The Impact of Viral Concentration Method on Quantification and Long Amplicon Nanopore Sequencing of SARS-CoV-2 and Noroviruses in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling, Viral Concentration and Nucleic Acid Extraction
2.2. Viral Quantification and RT-qPCR Inhibition
2.3. Norovirus Long Amplicon Sequencing
2.4. SARS-CoV-2 Long Amplicon Whole-Genome Sequencing
2.5. Data Analysis
3. Results
3.1. RT-qPCR Inhibition and Viral Quantification
3.2. Norovirus Long Amplicon Sequencing
3.3. SARS-CoV-2 Long Amplicon Whole-Genome Sequencing
4. Discussion
4.1. RT-qPCR Inhibition
4.2. Viral Quantification
4.3. Norovirus Dual-Typing Using Long Amplicon Sequencing
4.4. SARS-CoV-2 Long Amplicon Whole-Genome Sequencing
4.5. Overall Method Performance
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Naughton, C.C.; Roman, F.A.; Alvarado, A.G.F.; Tariqi, A.Q.; Deeming, M.A.; Kadonsky, K.F.; Bibby, K.; Bivins, A.; Medema, G.; Ahmed, W.; et al. Show us the Data: Global COVID-19 Wastewater Monitoring Efforts, Equity, and Gaps. medRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Roguet, A.; McClary-Gutierrez, J.S.; Newton, R.J.; Kloczko, N.; Meiman, J.G.; McLellan, S.L. Evaluation of Sampling, Analysis, and Normalization Methods for SARS-CoV-2 Concentrations in Wastewater to Assess COVID-19 Burdens in Wisconsin Communities. ACS Es&T Water 2021, 1, 1955–1965. [Google Scholar]
- O’Brien, M.; Rundell, Z.C.; Nemec, M.D.; Langan, L.M.; Back, J.A.; Lugo, J.N. A comparison of four commercially available RNA extraction kits for wastewater surveillance of SARS-CoV-2 in a college population. Sci. Total Environ. 2021, 801, 149595. [Google Scholar] [CrossRef]
- Yeager, R.; Holm, R.H.; Saurabh, K.; Fuqua, J.L.; Talley, D.; Bhatnagar, A.; Smith, T. Wastewater Sample Site Selection to Estimate Geographically Resolved Community Prevalence of COVID-19: A Sampling Protocol Perspective. GeoHealth 2021, 5, e2021GH000420. [Google Scholar] [CrossRef]
- Ahmed, W.; Harwood, V.J.; Gyawali, P.; Sidhu, J.P.S.; Toze, S. Comparison of concentration methods for quantitative detection of sewage-associated viral markers in environmental waters. Appl. Environ. Microbiol. 2015, 81, 2042–2049. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.; Qiu, Y.; Yu, J.; Lee, B.E.; McCarthy, D.T.; Pang, X. Comparison of Auto Sampling and Passive Sampling Methods for SARS-CoV-2 Detection in Wastewater. Pathogens 2022, 11, 359. [Google Scholar] [CrossRef]
- Bassano, I.; Ramachandran, V.K.; Khalifa, M.S.; Lilley, C.J.; Brown, M.R.; van Aerle, R.; Denise, H.; Rowe, W.; George, A.; Cairns, E.; et al. Evaluation of variant calling algorithms for wastewater-based epidemiology using mixed populations of SARS-CoV-2 variants in synthetic and wastewater samples. Microb. Genom. 2023, 9, 000933. [Google Scholar] [CrossRef]
- Child, H.T.; O’Neill, P.A.; Moore, K.; Rowe, W.; Denise, H.; Bass, D.; Wade, M.J.; Loose, M.; Paterson, S.; van Aerle, R.; et al. Optimised protocol for monitoring SARS-CoV-2 in wastewater using reverse complement PCR-based whole-genome sequencing. PLoS ONE 2023, 18, e0284211. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Goethals, P.; Newhart, K.; Rhodes, E.; Vogel, J.; Stevenson, B. Optimization of sewage sampling for wastewater-based epidemiology through stochastic modeling. J. Eng. Appl. Sci. 2023, 70, 11. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, Y.; Nogueira, R.; Klawonn, F.; Wallner, M. Optimal Selection of Sampling Points within Sewer Networks for Wastewater-Based Epidemiology Applications. Methods Protoc. 2024, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Galani, A.; Aalizadeh, R.; Kostakis, M.; Markou, A.; Alygizakis, N.; Lytras, T.; Adamopoulos, P.G.; Peccia, J.; Thompson, D.C.; Kontou, A.; et al. SARS-CoV-2 wastewater surveillance data can predict hospitalisations and ICU admissions. Sci. Total Environ. 2020, 804, 150151. [Google Scholar] [CrossRef]
- McMahan, C.S.; Self, S.; Rennert, L.; Kalbaugh, C.; Kriebel, D.; Graves, D.; Colby, C.; Deaver, J.A.; Popat, S.C.; Karanfil, T.; et al. COVID-19 wastewater epidemiology: A model to estimate infected populations. Lancet Planet. Health 2021, 5, e874–e881. [Google Scholar] [CrossRef]
- Morvan, M.; Jacomo, A.L.; Souque, C.; Wade, M.J.; Hoffmann, T.; Pouwels, K.; Lilley, C.; Singer, A.C.; Porter, J.; Evens, N.P.; et al. An analysis of 45 large-scale wastewater sites in England to estimate SARS-CoV-2 community prevalence. Nat. Commun. 2022, 13, 4313. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Smith, W.J.; Metcalfe, S.; Jackson, G.; Choi, P.M.; Morrison, M.; Field, D.; Gyawali, P.; Bivins, A.; Bibby, K.; et al. Comparison of RT-qPCR and RT-dPCR Platforms for the Trace Detection of SARS-CoV-2 RNA in Wastewater. ACS ES&T Water 2022, 2, 1871–1880. [Google Scholar]
- Hjelmsø, M.H.; Hellmér, M.; Fernandez-Cassi, X.; Timoneda, N.; Lukjancenko, O.; Seidel, M.; Elsässer, D.; Aarestrup, F.M.; Löfström, C.; Bofill-Mas, S.; et al. Evaluation of methods for the concentration and extraction of viruses from sewage in the context of metagenomic sequencing. PLoS ONE 2017, 12, e0170199. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bertsch, P.M.; Bivins, A.; Bibby, K.; Gathercole, A.; Haramoto, E.; Gyawali, P.; Korajkic, A.; McMinn, B.R.; Mueller, J.F.; et al. Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Sci. Total Environ. 2020, 739, 139960. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cataluña, A.; Cuevas-Ferrando, E.; Randazzo, W.; Falcó, I.; Allende, A.; Sánchez, G. Comparing analytical methods to detect SARS-CoV-2 in wastewater. Sci. Total Environ. 2021, 758, 143870. [Google Scholar] [CrossRef] [PubMed]
- Philo, S.E.; Keim, E.K.; Swanstrom, R.; Ong, A.Q.; Burnor, E.A.; Kossik, A.L.; Harrison, J.C.; Demeke, B.A.; Zhou, N.A.; Beck, N.K.; et al. A comparison of SARS-CoV-2 wastewater concentration methods for environmental surveillance. Sci. Total Environ. 2021, 760, 144215. [Google Scholar] [CrossRef]
- Dumke, R.; Barron, M.C.; Oertel, R.; Helm, B.; Kallies, R.; Berendonk, T.U.; Dalpke, A. Evaluation of two methods to concentrate SARS-CoV-2 from untreated wastewater. Pathogens 2021, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Jafferali, M.H.; Khatami, K.; Atasoy, M.; Birgersson, M.; Williams, C.; Cetecioglu, Z. Benchmarking virus concentration methods for quantification of SARS-CoV-2 in raw wastewater. Sci. Total Environ. 2021, 755, 142939. [Google Scholar] [CrossRef] [PubMed]
- Peinado, B.; Martínez-García, L.; Martínez, F.; Nozal, L.; Sánchez, M.B. Improved methods for the detection and quantification of SARS-CoV-2 RNA in wastewater. Sci. Rep. 2022, 12, 7201. [Google Scholar] [CrossRef] [PubMed]
- Farkas, K.; Pellett, C.; Alex-Sanders, N.; Bridgman, M.T.P.; Corbishley, A.; Grimsley, J.M.S. Comparative Assessment of Filtration- and Precipitation-Based Methods for the Concentration of SARS-CoV-2 and Other Viruses from Wastewater. Microbiol. Spectr. 2022, 10, e01102. [Google Scholar] [CrossRef]
- Othman, I.; Helmi, A.; Slama, I.; Hamdi, R.; Mastouri, M.; Aouni, M. Evaluation of three viral concentration methods for detection and quantification of SARS-CoV-2 in wastewater. J. Water Health 2023, 21, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.V.C.; Mannarino, C.F.; de Castro, E.S.G.; Prado, T.; Ferreira, F.C.; Fumian, T.M. Assessment of virus concentration methods for detecting SARS-CoV-2 IN wastewater. Brazilian J. Microbiol. 2023, 54, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Cutrupi, F.; Rossi, M.; Cadonna, M.; Poznanski, E.; Manara, S.; Postinghel, M.; Palumbi, G.; Bellisomi, M.; Nicosia, E.; Allaria, G.; et al. Evaluation of concentration procedures, sample pre-treatment, and storage condition for the detection of SARS-CoV-2 in wastewater. Environ. Sci. Pollut. Res. 2023, 30, 106660–106670. [Google Scholar] [CrossRef]
- McMinn, B.R.; Korajkic, A.; Pemberton, A.C.; Kelleher, J.; Ahmed, W.; Villegas, E.N. Assessment of two volumetrically different concentration approaches to improve sensitivities for SARS-CoV-2 detection during wastewater monitoring. J. Virol. Methods 2023, 311, 114645. [Google Scholar] [CrossRef] [PubMed]
- Farkas, K.; Kevill, J.L.; Williams, R.C.; Pântea, I.; Ridding, N.; Lambert-Slosarska, K.; Woodhall, N.; Grimsley, J.M.S.; Wade, M.J.; Singer, A.C.; et al. Comparative assessment of Nanotrap and polyethylene glycol-based virus concentration in wastewater samples. FEMS Microbes 2024, 5, xtae007. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Miyani, B.; Childs, K.L.; Shiu, S.H.; Xagoraraki, I. Effect of wastewater collection and concentration methods on assessment of viral diversity. Sci. Total Environ. 2024, 908, 168128. [Google Scholar] [CrossRef]
- LaTurner, Z.W.; Zong, D.M.; Kalvapalle, P.; Gamas, K.R.; Terwilliger, A.; Crosby, T.; Ali, P.; Avadhanula, V.; Santos, H.H.; Weesner, K.; et al. Evaluating recovery, cost, and throughput of different concentration methods for SARS-CoV-2 wastewater-based epidemiology. Water Res. 2021, 197, 117043. [Google Scholar] [CrossRef]
- Mondal, S.; Feirer, N.; Brockman, M.; Preston, M.A.; Teter, S.J.; Ma, D.; Goueli, S.A.; Moorji, S.; Saul, B.; Cali, J.J.; et al. A direct capture method for purification and detection of viral nucleic acid enables epidemiological surveillance of SARS-CoV-2. Sci. Total Environ. 2021, 795, 148834. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakopoulos, L.; Kontou, A.; Strati, A.; Galani, A.; Kostakis, M.; Kapes, V.; Lianidou, E.; Thomaidis, N.; Markou, A. Evaluation of viral concentration and extraction methods for SARS-CoV-2 recovery from wastewater using droplet digital and quantitative RT-PCR. Case Stud. Chem. Environ. Eng. 2022, 6, 100224. [Google Scholar] [CrossRef]
- Girón-Guzmán, I.; Díaz-Reolid, A.; Cuevas-Ferrando, E.; Falcó, I.; Cano-Jiménez, P.; Comas, I.; Pérez-Cataluña, A.; Sánchez, G. Evaluation of two different concentration methods for surveillance of human viruses in sewage and their effects on SARS-CoV-2 sequencing. Sci. Total Environ. 2023, 862, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Wang, A.L.W.; Be, N.A.; Mulakken, N.; Nelson, K.L.; Kantor, R.S. Evaluation of the Impact of Concentration and Extraction Methods on the Targeted Sequencing of Human Viruses from Wastewater. Environ. Sci. Technol. 2024, 58, 8239–8250. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Orschler, L.; Schubert, S.; Zachmann, K.; Heijnen, L.; Tavazzi, S.; Gawlik, B.M.; de Graaf, M.; Medema, G.; Lackner, S. Prevalence and circulation patterns of SARS-CoV-2 variants in European sewage mirror clinical data of 54 European cities. Water Res. 2022, 214, 118162. [Google Scholar] [CrossRef] [PubMed]
- Vigil, K.; D’Souza, N.; Bazner, J.; Cedraz, F.M.A.; Fisch, S.; Rose, J.B.; Aw, T.G. Long-term monitoring of SARS-CoV-2 variants in wastewater using a coordinated workflow of droplet digital PCR and nanopore sequencing. Water Res. 2024, 254, 121338. [Google Scholar] [CrossRef]
- Krehenwinkel, H.; Pomerantz, A.; Henderson, J.B.; Kennedy, S.R.; Lim, J.Y.; Swamy, V.; Shoobridge, J.D.; Graham, N.; Patel, N.H.; Gillespie, R.G.; et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. Gigascience 2019, 8, giz006. [Google Scholar] [CrossRef]
- Kinkar, L.; Gasser, R.B.; Webster, B.L.; Rollinson, D.; Littlewood, D.T.J.; Chang, B.C.H.; Stroehlein, A.J.; Korhonen, P.K.; Young, N.D. Nanopore sequencing resolves elusive long tandem-repeat regions in mitochondrial genomes. Int. J. Mol. Sci. 2021, 22, 1811. [Google Scholar] [CrossRef] [PubMed]
- López-Muñoz, A.D.; Rastrojo, A.; Kropp, K.A.; Viejo-Borbolla, A.; Alcamí, A. Combination of long-and short-read sequencing fully resolves complex repeats of herpes simplex virus 2 strain ms complete genome. Microb. Genom. 2021, 7, 000586. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, W.; Razaghi, R.; Busan, S.; Weeks, K.M.; Timp, W.; Smibert, P. Direct detection of RNA modifications and structure using single-molecule nanopore sequencing. Cell Genom. 2022, 2, 100097. [Google Scholar] [CrossRef] [PubMed]
- Rios, G.; Lacoux, C.; Leclercq, V.; Diamant, A.; Lebrigand, K.; Lazuka, A.; Soyeux, E.; Lacroix, S.; Fassy, J.; Couesnon, A.; et al. Monitoring SARS-CoV-2 variants alterations in Nice neighborhoods by wastewater nanopore sequencing. Lancet Reg. Health—Eur. 2021, 10, 1–9. [Google Scholar] [CrossRef]
- Barbé, L.; Schaeffer, J.; Besnard, A.; Jousse, S.; Wurtzer, S.; Moulin, L.; Le Guyader, F.S.; Desdouits, M. SARS-CoV-2 Whole-Genome Sequencing Using Oxford Nanopore Technology for Variant Monitoring in Wastewaters. Front. Microbiol. 2022, 13, 889811. [Google Scholar] [CrossRef] [PubMed]
- Freed, N.E.; Vlková, M.; Faisal, M.B.; Silander, O.K. Rapid and inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp tiled amplicons and Oxford Nanopore Rapid Barcoding. Biol. Methods Protoc. 2021, 5, bpaa014. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Glier, M.; Kuchinski, K.; Ross-Van Mierlo, T.; McVea, D.; Tyson, J.R.; Prystajecky, N.; Ziels, R.M. Assessing Multiplex Tiling PCR Sequencing Approaches for Detecting Genomic Variants of SARS-CoV-2 in Municipal Wastewater. mSystems 2021, 6, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Scott, G.; Ryder, D.; Buckley, M.; Hill, R.; Treagus, S.; Stapleton, T.; Walker, D.I.; Lowther, J.; Batista, F.M. Long Amplicon Nanopore Sequencing for Dual-Typing RdRp and VP1 Genes of Norovirus Genogroups I and II in Wastewater. Food Environ. Virol. 2024, 16, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, P.; de Graaf, M.; Parra, G.I.; Chan, M.C.-W.; Green, K.; Martella, V.; Wang, Q.; White, P.A.; Katayama, K.; Vennema, H.; et al. Updated classification of norovirus genogroups and genotypes. J. Gen. Virol. 2019, 100, 1393–1406. [Google Scholar] [CrossRef]
- Walker, D.I.; Lowther, J.; Evens, N.; Warren, J.; Porter, J.; Farkas, K.; Jones, D. Quantification of SARS-CoV-2 in Wastewater. Protocols.io. 2024. Available online: https://www.protocols.io/view/quantification-of-sars-cov-2-in-wastewater-81wgbx39ylpk/v2 (accessed on 11 January 2025). [CrossRef]
- Scott, G.; Evens, N.; Porter, J.; Walker, D.I. The Inhibition and Variability of Two Different RT-qPCR Assays Used for Quantifying SARS-CoV-2 RNA in Wastewater. Food Environ. Virol. 2023, 15, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Alex-sanders, N.; Woodhall, N.; Farkas, K.; Scott, G.; Jones, D.L.; Walker, D.I. Development and validation of a duplex RT-qPCR assay for norovirus quantification in wastewater samples. J. Virol. Methods 2023, 321, 114804. [Google Scholar] [CrossRef]
- Oxford Nanopore Technologies. Duplex-Tools: Splitting of Sequence Reads by Internal Adapter Sequence Search. 2022. Available online: https://github.com/nanoporetech/duplex-tools (accessed on 11 January 2025).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 2016, 11, e0163962. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Posit Team. RStudio: Integrated Development Environment for R. RStudio; PBC: Boston, MA, USA, 2022. [Google Scholar]
- Huggett, J.F.; Novak, T.; Garson, J.A.; Green, C.; Morris-Jones, S.D.; Miller, R.F.; Zumla, A. Differential susceptibility of PCR reactions to inhibitors: An important and unrecognised phenomenon. BMC Res. Notes 2008, 1, 70. [Google Scholar] [CrossRef]
- Olive, D.M.; Simsek, M.; Al-Mufti, S. Polymerase chain reaction assay for detection of human cytomegalovirus. J. Clin. Microbiol. 1989, 27, 1238–1242. [Google Scholar] [CrossRef]
- Ahmad, A.; Ghasemi, J. New buffers to improve the quantitative real-time polymerase chain reaction. Biosci. Biotechnol. Biochem. 2007, 71, 1970–1978. [Google Scholar] [CrossRef] [PubMed]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.I.; Witt, J.; Rostant, W.; Burton, R.; Davison, V.; Ditchburn, J.; Evens, N.; Godwin, R.; Heywood, J.; Lowther, J.A.; et al. Piloting wastewater-based surveillance of norovirus in England. Water Res. 2024, 263, 122152. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Deng, Y.; Xu, X.; Li, S.; Zhang, Y.; Ding, J.; On, H.Y.; Lai, J.C.; Yau, C.I.; Chin, A.W.; et al. Comparison of virus concentration methods and RNA extraction methods for SARS-CoV-2 wastewater surveillance. Sci. Total Environ. 2020, 824, 153687. [Google Scholar] [CrossRef]
Procedure | Package | Parameter |
---|---|---|
Split reads [50] | duplex_tools version 0.2.14 | duplex_tools split_on_adapter --threads 12 --allow_multiple_splits Native |
Trim primers [51] | cutadapt version 3.4 | cutadapt -j12 --action=trim -n 1 -e 0.30 -O 12 –revcomp -g file:primer_sequences.fasta --discard-untrimmed |
Filter by quality [52] | Seqkit version 2.3.0 | seqkit seq -Q 20 |
Filter by length [52] | Seqkit version 2.3.0 | seqkit seq -m900 -M 1500 |
Map reads [53] | Minimap version 2.24 | minimap2 -ax lr:hq |
Sort and convert SAM files to BAM [54] | Samtools version 1.13 | samtools sort -o .bam |
Index BAM files [54] | Samtools version1.13 | samtools index |
Calculate read depth [55] | IGV version 2.17.2 | count -w 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, G.; Evens, N.P.; Porter, J.; Walker, D.I. The Impact of Viral Concentration Method on Quantification and Long Amplicon Nanopore Sequencing of SARS-CoV-2 and Noroviruses in Wastewater. Microorganisms 2025, 13, 229. https://doi.org/10.3390/microorganisms13020229
Scott G, Evens NP, Porter J, Walker DI. The Impact of Viral Concentration Method on Quantification and Long Amplicon Nanopore Sequencing of SARS-CoV-2 and Noroviruses in Wastewater. Microorganisms. 2025; 13(2):229. https://doi.org/10.3390/microorganisms13020229
Chicago/Turabian StyleScott, George, Nicholas P. Evens, Jonathan Porter, and David I. Walker. 2025. "The Impact of Viral Concentration Method on Quantification and Long Amplicon Nanopore Sequencing of SARS-CoV-2 and Noroviruses in Wastewater" Microorganisms 13, no. 2: 229. https://doi.org/10.3390/microorganisms13020229
APA StyleScott, G., Evens, N. P., Porter, J., & Walker, D. I. (2025). The Impact of Viral Concentration Method on Quantification and Long Amplicon Nanopore Sequencing of SARS-CoV-2 and Noroviruses in Wastewater. Microorganisms, 13(2), 229. https://doi.org/10.3390/microorganisms13020229