The Association between Resistance and Virulence of Klebsiella pneumoniae in High-Risk Clonal Lineages ST86 and ST101
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Sampling
2.2. Isolate Processing
2.3. DNA Extraction, Library Construction and Sequencing
2.4. Genotypic Characterization of K. pneumoniae Isolates
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae—Clinical and Molecular Perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Podschun, R.; Ullmann, U. Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clin. Microbiol. Rev. 1998, 11, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A Major Worldwide Source and Shuttle for Antibiotic Resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, T.; Chen, L.; Du, H. Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 642484. [Google Scholar] [CrossRef] [PubMed]
- Shankar, C.; Veeraraghavan, B.; Nabarro, L.E.B.; Ravi, R.; Ragupathi, N.K.D.; Rupali, P. Whole Genome Analysis of Hypervirulent Klebsiella pneumoniae Isolates from Community and Hospital Acquired Bloodstream Infection. BMC Microbiol. 2018, 18, 6. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C. Klebsiella pneumoniae Liver Abscess Associated with Septic Endophthalmitis. Arch. Intern. Med. 1986, 146, 1913. [Google Scholar] [CrossRef]
- Lan, P.; Shi, Q.; Zhang, P.; Chen, Y.; Yan, R.; Hua, X.; Jiang, Y.; Zhou, J.; Yu, Y. Core Genome Allelic Profiles of Clinical Klebsiella pneumoniae Strains Using a Random Forest Algorithm Based on Multilocus Sequence Typing Scheme for Hypervirulence Analysis. J. Infect. Dis. 2020, 221, S263–S271. [Google Scholar] [CrossRef]
- Russo, T.A.; Marr, C.M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev. 2019, 32, e00001–e00019. [Google Scholar] [CrossRef]
- Hosoda, T.; Harada, S.; Okamoto, K.; Ishino, S.; Kaneko, M.; Suzuki, M.; Ito, R.; Mizoguchi, M. COVID-19 and Fatal Sepsis Caused by Hypervirulent Klebsiella pneumoniae, Japan, 2020. Emerg. Infect. Dis. 2021, 27, 556–559. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Cheng, Y.-H.; Juan, C.-H.; Wu, P.-F.; Huang, Y.-W.; Chou, S.-H.; Yang, T.-C.; Wang, F.-D. High Mortality among Patients Infected with Hypervirulent Antimicrobial-Resistant Capsular Type K1 Klebsiella pneumoniae Strains in Taiwan. Int. J. Antimicrob. Agents 2018, 52, 251–257. [Google Scholar] [CrossRef]
- Chang, D.; Sharma, L.; Dela Cruz, C.S.; Zhang, D. Clinical Epidemiology, Risk Factors, and Control Strategies of Klebsiella pneumoniae Infection. Front. Microbiol. 2021, 12, 750662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, C.; Wang, Q.; Wang, X.; Chen, H.; Li, H.; Zhang, F.; Li, S.; Wang, R.; Wang, H. High Prevalence of Hypervirulent Klebsiella pneumoniae Infection in China: Geographic Distribution, Clinical Characteristics, and Antimicrobial Resistance. Antimicrob. Agents Chemother. 2016, 60, 6115–6120. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-R.; Lee, J.H.; Park, K.S.; Jeon, J.H.; Kim, Y.B.; Cha, C.-J.; Jeong, B.C.; Lee, S.H. Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms. Front. Cell. Infect. Microbiol. 2017, 7, 483. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Emergence of Hypervirulent Klebsiella Pneumoniae ST23 Carrying Carbapenemase Genes in EU/EEA Countries, First Update; Publications Office, ECDC: Solna, Stockholm, 2024.
- Parrott, A.M.; Shi, J.; Aaron, J.; Green, D.A.; Whittier, S.; Wu, F. Detection of Multiple Hypervirulent Klebsiella pneumoniae Strains in a New York City Hospital through Screening of Virulence Genes. Clin. Microbiol. Infect. 2021, 27, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Hala, S.; Malaikah, M.; Huang, J.; Bahitham, W.; Fallatah, O.; Zakri, S.; Antony, C.P.; Alshehri, M.; Ghazzali, R.N.; Ben-Rached, F.; et al. The Emergence of Highly Resistant and Hypervirulent Klebsiella pneumoniae CC14 Clone in a Tertiary Hospital over 8 Years. Genome Med. 2024, 16, 58. [Google Scholar] [CrossRef]
- Xie, Z.; Huang, J.; Zhang, S.; Xu, B.; Zhang, Q.; Li, B. Genomic and Functional Characterization of Carbapenem-Resistant Klebsiella pneumoniae from Hospital Wastewater. BMC Microbiol. 2023, 23, 115. [Google Scholar] [CrossRef]
- Salazar, C.; Giménez, M.; Riera, N.; Parada, A.; Puig, J.; Galiana, A.; Grill, F.; Vieytes, M.; Mason, C.E.; Antelo, V.; et al. Human Microbiota Drives Hospital-Associated Antimicrobial Resistance Dissemination in the Urban Environment and Mirrors Patient Case Rates. Microbiome 2022, 10, 208. [Google Scholar] [CrossRef]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef]
- Loconsole, D.; Accogli, M.; De Robertis, A.L.; Capozzi, L.; Bianco, A.; Morea, A.; Mallamaci, R.; Quarto, M.; Parisi, A.; Chironna, M. Emerging High-Risk ST101 and ST307 Carbapenem-Resistant Klebsiella pneumoniae Clones from Bloodstream Infections in Southern Italy. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 24. [Google Scholar] [CrossRef]
- Aldali, H.J.; Khan, A.; Alshehri, A.A.; Aldali, J.A.; Meo, S.A.; Hindi, A.; Elsokkary, E.M. Hospital-Acquired Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Observational Study. Microorganisms 2023, 11, 1595. [Google Scholar] [CrossRef]
- Reyes, J.; Aguilar, A.C.; Caicedo, A. Carbapenem-Resistant Klebsiella pneumoniae: Microbiology Key Points for Clinical Practice. Int. J. Gen. Med. 2019, 12, 437–446. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Reuter, S.; Harris, S.R.; Glasner, C.; Feltwell, T.; Argimon, S.; Abudahab, K.; Goater, R.; Giani, T.; Errico, G.; et al. Epidemic of Carbapenem-Resistant Klebsiella pneumoniae in Europe Is Driven by Nosocomial Spread. Nat. Microbiol. 2019, 4, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, R.A.; Jousset, A.B.; Chiarelli, A.; Emeraud, C.; Glaser, P.; Naas, T.; Dortet, L. Emergence of New Non–Clonal Group 258 High-Risk Clones among Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae Isolates, France. Emerg. Infect. Dis. 2020, 26, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Roe, C.C.; Vazquez, A.J.; Esposito, E.P.; Zarrilli, R.; Sahl, J.W. Diversity, Virulence, and Antimicrobial Resistance in Isolates From the Newly Emerging Klebsiella pneumoniae ST101 Lineage. Front. Microbiol. 2019, 10, 542. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Dong, N.; Zheng, Z.; Lin, D.; Huang, M.; Wang, L.; Chan, E.W.-C.; Shu, L.; Yu, J.; Zhang, R.; et al. A Fatal Outbreak of ST11 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae in a Chinese Hospital: A Molecular Epidemiological Study. Lancet Infect. Dis. 2018, 18, 37–46. [Google Scholar] [CrossRef]
- Xu, M.; Fu, Y.; Fang, Y.; Xu, H.; Kong, H.; Liu, Y.; Chen, Y.; Li, L. High Prevalence of KPC-2-Producing Hypervirulent Klebsiella pneumoniae Causing Meningitis in Eastern China. IDR 2019, 12, 641–653. [Google Scholar] [CrossRef]
- Fasciana, T.; Gentile, B.; Aquilina, M.; Ciammaruconi, A.; Mascarella, C.; Anselmo, A.; Fortunato, A.; Fillo, S.; Petralito, G.; Lista, F.; et al. Co-Existence of Virulence Factors and Antibiotic Resistance in New Klebsiella pneumoniae Clones Emerging in South of Italy. BMC Infect. Dis. 2019, 19, 928. [Google Scholar] [CrossRef]
- Low, Y.-M.; Yap, P.S.-X.; Abdul Jabar, K.; Ponnampalavanar, S.; Karunakaran, R.; Velayuthan, R.; Chong, C.-W.; Abu Bakar, S.; Md Yusof, M.Y.; Teh, C.S.-J. The Emergence of Carbapenem Resistant Klebsiella pneumoniae in Malaysia: Correlation between Microbiological Trends with Host Characteristics and Clinical Factors. Antimicrob. Resist. Infect. Control 2017, 6, 5. [Google Scholar] [CrossRef]
- McCabe, R.; Lambert, L.; Frazee, B. Invasive Klebsiella pneumoniae Infections, California, USA. Emerg. Infect. Dis. 2010, 16, 1490–1491. [Google Scholar] [CrossRef]
- Lan, P.; Jiang, Y.; Zhou, J.; Yu, Y. A Global Perspective on the Convergence of Hypervirulence and Carbapenem Resistance in Klebsiella pneumoniae. J. Glob. Antimicrob. Resist. 2021, 25, 26–34. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (Online). 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 25 August 2024).
- Xavier, B.B.; Mysara, M.; Bolzan, M.; Ribeiro-Gonçalves, B.; Alako, B.T.F.; Harrison, P.; Lammens, C.; Kumar-Singh, S.; Goossens, H.; Carriço, J.A.; et al. BacPipe: A Rapid, User-Friendly Whole-Genome Sequencing Pipeline for Clinical Diagnostic Bacteriology. iScience 2020, 23, 100769. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; McGinnis, S.; Madden, T.L. BLAST: Improvements for Better Sequence Analysis. Nucleic Acids Res. 2006, 34, W6–W9. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A Genomic Surveillance Framework and Genotyping Tool for Klebsiella pneumoniae and Its Related Species Complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef]
- Silva, M.; Machado, M.P.; Silva, D.N.; Rossi, M.; Moran-Gilad, J.; Santos, S.; Ramirez, M.; Carriço, J.A. chewBBACA: A Complete Suite for Gene-by-Gene Schema Creation and Strain Identification. Microb. Genom. 2018, 4, e000166. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of Core Genomic Relationships among 100,000 Bacterial Pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; European Environment Agency: Vienna, Austria, 2023.
- Wickham, H. Ggplot2; Use R; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- Wang, X.; Qin, J.; Xiang, G.; Wang, C.; Wang, Q.; Qin, J.; Wang, H.; Shen, Z. Nosocomial Dissemination of Bla IMP-4 among Klebsiella pneumoniae by Horizontal Gene Transfer and Clonal Spread: The Epidemic IncN Plasmids and the Emerging High-Risk IMP-4-Producing ST101 Clone. J. Antimicrob. Chemother. 2023, 78, 2890–2894. [Google Scholar] [CrossRef]
- Arcari, G.; Carattoli, A. Global Spread and Evolutionary Convergence of Multidrug-Resistant and Hypervirulent Klebsiella pneumoniae High-Risk Clones. Pathog. Glob. Health 2023, 117, 328–341. [Google Scholar] [CrossRef]
- Palmieri, M.; D’Andrea, M.M.; Pelegrin, A.C.; Mirande, C.; Brkic, S.; Cirkovic, I.; Goossens, H.; Rossolini, G.M.; Van Belkum, A. Genomic Epidemiology of Carbapenem- and Colistin-Resistant Klebsiella pneumoniae Isolates from Serbia: Predominance of ST101 Strains Carrying a Novel OXA-48 Plasmid. Front. Microbiol. 2020, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Can, F.; Menekse, S.; Ispir, P.; Atac, N.; Albayrak, O.; Demir, T.; Karaaslan, D.C.; Karahan, S.N.; Kapmaz, M.; Kurt Azap, O.; et al. Impact of the ST101 Clone on Fatality among Patients with Colistin-Resistant Klebsiella pneumoniae Infection. J. Antimicrob. Chemother. 2018, 73, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- De Koster, S.; Rodriguez Ruiz, J.P.; Rajakani, S.G.; Lammens, C.; Glupczynski, Y.; Goossens, H.; Xavier, B.B. Diversity in the Characteristics of Klebsiella pneumoniae ST101 of Human, Environmental, and Animal Origin. Front. Microbiol. 2022, 13, 838207. [Google Scholar] [CrossRef]
- Harada, S.; Doi, Y. Hypervirulent Klebsiella pneumoniae: A Call for Consensus Definition and International Collaboration. J. Clin. Microbiol. 2018, 56, e00959-18. [Google Scholar] [CrossRef]
- Rubic, Z.; Jelic, M.; Soprek, S.; Tarabene, M.; Ujevic, J.; Goic-Barisic, I.; Novak, A.; Radic, M.; Tambic Andrasevic, A.; Tonkic, M. Molecular Characterization of Colistin Resistance Genes in a High-Risk ST101/KPC-2 Clone of Klebsiella pneumoniae in a University Hospital of Split, Croatia. Int. Microbiol. 2023, 26, 631–637. [Google Scholar] [CrossRef]
- Pan, Y.-J.; Lin, T.-L.; Lin, Y.-T.; Su, P.-A.; Chen, C.-T.; Hsieh, P.-F.; Hsu, C.-R.; Chen, C.-C.; Hsieh, Y.-C.; Wang, J.-T. Identification of Capsular Types in Carbapenem-Resistant Klebsiella pneumoniae Strains by Wzc Sequencing and Implications for Capsule Depolymerase Treatment. Antimicrob. Agents Chemother. 2015, 59, 1038–1047. [Google Scholar] [CrossRef]
- Liu, Z.; Chu, W.; Li, X.; Tang, W.; Ye, J.; Zhou, Q.; Guan, S. Genomic Features and Virulence Characteristics of a Community-Acquired Bloodstream Infection-Causing Hypervirulent Klebsiella pneumoniae ST86 Strain Harboring KPC-2-Encoding IncX6 Plasmid. Microb. Drug Resist. 2021, 27, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Beyrouthy, R.; Dalmasso, G.; Birer, A.; Robin, F.; Bonnet, R. Carbapenem Resistance Conferred by OXA-48 in K2-ST86 Hypervirulent Klebsiella pneumoniae, France. Emerg. Infect. Dis. 2020, 26, 1529–1533. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Mi, C.; Li, W.; Zhao, S.; Wang, Q.; Shi, D.; Liu, L.; Ding, B.; Chang, Y.-F.; et al. First Report of Two Rapid-Onset Fatal Infections Caused by a Newly Emerging Hypervirulent K. pneumoniae ST86 Strain of Serotype K2 in China. Front. Microbiol. 2015, 6, 721. [Google Scholar] [CrossRef]
- Yang, C.-S.; Tsai, H.-Y.; Sung, C.-S.; Lin, K.-H.; Lee, F.-L.; Hsu, W.-M. Endogenous Klebsiella Endophthalmitis Associated with Pyogenic Liver Abscess. Ophthalmology 2007, 114, 876–880.e2. [Google Scholar] [CrossRef]
- Tutelyan, A.V.; Shlykova, D.S.; Voskanyan, S.L.; Gaponov, A.M.; Pisarev, V.M. Molecular Epidemiology of Hypervirulent K. pneumoniae and Problems of Health-Care Associated Infections. Bull. Exp. Biol. Med. 2022, 172, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Vandhana, V.; Saralaya, K.V.; Bhat, S.; Shenoy Mulki, S.; Bhat, A.K. Characterization of Hypervirulent Klebsiella pneumoniae (Hv-Kp): Correlation of Virulence with Antimicrobial Susceptibility. Int. J. Microbiol. 2022, 2022, 4532707. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Li, Y.; Ren, P.; Tian, D.; Chen, W.; Fu, P.; Wang, W.; Li, X.; Jiang, X. Molecular Epidemiology of Hypervirulent Carbapenemase-Producing Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2021, 11, 661218. [Google Scholar] [CrossRef] [PubMed]
- Kochan, T.J.; Nozick, S.H.; Medernach, R.L.; Cheung, B.H.; Gatesy, S.W.M.; Lebrun-Corbin, M.; Mitra, S.D.; Khalatyan, N.; Krapp, F.; Qi, C.; et al. Genomic Surveillance for Multidrug-Resistant or Hypervirulent Klebsiella pneumoniae among United States Bloodstream Isolates. BMC Infect. Dis. 2022, 22, 603. [Google Scholar] [CrossRef]
ST (n > 3) | Total | Blood | Urine | p-Value | I.d. Yes | I.d. No | p-Value | VS 0 | VS 1 | VS 2 | VS 3–5 | p-Value | RS 0 | RS 1 | RS 2–3 | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ST101 | 45 | 28 | 17 | 0.060 | 33 | 12 | <0.001 | 0 | 45 | 0 | 0 | <0.001 | 0 | 9 | 36 | <0.001 |
ST37 | 8 | 5 | 3 | 0.496 | 4 | 4 | 0.999 | 3 | 4 | 0 | 1 | 0.485 | 7 | 0 | 1 | 0.099 |
ST437 | 8 | 7 | 1 | 0.034 | 6 | 2 | 0.279 | 2 | 6 | 0 | 0 | 0.834 | 0 | 6 | 2 | <0.001 |
ST268 | 7 | 3 | 4 | 0.999 | 5 | 2 | 0.682 | 0 | 7 | 0 | 0 | 0.150 | 0 | 2 | 5 | 0.005 |
ST307 | 7 | 4 | 3 | 0.999 | 4 | 3 | 0.999 | 7 | 0 | 0 | 0 | 0.002 | 0 | 6 | 1 | <0.001 |
ST392 | 5 | 1 | 4 | 0.368 | 2 | 3 | 0.677 | 0 | 5 | 0 | 0 | 0.293 | 1 | 2 | 2 | 0.429 |
ST86 | 5 | 2 | 3 | 0.999 | 2 | 3 | 0.677 | 1 | 0 | 0 | 4 | <0.001 | 2 | 3 | 0 | 0.107 |
ST15 | 4 | 2 | 2 | 0.999 | 3 | 1 | 0.621 | 0 | 4 | 0 | 0 | 0.4662 | 0 | 2 | 2 | 0.088 |
ST25 | 4 | 2 | 2 | 0.999 | 1 | 3 | 0.360 | 1 | 2 | 0 | 1 | 0.253 | 4 | 0 | 0 | 0.188 |
ST35 | 4 | 2 | 2 | 0.999 | 2 | 2 | 0.999 | 1 | 3 | 0 | 0 | 0.999 | 3 | 1 | 0 | 0.448 |
ST39 | 4 | 1 | 3 | 0.620 | 0 | 4 | 0.055 | 1 | 3 | 0 | 0 | 0.999 | 3 | 0 | 1 | 0.811 |
ST405 | 4 | 0 | 4 | 0.120 | 0 | 4 | 0.055 | 4 | 0 | 0 | 0 | 0.063 | 3 | 1 | 0 | 0.448 |
Other ST | 78 | 34 | 44 | 32 | 46 | 43 | 29 | 1 | 5 | 66 | 9 | 3 |
Antimicrobial Resistance Score | Blood | Urine | p-Value | Invasive Devices Yes | Invasive Devices No | p-Value | Virulence Score (0–2) | Virulence Score (3–5) | p-Value |
---|---|---|---|---|---|---|---|---|---|
0: none | 39 | 50 | 0.139 | 32 | 57 | <0.001 | 80 | 9 | 0.029 |
1: ESBL | 20 | 21 | 0.999 | 24 | 17 | 0.375 | 39 | 2 | 0.999 |
2: carbapenemase | 31 | 21 | 0.103 | 37 | 15 | <0.001 | 52 | 0 | 0.035 |
3: carbapenemase + colistin | 1 | 0 | 0.497 | 1 | 0 | 0.999 | 1 | 0 | 0.999 |
Virulence Score | Blood | Urine | p-Value | Invasive Devices Yes | Invasive Devices No | p-Value | Positive String Test | Negative String Test | p-Value |
---|---|---|---|---|---|---|---|---|---|
0: none | 22 | 41 | 0.004 | 22 | 41 | 0.001 | 7 | 56 | 0.803 |
1: ybt | 61 | 47 | 0.035 | 67 | 41 | <0.001 | 8 | 100 | 0.140 |
2: ybt + clb | 0 | 1 | 0.999 | 0 | 1 | 0.999 | 0 | 1 | 0.999 |
3: iuc | 4 | 1 | 0.211 | 3 | 2 | 0.999 | 0 | 5 | 0.999 |
4: ybt + iuc | 4 | 2 | 0.444 | 2 | 4 | 0.434 | 4 | 2 | 0.001 |
5: ybt + clb + iuc | 0 | 0 | 0 | 0 | 0 | 0 |
Virulence Factor | String Test Positive Isolates 19 (10.4%) | String Test Negative Isolates 164 (89.6%) | OR (95% CI) | p-Value |
---|---|---|---|---|
none | 7 | 56 | 1.12 (0.35–3.30) | 0.803 |
ybt | 12 | 103 | 1.01 (0.34–3.21) | 0.999 |
iuc | 4 | 7 | 5.87 (1.13–26.50) | 0.016 |
iro | 5 | 3 | 18.47 (3.22–131.16) | <0.001 |
rmpADC | 4 | 3 | 13.86 (2.13–103.87) | 0.002 |
rmpA2 | 2 | 1 | 18.39 (0.91–1121.10) | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pristas, I.; Ujevic, J.; Bodulić, K.; Andrijasevic, N.; Bedenic, B.; Payerl-Pal, M.; Susic, E.; Dobrovic, K.; De Koster, S.; Malhotra-Kumar, S.; et al. The Association between Resistance and Virulence of Klebsiella pneumoniae in High-Risk Clonal Lineages ST86 and ST101. Microorganisms 2024, 12, 1997. https://doi.org/10.3390/microorganisms12101997
Pristas I, Ujevic J, Bodulić K, Andrijasevic N, Bedenic B, Payerl-Pal M, Susic E, Dobrovic K, De Koster S, Malhotra-Kumar S, et al. The Association between Resistance and Virulence of Klebsiella pneumoniae in High-Risk Clonal Lineages ST86 and ST101. Microorganisms. 2024; 12(10):1997. https://doi.org/10.3390/microorganisms12101997
Chicago/Turabian StylePristas, Irina, Josip Ujevic, Kristian Bodulić, Natasa Andrijasevic, Branka Bedenic, Marina Payerl-Pal, Edita Susic, Karolina Dobrovic, Sien De Koster, Surbhi Malhotra-Kumar, and et al. 2024. "The Association between Resistance and Virulence of Klebsiella pneumoniae in High-Risk Clonal Lineages ST86 and ST101" Microorganisms 12, no. 10: 1997. https://doi.org/10.3390/microorganisms12101997