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Abstract: Unmanned aerial systems (UASs) find diverse applications across military, civilian, and
commercial sectors, including military reconnaissance, aerial photography, environmental monitoring,
precision agriculture, logistics, and rescue operations, offering efficient, safe, and cost-effective
solutions to various industries. To ensure the stable and reliable operation of UASs, fault diagnosis is
essential, which can enhance safety, and minimize potential risks and losses. However, most existing
fault diagnosis methods rely on a single physical quantity as the primary information source or solely
consider fault data at a single moment, leading to challenges of low diagnostic accuracy and limited
reliability. Aimed at this problem, this paper presents a fault diagnosis method based on time–space
domain weighted information fusion for UASs. First, the Gaussian fault model is constructed for the
data with different fault features in the space domain. Next, the weighted coefficient method is used
to generate the basic probability assignment (BPA) by matching the fault data with the Gaussian fault
model. Then, the Dempster’s combination rule, which enables the Dempster–Shafer (D-S) evidence
theory, is adopted to fuse the generated BPAs. Based on this, the pignistic probability transformation
is performed to determine the fault type. Finally, numerical results demonstrate the effectiveness of
the proposed fault diagnosis method in accurately identifying the fault types of UASs.

Keywords: Dempster–Shafer (D-S) evidence theory; fault diagnosis; information fusion; unmanned
aerial systems (UASs)

1. Introduction

Unmanned aerial systems (UASs) find extensive and diverse applications in mod-
ern society [1]. First, UASs are used for aero photography and air surveys, providing
high-resolution images and mapping data, which can be used in urban planning, land
management, and agricultural monitoring [2]. Second, UASs play a crucial role in en-
vironmental monitoring, aiding in the assessment of natural disasters, forest cover, and
water quality [3]. Additionally, UASs have been applied in logistics and transportation,
entertainment, scientific research, construction and infrastructure inspections, and military
and security domains, providing efficient, convenient, and secure solutions to various
industries [4]. With the continuous progress of technology, the application prospects of
UASs will continue to expand.

In UASs, fault diagnosis is an important step to ensure the safe operation of drones.
The purpose of fault diagnosis is to detect, identify, and resolve problems that occur in
UASs [5–8]. By using fault diagnosis methods, the stable operation of UASs and the smooth
execution of tasks are guaranteed [9]. Unfortunately, most of the current work with UASs
makes an implicit assumption that there is no fault with the adopted UASs. In this situation,
neglecting fault diagnosis in UASs will lead to serious consequences, including increased
safety risks, mission failures, escalated maintenance costs, and data loss [10].
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Facing this challenge, the authors in [11] presented a novel fault diagnosis method
based on the time-domain frequency estimation for fault diagnosis of UASs. By using the
imperfect fault detection information, the authors in [12] proposed an adapted analysis
method, which can analyze the unstable system poles for UASs. In addition, the authors
in [13] adopted deep learning-based methods to design a real-time fault detection method
for UASs. In [14], Z-number fusion is applied to data-driven fault diagnosis. Considering
the diversity and complexity of actual fault data distribution, the deep learning-driven
fault diagnosis problem was investigated in [15], aiming to improve the accuracy of fault
diagnosis of UASs. Based on the Hilbert transform and discrete wavelet transform, the au-
thors in [16] designed a fault diagnosis method, which can identify and diagnose the
corresponding faults under different loads. Furthermore, in order to improve the fault
diagnosis performance of UASs, some efforts have been devoted to vibration signals [17],
unreliable tests [18], reinforcement learning [19], and neural networks [20–22].

However, the fault diagnosis method based on single information has the disadvan-
tages of low precision, strong randomness, and poor robustness. In order to overcome this
shortcoming, researchers use the method of information fusion to integrate the classification
results of multiple classifiers, which can make full use of the information provided by dif-
ferent diagnostic models [23–25]. In this situation, the combination of the Dempster–Shafer
(D-S) evidence theory with fault diagnosis offers significant advantages by effectively han-
dling multiple sources of information and uncertainties, thereby enhancing the accuracy
and reliability of fault diagnosis [26–28]. The reason is that the D-S evidence theory is
effective at handling multiple sources of information and uncertainty due to its unique prob-
abilistic framework for expressing and combining evidence from different sources [29–31].
For the UASs, the fault diagnosis method based on the D-S evidence theory uses belief
functions and evidence combination rules to integrate information from different sensors.
This method not only mitigates the impact of sensor inconsistencies but also effectively
deals with incomplete and conflicting information, thereby enhancing the accuracy and
reliability of fault diagnosis methods.

In the fault diagnosis of UASs, information often comes from various sensors, monitor-
ing devices, or expert systems, which may contain noise, incompleteness, or contradictions.
The D-S evidence theory allows the synthesis and reasoning of this diverse evidence,
generating quantitative measures of belief and disbelief for each possible fault. By using
evidence from different sources, the D-S evidence theory comprehensively assesses the state
of UASs, avoiding the limitations of relying solely on individual sensors or expert opin-
ions [32]. As discussed in [33–35], for UASs, the fault diagnosis methods based on the D-S
evidence theory primarily include information fusion techniques, fault mode identification,
and uncertainty management. These methods effectively identify and differentiate various
potential fault types, providing credible diagnostic results even in cases of incomplete or
contradictory information. This capability empowers the D-S evidence theory to adapt well
in addressing complex UASs, making it highly valuable for fault diagnosis challenges. This
capability empowers the D-S evidence theory to adapt well to addressing complex UASs,
making it highly valuable for fault diagnosis challenges.

Motivated by the above, this paper explores the application of D-S evidence theory
in diagnosing faults in UASs. We design a fault diagnosis method that employs a time–
space domain weighted information fusion approach. First, we identify the fundamental,
double, and triple frequencies, along with vibration displacement, as fault features. These
features are used to construct a Gaussian fault model. Subsequently, we generate the basic
probability assignment (BPA). To minimize uncertainty, fault data are collected over time
and fused using a weighted coefficient method. Following this, Dempster’s combination
rule is applied to integrate BPA derived from various fault features, enabling accurate
fault diagnosis. Numerical results validate that our proposed method effectively identifies
different types of faults in UASs.
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2. The Proposed Fault Diagnosis Method

Currently, the traditional fault diagnosis methods based on a single fault feature at a
single moment cannot accurately detect the faults. Therefore, by jointly considering time
and space domains, we design a fault diagnosis method based on time–space domain
weighted information fusion.

Figure 1 details the overall process of the proposed fault diagnosis method, consisting
of three steps. According to the following steps, we can obtain the fault diagnosis results.

• Step I: Feature extraction of fault data is performed to construct the Gaussian fault model.
• Step II: In the time domain (multi-feature) and space domain (multi-moment), the fault

data are fused to generate the BPAs. Additionally, in the time domain, the weighted
coefficient method is used to fuse BPAs over a period.

• Step III: The BPAs generated in Part II are fused by using the Dempster’s combination
rule. Then, the pignistic probability transformation is employed for decision-making.
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combination rule

Pignistic probability 

transformation

Fault diagnosis results

Step I

Step III

Step II

Fault Data

Space domain 

BPA generation

Different fault  

features

Time domain 

BPA generation

BPA 1 BPA 2 BPA n
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Figure 1. The overall process of the proposed fault diagnosis method.
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2.1. Gaussian Fault Model

We define the Gaussian fault model with the fault type Fi and fault feature Cj as follows:

µ(x) : X → [0, 1], x ∈ X, (1)

where X is the set whose fault type is Fi and whose fault feature is Cj. The steps for
generating the Gaussian fault model of fault data with different features are as follows.

• Step I: We calculate the average value
−→
F iCj of the fault data with fault type Fi and

fault feature Cj as follows:

−→
F iCj =

1
n

n

∑
i=1

xl
iCj

. (2)

• Step II: We calculate the standard deviation σiCj
of the fault data with the fault type Fi

and fault feature Cj as follows:

σiCj
=

√√√√ 1
n − 1

n

∑
i=1

(
xl

iCj
−−→

F iCj

)2
. (3)

• Step III: Based on
−→
F iCj and σiCj

, the constructed Gaussian fault model can be ex-
pressed as follows:

µ(x) = exp

−

(
xl

iCj
−−→

F iCj

)
2σ2

iCj

. (4)

2.2. Time–Space Domain BPA Generation

In Section 2.2, we use the time–space domain combined information fusion method
for fault diagnosis, where the BPAs are generated from both time and space domains.

2.2.1. Space Domain BPA Generation

First, the generation of BPAs is implemented from the space domain (i.e., the feature
of fault data). Specifically, according to (2) and (3), the average value

−→
F iCj and standard

deviation σiCj
of n different fault features are solved, respectively. Then, the Gaussian fault

model with n different fault features is obtained. Based on the fault feature Cj, we can
obtain the constructed Gaussian fault model, as shown in Figure 2. We can find that the
Gaussian model describes the central location and dispersion of data through their mean
and variance parameters, providing a mathematical foundation for distinguishing between
different fault types. Within the D-S evidence theory, each fault type’s Gaussian model not
only reflects the typical characteristics of the fault but also expresses the uncertainty and
similarity between different fault types through overlaps between models. Figure 2 is a
simple example of a Gaussian fault model, including three types of faults. More precisely,
the dashed line indicates the test specimen. The blue line, orange line, and yellow line
indicate three different fault types, respectively. By constructing the Gaussian fault model,
the similarity between test specimens and each fault model can be calculated. On this basis,
we can determine the matching degree and BPA by the points of intersection between the
test specimen and the constructed Gaussian fault model, i.e., points A and B.
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Figure 2. A simple example of the Gaussian fault model: Since the fault features of UASs usually
show an approximate normal (Gaussian) distribution, the Gaussian fault modes can be constructed
for the proposed fault diagnosis methods.

2.2.2. Time-Domain BPA Generation

Because of the diversity and uncertainty of the fault data, it is not accurate to diagnose
the fault solely from the feature. In this situation, time-domain information is considered.
When the fault diagnosis is performed at time k, we select the fault data in k − n at different
times. The weighted coefficient method is used to deal with the weight of BPAs, i.e., BPAs
in k − n different times are generated from the test specimen. Then, these k − n BPAs are
weighted to obtain new BPAs. Figure 3 illustrates the generation of BPAs by using the
weighted coefficient method. Specifically, the weighted coefficient method for process-
ing BPAs refers to a technique used within the D-S evidence theory, which is aimed at
combining evidence from various sources to manage uncertainty and incompleteness in
information [36]. The key steps are as follows. First, a weight coefficient is assigned to each
source based on its reliability, accuracy, or other relevant criteria. These weights are numeric
values between 0 and 1, reflecting the trust level in the source. Second, each source’s BPA
is adjusted according to its corresponding weight. For each possible proposition or set of
propositions, its BPA value is multiplied by the respective weight to obtain the weighted
BPA. Third, using Dempster’s combination rule, all the weighted BPAs are merged. The
merging process accounts for potential conflicts among sources and adjusts the combined
belief distribution accordingly. Finally, the merged BPA provides a comprehensive view
of the truthfulness of different propositions, which can be used for decision support or
further analysis.

2.3. Information Fusion and Decision-Making

According to the D-S evidence theory, we use Dempster’s combination rule to fuse
the BPAs generated in Section 2.1 [36–38]. Specifically, Dempster’s composition rule is a
fundamental component of D-S evidence theory and is employed to systematically combine
multiple belief functions into a single belief function. The Dempster’s combination rule
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operates by aggregating the BPAs from different sources, focusing on the intersection of
evidence to compute the degree of belief for each proposition. Through normalization, it
can ensure that the resultant belief function is a coherent representation of the combined
evidence, which helps in making decisions based on aggregated and validated data. By
integrating various evidence, our objective is to achieve information that is both logical
and dependable while minimizing the uncertainty associated with the acquired data.
However, since the fused BPAs may contain uncertainties, it is not conducive to making
decisions. Thus, the BPAs can be converted to probabilities using the pignistic probability
transformation, based on which the fault type of test specimens can be diagnosed. The
pignistic probability transformation is defined as follows:

BPA

B

P

A

k n- 2k -3k - 1k - k Time

( )BPA k n-

( )BPA 1k -

BPA k

Figure 3. A diagram of the generation of BPAs by using the weighted coefficient method: Each
evidence source is assigned a weight based on its reliability. Then, the final BPA is calculated by
adding these weighted values.

It is assumed that m is a BPA in FOD, and its pignistic probability transformation
BetPm(X) can be expressed as follows:

BetPm(X) = ∑
Y ∈ 2Θ

Y ̸= ∅

|X ∩ Y|
|Y| · m(Y)

1 − m(∅)
, (5)

where 2Θ is the power set of Θ, and |Y| is the cardinal number of set Y.
Discussion: The integration of the time–space domain weighted information fusion

and D-S evidence theory provides significant advantages for fault diagnosis in UASs by
leveraging comprehensive data analysis and enhanced decision-making capabilities. By
combining data across different times and locations, time–space fusion constructs a holistic
view of the system’s operational status, facilitating the detection of abnormal patterns and
potential faults more accurately. This approach is particularly effective in environments
where sensor data may be uncertain or incomplete, as the D-S evidence theory excels
in managing such uncertainties. It aggregates multiple sources of evidence to calculate
probabilities of potential faults, providing a reliable basis for diagnostic assessments.

Moreover, the D-S theory enhances decision-making by quantifying the confidence
levels associated with different diagnostic scenarios, allowing for prioritized and informed
response strategies. This capability is critical in UASs where timely and accurate fault
resolution is paramount. The fusion of time–space data and D-S theory support dynamic
updating, enabling real-time system monitoring and immediate response to emerging
faults. The adaptability of this methodology means that it can be applied across various
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time–space and operational scales, making it a versatile and robust tool for maintaining
system reliability and performance.

3. Performance Evaluation
3.1. Simulation Environment

This section illustrates the application of the proposed fault diagnosis method by
demonstrating its effectiveness in diagnosing motor rotor faults of UASs, as depicted in
Figure 4. Specifically, on the left part of Figure 4, an operational schematic of the UAS in
flight demonstrates its control and navigation mechanisms. On the right part of Figure 4, an
expanded view of the motor rotors is highlighted for fault diagnosis, utilizing the proposed
method to identify and analyze potential fault types within the rotors of UASs.

Motor Rotors

Figure 4. A diagram of the considered UAS and the corresponding motor rotor for fault diagnosis.

In the simulation, fault data are collected from vibration signals using displacement
and accelerometer sensors mounted on the rotor, from which key features are extracted.
The simulation setup includes three common types of rotor faults (rotor imbalance, mis-
alignment, and looseness of the base), denoted as {F1, F2, F3}. Normally, when the rotor
faults, the vibration amplitude at any frequency does not exceed 0.1 m per second. If a fault
occurs, the vibration amplitude will significantly increase, and different types of faults will
cause changes in different vibration frequencies or bands.

To accurately diagnose the fault type, the simulation environment not only analyzes
the vibration amplitude at each frequency but also specifically focuses on the vibration
energy concentrated at 1× (fundamental frequency), 2× (second harmonic), and 3× (third
harmonic). By combining the vibration amplitudes from 1× to 3× and the average am-
plitude of time-domain vibration displacement, a fault feature vector is formed to iden-
tify specific fault types. The fault features are defined as {C1, C2, C3, C4}. Specifically,
{C1, C2, C3} are the amplitudes of these three frequencies, and {C4} is the time-domain
vibration displacement.

3.2. Numerical Results

First, we calculate
−→
F iCj and σiCj

by using (2) and (3). Based on (4), we can construct
the Gaussian fault model, as shown in Figure 5a,b. Then, the fault data are matched
with the generated Gaussian fault model as shown in Figure 6a,b. Based on this, Table 1
shows the time-domain BPAs under different fault features. As shown in Figure 6a,b,
in the application of the proposed method for fault diagnosis, matching fault data with
the generated Gaussian fault model aims to enhance the accuracy and reliability of fault
diagnosis. The Gaussian model represents the statistical characteristics of faults. Matching
the fault data with these models allows for more precise identification of faults within
UASs, thereby pinpointing the fault types. Furthermore, as observed from Figure 6a,b, the
generated Gaussian fault model effectively reduces the intersection areas between different
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fault features. This reduction in intersection areas indicates an improvement in the ability
to identify fault features.
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Figure 5. A diagram of the constructed Gaussian fault model under different fault features: In
a constructed Gaussian fault model based on different fault features, each feature is statistically
analyzed to determine its mean and variance.

Table 1. The time-domain BPAs.

Fault Features BPAs

Feature 1, C1 m{F1} = 0.9959 m{ F1, F2} = 0.2950
Feature 2, C2 m{ F1} = 0.9898 \
Feature 3, C3 m{F1} = 0.7388 m{ F1, F3} = 0.1830
Feature 4, C4 m{F1} = 0.9972 m{ F1, F2} = 0.6222

As previously discussed, we select the fault data in k − n at different times. In our
numerical simulations, k − n = 10, thereby generating 10 BPAs. By using the weighted coef-
ficient method, we can obtain the time–space domain BPAs, as shown in Table 2. As shown
in Table 2, the fault features Ci provide specific information about the UASs, while fault
types Fi are inferred causes behind these features. In the proposed fault diagnosis method,
we associate collected features with the probabilities of different fault types, thereby of-
fering a quantitative approach to assess the likelihood of each fault type. Specifically, the
fault features can be seen as sources of evidence used to update the belief and plausibility
of various fault types. By combining and computing the beliefs associated with different
features, we can infer the relative confidence in various fault types. Therefore, the fault
features directly influence the estimation of probabilities for fault types.
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Figure 6. The generation of BPAs in the space domain: Fault features are processed through Gaussian
models to generate BPAs that diagnose the fault type.

Finally, using the Dempster’s combination rule fuses the time–space domain BPAs,
and we have m({F1}) = 1 by performing normalization. Based on this, the pignistic prob-
ability transformation is employed, and we can obtain BetP({F1}) = 1. According to the
above results, we can find that the fault type is F1. The diagnosis result is consistent with
the real fault type, which confirms the effectiveness of the proposed fault diagnosis method.

Table 2. The time–space domain BPAs.

Time C1 C2 C3 C4

m({F1}) m({F1, F2}) m({F1}) m({F1}) m({F1, F3}) m({F1}) m({F1, F2})
k 0.9865 0.2687 0.9094 0.6016 0.2294 0.9983 0.6287

k − 1 0.9919 0.2817 0.9184 0.7819 0.1692 0.9960 0.6157
k − 2 0.9930 0.2850 0.9431 0.7388 0.1830 0.9948 0.6105
k − 3 0.9907 0.2784 0.9469 0.6757 0.2038 0.9979 0.6261
k − 4 0.9930 0.2850 0.9667 0.6940 0.1977 0.9935 0.6053
k − 5 0.9959 0.2950 0.9637 0.7563 0.1774 0.9970 0.6209
k − 6 0.9994 0.3157 0.9606 0.7031 0.1947 0.9979 0.6261
k − 7 0.9981 0.3053 0.9929 0.7476 0.1802 0.9968 0.6196
k − 8 0.9967 0.2984 0.9799 0.9135 0.1255 0.9954 0.6131
k − 9 0.9959 0.2950 0.9898 0.7388 0.1830 0.9972 0.6222

Weighted BPA 0.9885 0.2758 0.9209 0.6753 0.2042 0.9961 0.6215
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4. Conclusions

In this paper, we studied the fault diagnosis problem for UASs and presented a fault
diagnosis method based on time–space domain weighted information fusion. Compared
to the conventional fault diagnosis method based on time or space domain, the proposed
fault diagnosis method had higher diagnostic accuracy and reliability. First, according to
different fault features in the space domain, the Gaussian fault model was constructed, and
the test specimens were matched with the constructed Gaussian fault model to obtain the
corresponding BPAs. Since the uncertainty of fault diagnosis at a single moment was high,
the Gaussian fault model was constructed by using different fault features over a period.
Then, the weighted coefficient method was adopted to obtain the time–space domain
BPAs. Afterward, the Dempster’s combination rule was employed to fuse the generated
BPAs, where the normalization was performed. Finally, by using the pignistic probability
transformation, we obtained the fault type. Through numerical simulations, we verified
the efficacy of the proposed fault diagnosis method.

However, the proposed fault diagnosis method has its shortcomings. On the one
hand, the fault features are self-defined, which might not comprehensively represent actual
operational scenarios. This limitation could possibly restrict the method’s accuracy and
general applicability across different UAS operations. On the other hand, the paper lacks a
thorough analysis of the UAS’s reliability under varied and real-world conditions, focusing
only on idealized fault scenarios. Addressing these gaps, especially through leveraging
insights from [39,40], could enhance the development of more robust and reliable fault
diagnosis solutions for UASs or drone fleets.

For future work on the fault diagnosis of UASs, several key areas can be explored
and improved.

• Real-time fault diagnosis: In UASs, real-time fault diagnosis is essential for preventing
system failures and reducing downtime. Future research can concentrate on develop-
ing efficient and low-latency fusion algorithms that can provide timely fault diagnosis
and enable proactive maintenance.

• Multi-modal information fusion: Instead of only considering time and space domains,
integrating data from various modalities, such as frequency domain or image data,
can further improve the accuracy and robustness of fault diagnosis. Combining
data from different sources can offer complementary information and lead to a more
comprehensive understanding of the system’s health.

• Uncertainty quantification: Fault diagnosis methods of UASs should be capable of
estimating and quantifying uncertainties in their predictions. This is crucial in high-
stakes applications where the reliability of diagnosis plays a vital role. Uncertainty
estimation can provide confidence intervals for fault predictions and enhance decision-
making processes.
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