Council of Australia. Strategic Framework for Managing Abandoned Mines in the Minerals Industry. Available online: http://www.industry.gov.au/resource/Mining/Documents/StrategicFrameworkforManagingAbandonedMines.pdf (accessed on 2 February 2014).
- Unger, C.; Lechner, A.; Glenn, V.; Edraki, M.; Mulligan, D.R. Mapping and prioritising rehabilitation of abandoned mines in Australia. In Proceedings of the 2012 Life-of-Mine Conference, Brisbane, Australia, 10–12 July 2012.
- Gonzalez, R.C.; Gonzalez-Chavez, M.C.A. Metal accumulation in wild plants surrounding mining wastes. Environ. Pollut. 2006, 144, 84–92. [Google Scholar]
- Lottermoser, B.G. Mine Wastes: Characterisation, Treatment and Environmental Impacts; Springer: New York, NY, USA, 2010. [Google Scholar]
- Liao, B.; Huang, L.N.; Ye, Z.H.; Lan, C.Y.; Shu, W.S. Cut-off net acid generation pH in predicting acid-forming potential in mine spoils. J. Environ. Qual. 2007, 36, 887–891. [Google Scholar] [CrossRef]
- European Commission. Air Quality Standards. Available online: http://ec.europa.eu/environment/air/quality/standards.htm (accessed on 3 June 2014).
- World Health Organisation. Air Quality Guidelines for Europe, 2nd ed.; WHO Regional Publications: Geneva, Switzerland, 2000. [Google Scholar]
- Vincent, J.H. Aerosol Sampling: Science, Standards, Instrumentations and Applications; Wiley: Chichester, UK, 2007. [Google Scholar]
- Newman, L.S. Clinical pulmonary toxicology. In Clinical Environmental Health and Exposures, 2nd ed.; Sullivan, J.B., Krieger, G., Eds.; Lippincott Wiliams and Wilkins: Philadelphia, PA, USA, 2001; pp. 206–233. [Google Scholar]
- United States Environmental Protection Agency. Locating and Estimating Air (L&E) Documents, EPA Document Number 454/r-98–013. Available online: http://www.epa.gov/ttnchie1/le/ (accessed on 10 November 2013).
- De la Campa, A.M.S.; de la Rosa, J.D.; Sanchez-Rodas, D.; Oliveira, V.; Alastuey, A.; Querol, X.; Gomez-Ariza, J.L. Arsenic speciation study of PM2.5 in an urban area near a copper smelter. Atmos. Environ. 2008, 42, 6487–6495. [Google Scholar]
- Sanchez-Rodas, D.; Sanchez de la Campa, A.M.; de la Rosa, J.D.; Oliveira, V.; Gomez-Ariza, J.L.; Querol, X.; Alastuey, A. Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in southwestern Spain. Chemosphere 2007, 66, 1485–1493. [Google Scholar] [CrossRef]
- Tsopelas, F.; Tsakanika, L.; Ochsenkuhn-Petropoulou, M. Extraction of arsenic species from airborne particulate filters-application to an industrial area of Greece. Microchem. J. 2008, 89, 165–170. [Google Scholar] [CrossRef]
- Fernandez-Camacho, R.; de la Rosa, J.; de la Campa, A.M.S.; Gonzalez-Castanedo, Y.; Alastuey, A.; Querol, X.; Rodriguez, S. Geochemical characterization of Cu-smelter emission plumes with impact in an urban area of SW Spain. Atmos. Res. 2010, 96, 590–601. [Google Scholar]
- Polissar, L.; Lowry-Coble, K.; Kalman, D.A.; Hughes, J.P.; van Belle, G.; Covert, D.S.; Burbacher, T.M.; Bolgiano, D.; Mottet, N.K. Pathways of human exposure to arsenic in a community surrounding a copper smelter. Environ. Res. 1990, 53, 29–47. [Google Scholar] [CrossRef]
- European Commission (EC). Ambient Air Pollution by As, Cd and Ni Compounds. Position Paper. Available online: http://www.itm.su.se/reflabmatningar/dokument/as_cd_ni_position_paper.pdf (accessed on 10 July 2013).
- Johnson, B.D.; Myers, J.E. Preliminary validation of modelled environmental PM10 Arsenic Trioxide (As2O3) dust fallout from a copper smelter in Namibia. In Proceedings of the 4th International Congress on Arsenic in the Environment, Cairns, Australia, 22–27 July 2012; pp. 431–432.
- Serbula, S.M.; Antonijevic, M.M.; Milosevic, N.M.; Milic, S.M.; Ilic, A.A. Concentrations of particulate matter and arsenic in Bor (Serbia). J. Hazard. Mater. 2010, 181, 43–51. [Google Scholar] [CrossRef]
- Chen, B.; Stein, A.F.; Castell, N.; de la Rosa, J.D.; de la Campa, A.M.S.; Gonzalez-Castanedo, Y.; Draxler, R.R. Modeling and surface observations of arsenic dispersion from a large Cu-smelter in southwestern Europe. Atmos. Environ. 2012, 49, 114–122. [Google Scholar]
- Oliveira, V.; Gomez-Ariza, J.L.; Sanchez-Rodas, D. Extraction procedures for chemical speciation of arsenic in atmospheric total suspended particles. Anal. Bioanal. Chem. 2005, 382, 335–340. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J. Atmospheric heavy metals and arsenic in China: Situation, sources and control policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Greenpeace. Detecting the Heavy Metal Concentration of PM2.5 in Beijing. Available online: http://www.greenpeace.org/eastasia/Global/eastasia/publications (accessed on 3 March 2014).
- Okuda, T.; Katsuno, M.; Naoi, D.; Nakao, S.; Shigeru, T.; He, K.; Ma, Y.; Lei, Y.; Jia, Y. Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006. Chemosphere 2008, 72, 917–924. [Google Scholar] [CrossRef]
- Xie, R.; Seip, H.M.; Wibetoe, G.; Nori, S.; McLeod, C.W. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10. Sci. Total Environ. 2006, 370, 409–415. [Google Scholar] [CrossRef]
- Zhou, S.; Yuan, Q.; Li, W.; Lu, Y.; Zhang, Y.; Wang, W. Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. J. Environ. Sci. 2014, 26, 205–213. [Google Scholar] [CrossRef]
- Kribek, B.; Majer, V.; Pasava, J.; Kamona, F.; Mapani, B.; Keder, J.; Ettler, V. Contamination of soils with dust fallout from the tailings dam at the Rosh Pinah area, Namibia: Regional assessment, dust dispersion modeling and environmental consequences. J. Geochem. Explor. 2014. [Google Scholar] [CrossRef]
- Protonotarios, V.; Petsas, N.; Moutsatsou, A. Levels and composition of atmospheric particulates (PM10) in a mining-industrial site in the city of Lavrion, Greece. J. Air Waste Manag. Assoc. 2002, 52, 1263–1273. [Google Scholar] [CrossRef]
- Jain, C.K.; Ali, I. Arsenic: Occurrence, toxicity and speciation techniques. Water Res. 2000, 34, 4304–4312. [Google Scholar] [CrossRef]
- Ferguson, J.F.; Gavis, J. A review of the arsenic cycle in natural waters. Water Res. 1972, 6, 1259–1274. [Google Scholar] [CrossRef]
- Akter, K.; Naidu, R. Arsenic speciation in the environmen. In Managing Arsenic in the Environment: From Soil to Human Health; Naidu, R., Smith, E., Owens, G., Bhattacharya, P., Nadebaum, P., Eds.; CSIRO Publishing: Collingwood, VT, Australia, 2006; pp. 61–74. [Google Scholar]
- Jamieson, H.E.; Walker, S.R.; Andrade, C.F.; Wrye, L.A.; Rasmussen, P.E.; Lanzirotti, A.; Parsons, M.B. Identification and characterization of arsenic and metal compounds in contaminated soil, mine tailings, and house dust using synchrotron-based microanalysis. Hum. Ecol. Risk Assess. 2011, 17, 1292–1309. [Google Scholar] [CrossRef]
- Walker, S.R.; Jamieson, H.E. The speciation of arsenic in iron oxides in mine wastes from the giant gold mine, N.W.T. Applications of synchrotron micro-XRD and micro-XANES at the grain scale. Can. Mineral. 2005, 43, 1205–1224. [Google Scholar] [CrossRef]
- Cherry, J.A.; Shaikh, A.U.; Tallman, D.E.; Nicholson, R.V. Arsenic species as an indicator of redox conditions in groundwater. J. Hydrol. 1979, 43, 373–392. [Google Scholar] [CrossRef]
- Meharg, A. Arsenic in rice—Understanding a new disaster for southeast Asia. Trends Plant Sci. 2004, 9, 415–417. [Google Scholar] [CrossRef]
- Korte, N.E.; Fernando, Q. A review of arsenic (III) in groundwater. Crit. Rev. Environ. Control 1991, 21, 1–39. [Google Scholar] [CrossRef]
- Garcia-Manyes, S.; Jimenez, G.; Padro, A.; Rubio, R.; Rauret, G. Arsenic speciation in contaminated soils. Talanta 2002, 58, 97–109. [Google Scholar] [CrossRef]
- Shuvaeva, O.V.; Bortnikova, S.B.; Korda, T.M.; Lazareva, E.V. Arsenic speciation in a contaminated gold processing tailings dam. Geostand. Newsl. 2000, 24, 247–252. [Google Scholar]
- Eatough, D.J.; Christensen, J.J.; Eatough, N.L.; Hill, M.W.; Major, T.D.; Mangelson, N.F.; Post, M.E.; Ryder, J.F.; Hansen, L.D.; Meisenheimer, R.G.; et al. Sulfur chemistry in a copper smelter plume. Atmos. Environ. 1982, 16, 1001–1015. [Google Scholar] [CrossRef]
- Hedberg, E.; Gidhagen, L.; Johansson, C. Source contributions to PM10 and arsenic concentrations in Central Chile using positive matrix factorization. Atmos. Environ. 2005, 39, 549–561. [Google Scholar] [CrossRef]
- Alleman, L.Y.; Lamaison, L.; Perdrix, E.; Robache, A.; Galloo, J. PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos. Res. 2010, 96, 612–625. [Google Scholar] [CrossRef]
- Hrebenyk, B.W.; Iravani, A. Air Quality Monitoring at Giant Mine Site—Yellowknife, A Baseline Study; Report for the Indian and Northern Affairs Canada, Giant Mine Remediation Project; SENES Consultants Ltd: Ontario, USA, 2007. [Google Scholar]
- Cao, S.; Duan, X.; Zhao, X.; Ma, J.; Dong, T.; Huang, N.; Sun, C.; He, B.; Wei, F. Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Sci. Total Environ. 2014, 472, 1001–1009. [Google Scholar] [CrossRef]
- Huang, M.; Chen, X.; Shao, D.; Zhao, Y.; Wang, W.; Wong, M.H. Risk assessment of arsenic and other metals via atmospheric particles, and effects of atmospheric exposure and other demographic factors on their accumulations in human scalp hair in urban area of Guangzhou, China. Ecotoxicol. Environ. Saf. 2014, 102, 84–92. [Google Scholar] [CrossRef]
- Milham, S.; Strong, T. Human arsenic exposure in relation to a copper smelter. Environ. Res. 1974, 7, 176–182. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Questions About Your Community: Indoor Air. Available online: http://www.epa.gov/region1/communities/indoorair.html (accessed on 5 January 2014).
- Davies, C.N. Inhalation risk and particle size in dust and mist. Brit. J. Ind. Med. 1949, 6, 245–253. [Google Scholar]
- Hofmann, W. Modelling inhaled particle deposition in the human lung-A review. J. Aerosol Sci. 2011, 42, 693–724. [Google Scholar] [CrossRef]
- Lippman, M.; Yeates, D.B.; Albert, R.E. Deposition, retention, and clearance of inhaled particle. Br. J. Ind. Med. 1980, 37, 337–362. [Google Scholar]
- Bailey, M.R. The new ICRP model for the respiratory tract. Radiat. Prot. Dosim. 1994, 53, 107–114. [Google Scholar]
- Labiris, N.R.; Dolovich, M.B. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. J. Clin. Pharmacol. 2003, 56, 588–599. [Google Scholar]
- Nicod, L.P. Lung defences: An overview. Eur. Respir. J. 2005, 14, 45–50. [Google Scholar]
- Taylor, D.M. Human respiratory tract model for radiological protection. J. Radiol. Prot. 1999, 16. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Hazard Prevention and Control in the Work Environment: Airborne Dust; Occupatonal and Environmental Health Department of Protection of the Human Environment, WHO: Geneva, Switzerland, 1999. [Google Scholar]
- Smith, J.R.H.; Etherington, G.; Shutt, A.L.; Youngman, M.J. A study of aerosol deposition and clearance from the human nasal passage. Ann. Occup. Hyg. 2002, 46, 309–313. [Google Scholar]
- Asgharian, B.; Hofmann, W.; Miller, F.J. Mucociliary clearance of insoluble particles from the tracheobronchial airways of the human lung. Aerosol Sci. 2001, 32, 817–832. [Google Scholar]
- Kirch, J.; Guenther, M.; Doshi, N.; Schaefer, U.F.; Schneider, M.; Mitragotri, S.; Lehr, C.M. Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge—An ex vivo and in silico approach. J. Controll. Release 2012, 159, 128–134. [Google Scholar] [CrossRef]
- Wang, C. Inhaled particles; Elsevier Academic Press: New York, NY, USA, 2005. [Google Scholar]
- Folkesson, H.G.; Matthay, M.A.; Westrom, B.R.; Kim, K.J.; Karlsson, B.W.; Hastings, R.H. Alveolar epithelial clearance of protein. J. Appl. Physiol. 1996, 80, 1431–1445. [Google Scholar]
- Martonen, T.B. Mathematical model for the selective deposition of inhaled pharmaceuticals. J. Pharm. Sci. 1993, 82, 1191–1199. [Google Scholar] [CrossRef]
- Hakim, J. Reactive oxygen species and inflammation. C R Seances Soc. Biol. Fil 1993, 187, 286–295. [Google Scholar]
- Hofmann, W.; Asgharian, B. The effect of lung structure on mucociliary clearance and particle retention in human and rat lungs. Toxicol. Sci. 2003, 73, 448–456. [Google Scholar] [CrossRef]
- Rhoads, K.; Sanders, C.L. Lung clearance, translocation, and acute toxicity of arsenic, beryllium, cadmium, cobalt, lead, selenium, vanadium, and ytterbium oxides following deposition in rat lung. Environ. Res. 1985, 36, 359–378. [Google Scholar] [CrossRef]
- Marafante, E.; Vahter, M. Solubility, retention, and metabolism of intratracheally and orally administered inorganic arsenic compounds in the hamster. Environ. Res. 1987, 42, 72–82. [Google Scholar] [CrossRef]
- Edsbacker, S.; Wollmer, P.; Selroos, O.; Borgstrom, L.; Olsson, B.; Ingelf, J. Do airway clearance mechanisms influence the local and systemic effects of inhaled corticosteroids? Pulm. Pharmacol. Ther. 2008, 21, 247–258. [Google Scholar]
- Lantz, R.C.; Parliman, G.; Chen, G.J.; Barber, B.; Winski, S.; Carter, D.E. Effect of arsenic exposure on alveolar macrophage function. II. Effect of slightly soluble forms of As(III) and As(V). Environ. Res. 1995, 68, 59–67. [Google Scholar]
- Pershagen, G.; Lind, B.; Bjorklund, N. Lung retention and toxicity of some inorganic arsenic compounds. Environ. Res. 1982, 29, 425–434. [Google Scholar] [CrossRef]
- Takeo, I.; Akira, H.; Noburu, I. Comparison of arsenic trioxide and calcium arsenate retention in the rat lung after intratracheal instillation. Toxicol. Lett. 1982, 12, 1–5. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Edwards, M.; Menon, C.V.; Gong, G.; Barber, R. Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: A project FRONTIER study. Int. J. Environ. Res. Public Health 2011, 8, 861–874. [Google Scholar] [CrossRef]
- Zhang, C.; Mao, G.; He, S.; Yang, Z.; Yang, W.; Zhang, X.; Qiu, W.; Ta, N.; Cao, L.; Yang, H.; et al. Relationship between long-term exposure to low-level arsenic in drinking water and the prevalence of abnormal blood pressure. J. Hazard. Mater. 2013, 262, 1154–1158. [Google Scholar] [CrossRef]
- Caussy, D. Case studies of the impact of understanding bioavailability: Arsenic. Ecotoxicol. Environ. Saf. 2003, 56, 164–173. [Google Scholar] [CrossRef]
- Naidu, R.; Bolan, N.S.; Megharaj, M.; Juhasz, A.L.; Gupta, S.; Clothier, B.; Schulin, R. Bioavailability, definition, assessment and implications for risk assessment. In Chemical Bioavailability in Terrestrial Environment; Elsevier: Amsterdam, The Netherland, 2008; pp. 1–8. [Google Scholar]
- Ng, J.C.; Juhasz, A.L.; Smith, E.; Naidu, R. Contaminant Bioavailability and Bioaccessibility. Part. 2: Guidance for Industry; Report for the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Technical Report series no. 14; CRC CARE: Salisbury South, Australia, 2009. [Google Scholar]
- Broadway, A.; Cave, M.R.; Wragg, J.; Fordyce, F.M.; Bewley, R.J.F.; Graham, M.C.; Ngwenya, B.T.; Farmer, J.G. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Sci. Total Environ. 2010, 409, 267–277. [Google Scholar] [CrossRef]
- Colombo, C.; Monhemius, A.J.; Plant, J.A. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotoxicol. Environ. Saf. 2008, 71, 722–730. [Google Scholar] [CrossRef]
- Hedberg, Y.; Gustafsson, J.; Karlsson, H.L.; Moller, L.; Wallinder, I.O. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: In vitro studies with an inhalation perspective. Part. Fibre Toxicol. 2010, 7, 1–14. [Google Scholar] [CrossRef]
- Herting, G.; Wallinder, I.O.; Leygraf, C. Metal release from various grades of stainless steel exposed to synthetic body fluids. Corros. Sci. 2007, 49, 103–111. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Ziegler, T.L. The medical geochemistry of dusts, soils and other earth materials. In Environmental Geochemistry: Treatise of Geochemistry; Lollar, B.S., Holland, H.D., Turekian, K.K., Eds.; Elsevier Ltd: Oxford, UK, 2003; Volume 9, pp. 263–310. [Google Scholar]
- Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 2011, 18, 15–28. [Google Scholar]
- Plumlee, G.S.; Morman, S.A.; Ziegler, T.L. The toxocological geochemistry of earth materials: An overview of processes and the interdisciplinary methods used to understsand them. Rev. Mineral. Geochem. 2006, 64, 5–57. [Google Scholar] [CrossRef]
- Wolf, R.E.; Morman, S.A.; Hageman, P.L.; Hoefen, T.M.; Plumlee, G.S. Simultaneous speciation of arsenic, selenium, and chromium: Species stability, sample preservation, and analysis of ash and soil leachates. Anal. Bioanal. Chem. 2011, 401, 2733–2745. [Google Scholar] [CrossRef]
- Kitchin, K.T. Recent advances in arsenic carcinogenesis: Modes of action, animal model systems, and methylated arsenic metabolites. Toxicol. Appl. Pharmacol. 2001, 172, 249–261. [Google Scholar] [CrossRef]
- Vahter, M.; Concha, G. Role of metabolism in arsenic toxicity. Pharmacol. Toxicol. 2001, 89, 1–5. [Google Scholar] [CrossRef]
- Vahter, M. Mechanisms of arsenic biotransformation. Toxicology 2002, 181–182, 211–217. [Google Scholar] [CrossRef]
- Roy, P.; Saha, A. Metabolism and toxicity of arsenic: A human carcinogen. Curr. Sci. 2002, 82, 38–45. [Google Scholar]
- Thomas, D.J. Molecular processes in cellular arsenic metabolism. Toxicol. Appl. Pharmacol. 2007, 222, 365–373. [Google Scholar] [CrossRef]
- Styblo, M.; Drobna, Z.; Jaspers, I.L.S.; Thomas, D.J. The role of biomethylation in toxicity and carcinogenicity of arsenic: A research update. Environ. Health Perspect. 2002, 110, 767–771. [Google Scholar] [CrossRef]
- Brima, E.I.; Haris, P.I.; Jenkins, R.O.; Polya, D.A.; Gault, A.G.; Harrington, C.F. Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom. Toxicol. Appl. Pharmacol. 2006, 216, 122–130. [Google Scholar] [CrossRef]
- Gebel, T.W. Arsenic methylation is a process of detoxification through accelerated excretion. Int. J. Hyg. Environ. Health 2002, 205, 505–508. [Google Scholar] [CrossRef]
- Styblo, M.; Del Razo, L.M.; Vega, L.; Germolec, D.R.; LeCluyse, E.L.; Hamilton, G.A.; Reed, W.; Wang, C.; Cullen, W.R.; Thomas, D.J. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 2000, 74, 289–299. [Google Scholar] [CrossRef]
- Thomas, D.J.; Waters, S.B.; Styblo, M. Elucidating the pathway for arsenic methylation. Toxicol. Appl. Pharmacol. 2004, 198, 319–326. [Google Scholar] [CrossRef]
- Rossman, T. Arsenic. In Environmental and Occupational Medicine; Rom, W., Markowitz, S., Eds.; Lippincott Williams and Wilkins: Hagerstown, MD, USA, 2007; pp. 1006–1017. [Google Scholar]
- Aposhian, H.V.; Zheng, B.; Aposhian, M.M.; Le, X.C.; Cebrian, M.E.; Cullen, W.; Zakharyan, R.A.; Ma, M.; Dart, R.C.; Cheng, Z.; et al. DMPS-Arsenic challenge test. II. Modulation of arsenic species, including monomethylarsonous acid (MMAIII), excreted in human urine. Toxicol. Appl. Pharmacol. 2000, 165, 74–83. [Google Scholar] [CrossRef]
- Buchet, J.P.; Lauwerys, R.; Roels, H. Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. Int. Arch. Occup. Environ. Health 1981, 48, 71–79. [Google Scholar] [CrossRef]
- Raml, R.; Rumpler, A.; Goessler, W.; Vahter, M.; Li, L.; Ochi, T.; Francesconi, K.A. Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh. Toxicol. Appl. Pharmacol. 2007, 222, 374–380. [Google Scholar] [CrossRef]
- Flora, S.J.S. Arsenic-induced oxidative stress and its reversibility. Free Radic. Biol. Med. 2011, 51, 257–281. [Google Scholar] [CrossRef]
- Kenyon, E.M.; Del Razo, L.M.; Hughes, M.F. Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in mice following acute oral administration of arsenate. Toxicol. Sci. 2005, 85, 468–475. [Google Scholar] [CrossRef]
- Naranmandura, H.; Bu, N.; Suzuki, K.T.; Lou, Y.; Ogra, Y. Distribution and speciation of arsenic after intravenous administration of monomethylmonothioarsonic acid in rats. Chemosphere 2010, 81, 206–213. [Google Scholar] [CrossRef]
- Ratnaike, R.N. Acute and chronic arsenic toxicity. Postgrad. Med. J. 2003, 79, 391–396. [Google Scholar] [CrossRef]
- Aposhian, H.V.; Zakharyan, R.A.; Avram, M.D.; Sampayo-Reyes, A.; Wollenberg, M.L. A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol. Appl. Pharmacol. 2004, 198, 327–335. [Google Scholar] [CrossRef]
- Carter, D.E.; Peraza, M.A.; Ayala-Fierro, F.; Casarez, E.; Barber, D.S.; Winski, S.L. Arsenic metabolism after pulmonary exposure. In Proceedings of the Third International Conference on Arsenic Exposure and Health Effects, San Diego, CA, USA, 12–15 July 1998; pp. 299–309.
- Cohen, S.M.; Arnold, L.L.; Eldan, M.; Lewis, A.S.; Beck, B.D. Methylated arsenicals: The implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit. Rev. Toxicol. 2006, 36, 99–133. [Google Scholar] [CrossRef]
- Dodmane, P.R.; Arnold, L.L.; Kakiuchi-Kiyota, S.; Qiu, F.; Liu, X.; Rennard, S.I.; Cohen, S.M. Cytotoxicity and gene expression changes induced by inorganic and organic trivalent arsenicals in human cells. Toxicology 2013, 312, 18–29. [Google Scholar] [CrossRef]
- Tseng, C. A review on environmental factors regulating arsenic methylation in humans. Toxicol. Appl. Pharmacol. 2009, 235, 338–350. [Google Scholar] [CrossRef]
- Abernathy, C.O.; Thomas, D.J.; Calderon, R.L. Health effects and risk assessment of arsenic. J. Nutr. 2003, 1536–1538. [Google Scholar]
- Chilakapati, J.; Wallace, K.; Ren, H.; Fricke, M.; Bailey, K.; Ward, W.; Creed, J.; Kitchin, K. Genome-wide analysis of BEAS-2B cells exposed to trivalent arsenicals and dimethylthioarsinic acid. Toxicology 2010, 268, 31–39. [Google Scholar] [CrossRef]
- An, Y.; Kato, K.; Nakano, M.; Otsu, H.; Okada, S.; Yamanaka, K. Specific induction of oxidative stress in terminal bronchiolar Clara cells during dimethylarsenic-induced lung tumor promoting process in mice. Cancer Lett. 2005, 230, 57–64. [Google Scholar] [CrossRef]
- Yamanaka, K.; Okada, S. Induction of lung-specific DNA damage by metabolically methylated arsenics via the production of free radicals. Environ. Health Perspect. 1994, 102, 37–40. [Google Scholar] [CrossRef]
- Yamanaka, K.; Kato, K.; Mizoi, M.; An, Y.; Nakanao, M.; Hoshino, M.; Okada, S. Dimethylarsine likely acts as a mouse-pulmonary tumor initiator via the production of dimethylarsine radical and/or its peroxy radical. Life Sci. 2009, 84, 627–633. [Google Scholar] [CrossRef]
- Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007, 35, 1147–1150. [Google Scholar] [CrossRef]
- Betteridge, D.J. What is oxidative stress. Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Andrewes, P.; Kitchin, K.T.; Wallace, K. Dimethylarsine and trimethylarsine are potent genotoxins in vitro. Chem. Res. Toxicol. 2003, 16, 994–1003. [Google Scholar] [CrossRef]
- Kitchin, K.T.; Ahmad, S. Oxidative stress as a possible mode of action for arsenic carcinogenesis. Toxicol. Lett. 2003, 137, 3–13. [Google Scholar] [CrossRef]
- Burdon, R.H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic. Biol. Med. 1995, 18, 775–794. [Google Scholar] [CrossRef]
- Yamanaka, K.; Kato, K.; Mizoi, M.; An, Y.; Takabayashi, F.; Nakano, M.; Hoshino, M.; Okada, S. The role of active arsenic species produced by metabolic reduction of dimethylarsinic acid in genotoxicity and tumorigenesis. Toxicol. Appl. Pharmacol. 2004, 198, 385–393. [Google Scholar] [CrossRef]
- Dopp, E.; von Recklinghausen, U.; Diaz-Bone, R.; Hirner, A.V.; Rettenmeier, A.W. Cellular uptake, subcellular distribution and toxicity of arsenic compounds in methylating and non-methylating cells. Environ. Res. 2010, 110, 435–442. [Google Scholar] [CrossRef]
- Flora, S.J.S. Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: A review. J. Environ. Biol. 2007, 28, 333–347. [Google Scholar]
- Tchounwou, P.B.; Centeno, J.A.; Patlolla, A.K. Arsenic toxicity, mutagenesis, and carcinogenesis—A health risk assessment and management approach. Mol. Cell Biochem. 2004, 255, 47–55. [Google Scholar] [CrossRef]
- Smith, A.H.; Ercumen, A.; Yuan, Y.; Steinmaus, C.M. Increased lung cancer risks are similar whether arsenic is ingested or inhaled. J. Exposure Sci. Environ. Epidemiol. 2009, 19, 343–348. [Google Scholar] [CrossRef]
- Wester, P.O.; Brune, D.; Nordberg, G. Arsenic and selenium in lung, liver, and kidney tissue from dead smelter workers. Br. J. Ind. Med. 1981, 38, 179–184. [Google Scholar]
- Hall, M.N.; Gamble, M.V. Nutritional manipulation of one-carbon metabolisms: Effects on arsenic methylation and toxicity. J. Toxicol. 2012, 2012, 1–11. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Chatterjee, D.; Singh, K.K.; Giri, A. Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: An overview. Int. J. Hyg. Environ. Health 2013, 216, 574–586. [Google Scholar]
- Palmieri, M.A.; Tasat, D.R.; Molinari, B.L. Oxidative metabolism of lung macrophages exposed to sodium arsenite. Toxicol. In Vitro 2007, 21, 1603–1609. [Google Scholar]
- Sappino, A.P.; Schurch, W.; Gabbiani, G. Differentiation repertoire of fibroblastic cells: Expression of cytoskeletal proteins as marker of phenotypic modulations. Lab. Invest. 1990, 63, 144–161. [Google Scholar]
- Bartel, M.; Ebert, F.; Leffers, L.; Karst, U.; Schwerdtle, T. Toxicological characterization of the inorganic and organic arsenic metabolite thio-DMAV in cultured human lung cells. J. Toxicol. 2011, 2011, 1–9. [Google Scholar]
- Ebert, F.; Weiss, A.; Bultemeyer, M.; Hamann, I.; Hartwig, A.; Schwerdtle, T. Arsenicals affect base excision repair by several mechanisms. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2011, 715, 32–41. [Google Scholar] [CrossRef]
- Xie, H.; Huang, S.; Martin, S.; Wise, J.P., Sr. Arsenic is cytotoxic and genotoxic to primary human lung cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 760, 33–41. [Google Scholar]
- Park, W.H.; Kim, S.H. Arsenic trioxide induces human pulmonary fibroblast cell death via the regulation of Bcl-2 family and caspase-8. Mol. Biol. Rep. 2012, 39, 4311–4318. [Google Scholar] [CrossRef]
- You, B.R.; Park, W.H. Arsenic trioxide induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion. Oncol. Rep. 2012, 28, 749–757. [Google Scholar]
- Acharya, A.; Das, I.; Chandhok, D.; Saha, T. Redox regulation in cancer: A double-edged sword with therapeutic potential. Oxid. Med. Cell Longev. 2010, 3, 23–34. [Google Scholar] [CrossRef]
- Carpenter, R.L.; Jiang, Y.; Jing, Y.; He, J.; Rojanasakul, Y.; Liu, L.; Jiang, B. Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and P70s6K1. Biochem. Biophys. Res. Commun. 2011, 414, 533–538. [Google Scholar] [CrossRef]
- Chowdhury, R.; Chatterjee, R.; Giri, M.C.; Chaudhuri, K. Arsenic-induced cell proliferation is associated with enhanced ROS generation, Erk signaling and CyclinA expression. Toxicol. Lett. 2010, 198, 263–271. [Google Scholar] [CrossRef]
- Stueckle, T.A.; Lu, Y.; Davis, M.E.; Wang, L.; Jiang, B.; Holaskova, I.; Schafer, R.; Barnett, J.B.; Rojanasakul, Y. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol. Appl. Pharmacol. 2012, 261, 204–216. [Google Scholar] [CrossRef]
- Wang, F.; Shi, Y.; Yadav, S.; Wang, H. p52–Bcl3 complex promotes cyclin D1 expression in BEAS-2B cells in response to low concentration arsenite. Toxicology 2010, 273, 12–18. [Google Scholar] [CrossRef]
- Ding, J.; Li, J.; Xue, C.; Wu, K.; Ouyang, W.; Zhang, D.; Yan, Y.; Huang, C. Cyclooxygenase-2 induction by arsenite is through a nuclear factor of activated T-cell-dependent pathway and plays an antiapoptotic role in Beas-2B cells. J. Biol. Chem. 2006, 281, 24405–24413. [Google Scholar] [CrossRef]
- Kuwano, T.; Nakao, S.; Yamamoto, H.; Tsuneyoshi, M.; Yamamoto, T.; Kuwano, M.; Ono, M. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 2004, 18, 300–310. [Google Scholar] [CrossRef]
- Zhao, Y.; Usatyuk, P.V.; Gorshkova, I.A.; He, D.; Wang, T.; Moreno-Vinasco, L.; Geyh, A.S.; Breysse, P.N.; Samet, J.M.; Spannhake, E.W.; et al. Regulation of COX-2 expression and IL-6 release by particulate matter in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2009, 40, 19–30. [Google Scholar] [CrossRef]
- Frantz, M.; Wipf, P. Mitochondria as a target in treatment. Environ. Mol. Mutagen. 2010, 51, 462–475. [Google Scholar]
- Zhao, F.; Severson, P.; Pacheco, S.; Futscher, B.W.; Klimecki, W.T. Arsenic exposure induces the Warburg effect in cultured human cells. Toxicol. Appl. Pharmacol. 2013, 271, 72–77. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef]
- Rubins, J.B. Alveolar macrophages: Wielding the double-edged sword of inflammation. Am. J. Respir. Crit. Care Med. 2003, 167, 103–104. [Google Scholar]
- Slauch, J.M. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol. Microbiol. 2011, 80, 580–583. [Google Scholar] [CrossRef]
- Gercken, G.; Labedzka, M.; Geertz, R.; Gulyas, H. Influence of heavy metals and mineral dusts on superoxide anion release by alveolar macrophages. J. Aerosol Sci. 1988, 19, 1133–1136. [Google Scholar] [CrossRef]
- Gulyas, H.; Labedzka, M.; Gercken, G. Depression of alveolar macrophage hydrogen peroxide and superoxide anion release by mineral dusts: Correlation with antimony, lead, and arsenic contents. Environ. Res. 1990, 51, 218–229. [Google Scholar] [CrossRef]
- Labedzka, M.; Gulyas, H.; Schmidt, N.; Gercken, G. Toxicity of metallic ions and oxides to rabbit alveolar macrophages. Environ. Res. 1989, 48, 255–274. [Google Scholar] [CrossRef]
- Lantz, R.C.; Parliman, G.; Chen, G.J.; Carter, D.E. Effect of arsenic exposure on alveolar macrophage function. Environ. Res. 1994, 67, 183–195. [Google Scholar]
- Liang, Y.; Harris, F.L.; Brown, L.A.S. Alcohol induced mitochondrial oxidative stress and alveolar macrophage dysfunction. BioMed Res. Int. 2013, 2014, 1–13. [Google Scholar]
- Cohen, A.B.; Cline, M.J. The human alveolar macrophage: Isolation, cultivation in vitro, and studies of morphologic and functional characteristics. J. Clin. Invest. 1971, 50, 1390–1398. [Google Scholar] [CrossRef]
- Zahm, J.; Kaplan, H.; Herard, A.; Doriot, F.; Pierrot, D.; Somelette, P.; Puchelle, E. Cell migration and proliferation during the in vitro wound repir of the respiratory epithelium. Cell Motil. Cytoskeleton 1997, 37, 33–43. [Google Scholar] [CrossRef]
- Olsen, C.E.; Liguori, A.E.; Zong, Y.; Lantz, R.C.; Burgess, J.L.; Boitano, S. Arsenic upregulates MMP-9 and inhibits wound repair in human airway epithelial cells. Am. J. Physiol. 2008, 295, 293–302. [Google Scholar] [CrossRef]
- Wesley, U.V.; Bove, P.F.; Hristova, M.; McCarthy, S.; van der Vllet, A. Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1. J. Biol. Chem. 2007, 282, 3213–3220. [Google Scholar] [CrossRef]
- Cordeiro, J.V.; Jacinto, A. The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat. Rev. Mol. Cell Biol. 2013, 14, 249–262. [Google Scholar] [CrossRef]
- Lommatzsch, M.; Cicko, S.; Muller, T.; Lucattelli, M.; Bratke, K.; Stoll, P.; Grimm, M.; Curk, T.; Zissel, G.; Ferrari, D.X. Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010, 181, 928–934. [Google Scholar]
- Sherwood, C.L.; Lantz, R.C.; Burgess, J.L.; Boitano, S. Arsenic alters ATP-dependent Ca2+ signaling in human airway epithelial cell wound response. Toxicol. Sci. 2011, 121, 191–206. [Google Scholar] [CrossRef]
- Sherwood, C.L.; Lantz, R.C.; Boitano, S. Chronic arsenic exposure in nanomolar concentrations compromises wound response and intercellular signaling in airway epithelial cells. Toxicol. Sci. 2012, 132, 222–234. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Enterline, P.E.; Day, R.; Marsh, G.M. Cancers related to exposure to arsenic at a copper smelter. Occup. Envirn. Med. 1995, 52, 28–32. [Google Scholar] [CrossRef]
- Jarup, L.; Pershagen, G.; Wall, S. Cumulative arsenic exposure and lung cancer in smelter workers: A dose-response study. Am. J. Ind. Med. 1989, 15, 31–41. [Google Scholar] [CrossRef]
- Lubin, J.H.; Pottern, L.M.; Stone, B.J.; Fraumeni, J.F. Respiratory cancer in a cohort of copper smelter workers: Results from more than 50 years of follow-up. Am. J. Epidemiol. 2000, 151, 554–565. [Google Scholar] [CrossRef]
- Welch, K.; Higgins, I.; Oh, M.; Burchfiel, C. Arsenic exposure, smoking, and respiratory cancer in copper smelter worker. Arch. Environ. Health 1982, 37, 325–335. [Google Scholar] [CrossRef]
- Dunlap, L.G. Perforatons of the nasal septum due to inhalation of arsenous oxid. J. Am. Med. Assoc. 1921, 76, 568–569. [Google Scholar] [CrossRef]
- Inghe, G.; Bursell, A. The Ronnskar study. Report of investigation. Stockholm, Sweden. Unpublished works. 1937. [Google Scholar]
- Gerhardsson, L.; Brune, D.; Nordberg, G.F.; Wester, P.O. Multielemental assay of tissues of deceased smelter workers and controls. Sci. Total Environ. 1988, 74, 97–110. [Google Scholar] [CrossRef]
- Axelson, O.; Dahlgren, E.; Jansson, C.D.; Rehnlund, S.O. Arsenic exposure and mortality: A case-referent study from a Swedish copper smelter. Br. J. Ind. Med. 1978, 35, 8–15. [Google Scholar]
- Englyst, V.; Lundstrom, N.; Gerhardsson, L.; Rylander, L.; Nordberg, G. Lung cancer risks among lead smelter workers also exposed to arsenic. Sci. Total Environ. 2011, 273, 77–82. [Google Scholar]
- Taylor, P.R.; Qiao, Y.; Schatzkin, A.; Yao, S.; Lubin, J.; Mao, B.; Rao, J.; McAdams, M.; Xuan, X.; Li, J. Relations of arsenic exposure to lung cancer among tin miners in Yunnan Province, China. Br. J. Ind. Med. 1989, 46, 881–886. [Google Scholar]
- Chen, W.; Chen, J. Nested case-control study of lung cancer in four Chinese tin mines. Occup. Environ. Med. 2002, 59, 113–118. [Google Scholar] [CrossRef]
- Xi, S.; Zheng, Q.; Zhang, Q.; Sun, G. Metabolic profile and assessment of occupational arsenic exposure in copper- and steel-smelting workers in China. Int. Arch. Occup. Environ. Health 2011, 84, 347–353. [Google Scholar]
- Wen, J.; Wen, W.; Li, L.; Liu, H. Methylation capacity of arsenic and skin lesions in smelter plant workers. Environ. Toxicol. Pharmacol. 2012, 34, 624–630. [Google Scholar] [CrossRef]
- Wu, B.; Chen, T. Changes in hair arsenic concentration in a population exposed to heavy pollution: Follow-up investigation in Chenzhou city, Hunan province, southern China. J. Environ. Sci. 2010, 22, 283–289. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Bornschein, R.L.; Grote, J.; Menrath, W.; Roda, S. Environmental arsenic exposure of children around a former copper smelter site. Environ. Res. 1997, 72, 72–81. [Google Scholar] [CrossRef]
- Wickre, J.B.; Folt, C.L.; Sturup, S.; Karagas, M.R. Environmental exposure and fingernail analysis of arsenic and mercury in children and adults in a Nicaraguan gold mining community. Arch. Environ. Health 2004, 59, 400–409. [Google Scholar] [CrossRef]
- Martin, R.; Dowling, K.; Pearce, D.; Bennett, J.; Stopic, A. Ongoing soil arsenic exposure of children living in an historical gold mining area in regional Victoria: Identifying risk factors associated with uptake. J. Asian Earth Sci. 2013, 77, 256–261. [Google Scholar]
- Pearce, D.C.; Dowling, K.; Gerson, A.R.; Sim, M.R.; Sutton, S.R.; Newville, M.; Russell, R.; McOrist, G. Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area. Sci. Total Environ. 2010, 408, 2590–2599. [Google Scholar]
- Button, M.; Jenkin, G.R.T.; Harrington, C.F.; Watts, M.J. Human toenails as a biomarker of exposure to elevated environmental arsenic. J. Environ. Monit. 2009, 11, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Hinwood, A.L.; Sim, M.R.; Jolley, D.; de Klerk, N.; Bastone, E.B.; Gerostamoulos, J.; Drummer, O.H. Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations. Environ. Health Perspect. 2003, 111, 187–193. [Google Scholar]
- Nordstrom, D.K. Acid rock drainage and climate change. J. Geochem. Explor. 2009, 100, 97–104. [Google Scholar] [CrossRef]
- Middleton, N.J. A geography of dust storms in south-west Asia. J. Climatol. 1986, 6, 183–196. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gong, S.L.; Zhao, T.L.; Arimoto, R.; Wang, Y.Q.; Zhou, Z.J. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Martin, R.; Dowling, K.; Pearce, D.; Sillitoe, J.; Florentine, S. Health Effects Associated with Inhalation of Airborne Arsenic Arising from Mining Operations. Geosciences 2014, 4, 128-175. https://doi.org/10.3390/geosciences4030128
Martin R, Dowling K, Pearce D, Sillitoe J, Florentine S. Health Effects Associated with Inhalation of Airborne Arsenic Arising from Mining Operations. Geosciences. 2014; 4(3):128-175. https://doi.org/10.3390/geosciences4030128
Chicago/Turabian StyleMartin, Rachael, Kim Dowling, Dora Pearce, James Sillitoe, and Singarayer Florentine. 2014. "Health Effects Associated with Inhalation of Airborne Arsenic Arising from Mining Operations" Geosciences 4, no. 3: 128-175. https://doi.org/10.3390/geosciences4030128